TÓPICOS. Exercícios. Determinando a matriz escalonada reduzida equivalente

Tamanho: px
Começar a partir da página:

Download "TÓPICOS. Exercícios. Determinando a matriz escalonada reduzida equivalente"

Transcrição

1 Note bem: a leitra destes apontamentos não dispensa de modo algm a leitra atenta da bibliografia principal da cadeira Chama-se a atenção para a importância do trabalho pessoal a realizar pelo alno resolvendo os problemas apresentados na bibliografia, sem conslta prévia das solções propostas, análise comparativa entre as sas resposta e a respostas propostas, e posterior eposição jnto do docente de todas as dúvidas associadas. ÓPICOS Eercícios. AULA 8 8. Eercícios. DEERMINAR UMA BASE PARA O ESPAÇO DAS LINHAS DE UMA MARIZ. Como das matrizes eqivalentes por linhas têm o mesmo espaço linha, para determinar ma base do espaço linha de ma matriz basta seleccionar as linhas não nlas da matriz escalonada eqivalente 8.. Determinar ma base para o espaço linha da matriz A Determinando a matriz escalonada redzida eqivalente >> A[ ; - -;- - ; -]; >> Lrref(A) L -, temos Prof. José Amaral ALGA A8-9--9

2 Prof. José Amaral ALGA A L A ~ Seleccionando as linhas não nlas da matriz L, temos m conjnto de vectores [ ], [ ] e [ ] qe formam ma base do espaço linha de A. Assim, )) dim(lin( A. DEERMINAR UMA BASE PARA O ESPAÇO DAS COLUNAS DE UMA MARIZ. Dado qe ) lin( ) col( A A, para determinar ma base do espaço colna de ma matriz A basta determinar ma base do espaço linha da sa matriz transposta, seleccionando as linhas não nlas da matriz escalonada eqivalente a A. 8.. Determinar ma base para o espaço colna da matriz A do eemplo anterior. Sendo a matriz transposta A, determinando a matriz escalonada redzida eqivalente à matriz transposta >> Crref(A') C, temos A C ~ Seleccionando as linhas não nlas da matriz C, temos m conjnto de vectores [ ], [ ] e [ ]

3 qe formam ma base do espaço colna de A. Logo, dim(col( A )). A dimensão do espaço colna é sempre igal à dimensão do espaço linha, e igal à característica da matriz, dim(lin( A )) dim(col( A)) car( A). Caso tenhamos escalonado a matriz A, podemos determinar ma base do espaço colna da matriz, seleccionando as colnas de A correspondentes às colnas com pivot da sa matriz escalonada. Como vimos no eemplo anterior A ~ L A matriz L tem pivots na a, a e a colnas, seleccionando as colnas respectivas da matriz A temos m conjnto de vectores [ ], [ ] e [ ] qe formam ma base do espaço colna de A. Podemos verificar qe se trata de ma combinação linear dos vectores determinados a partir da matriz transposta >> rref([ - ; - ; - ]) ans DEERMINAR UMA BASE PARA O NÚCLEO DE UMA MARIZ. Para determinar ma base para o núcleo de ma matriz procramos as solções do sistema homogéneo A. 8.. Determinar ma base para o núcleo da matriz A dos eemplos anteriores. Dada a matriz, procramos a matriz escalonada redzida eqivalente. Como vimos, temos A, sendo e as variáveis livres, temos ~ Prof. José Amaral ALGA A8-9--9

4 Prof. José Amaral ALGA A , pelo qe, os vectores [ ], e [ ] formam ma base do núcleo de A. emos )) dim(ker( ) nl( A A, e n + ) nl( ) car( A A. DEERMINAR UMA BASE PARA O NÚCLEO À ESQUERDA DE UMA MARIZ. Para determinar ma base para o núcleo à esqerda de ma matriz procramos as solções do sistema homogéneo A. 8.. Determinar ma base para o núcleo à esqerda da matriz A dos eemplos anteriores. Dada a matriz, procramos a matriz escalonada redzida eqivalente à matriz transposta. Como vimos, temos ~ A, sendo ma variável livre, temos pelo qe o vector [ ] forma ma base do núcleo à esqerda de A. emos )) dim(ker( ) nl( A A, e m + ) nl( ) car( A A.

5 RELAÇÃO ENRE OS ESPAÇOS FUNDAMENAIS DE UMA MARIZ. 8.. Podemos verificar qe o espaço linha da matriz A dos eemplos anteriores corresponde ao complemento ortogonal, em R, do núcleo da matriz (e vice-versa) Ker( A) (lin( A )) >> [ -]'; >> [ ]'; >> [ ]'; >> [- - ]'; >> [ - - ]'; >> C[ ]; >> N[ ]; >> C'*N ans Verificamos qe o espaço colna da matriz corresponde ao complemento ortogonal, em R, do núcleo à esqerda de A, o seja do núcleo de A (e vice-versa) >> [ - ]'; >> [ - ]'; >> [ - ]'; >> Ne[ - - ]'; >> L[ ]; >> L'*Ne ans Ker( A ) (col( A )) DEERMINAÇÃO DOS ESPAÇOS FUNDAMENAIS DE UMA MARIZ COM O MALAB. 8.. O MatLab tem fnções predefinidas qe permitem o cálclo imediato dos espaços de ma matriz. As fnções colspace(a) e nll(a) determinam ma base do espaço colna e do núcleo de ma matriz, qando definida simbolicamente. As fnções orth(a) e nll(a) determinam ma base ortonormada do espaço colna e do núcleo de ma matriz qando definida nmericamente. Prof. José Amaral ALGA A8-9--9

6 Dada a matriz A dos eemplos anteriores, a determinação dos ses espaços linha e colna é trivial. >> A[ ; - -;- - ; -]; >> Asym(A); >> colspace(a) ans [,, ] [,, ] [,, ] [,, ] >> colspace(a') ans [,, ] [,, ] [,, ] [,, ] [ -,, ] >> nll(a) ans [ -, ] [ -, -] [, ] [, -] [, ] >> nll(a') ans - -, confirmando as dedções feitas anteriormente. Recorrendo às fnções orth(a) e nll(a) podemos determinar os versores dos espaços fndamentais da matriz >> A[ ; - -;- - ; -]; >> orth(a) % versores do espaço colna ans Prof. José Amaral ALGA A8-9--9

7 >> orth(a') % versores do espaço linha ans >> nll(a) % versores do núcleo ans >> nll(a') % versores do núcleo à esqerda ans DEERMINAR UMA BASE PARA O COMPLEMENO OROGONAL DE UM SUBESPAÇO. Podemos determinar ma base para o complemento ortogonal de m sbespaço recorrendo às relações entre os espaços fndamentais de ma matriz Sendo W o sbespaço de R gerado pelos vectores [ ], [ ] e [ ] determinar ma base para o complemento ortogonal de W. Colocando os vectores,, e nas linhas de ma matriz A, ao núcleo da matriz, Ker( A) (lin( A )). Assim, sendo A, e determinando a matriz escalonada redzida eqivalente >> [ - ]'; >> [ - ]'; >> [ - ]'; >> U[ ]; W corresponde Prof. José Amaral ALGA A

8 >> rref(u') ans temos A ~ Sendo e as variáveis livres, temos.. pelo qe os vectores w [.. ], e w [.. ] formam ma base do complemento ortogonal de W, o qe podemos verificar >> w[.. ]'; >> w[-. -. ]'; >> W[w w]; >> U'*W ans OROGONALIZAÇÃO DE GRAM-SCHMID Dado o conjnto de vectores linearmente independentes U {, },, com (,,,), (,,, ), (,,, ), qe constiti ma base de m sbespaço W de R, obter ma base ortonormada para esse sbespaço. Procedendo conforme o método de ortogonalização de Gram-Schmidt, temos:. v [ ] Prof. José Amaral ALGA A

9 . v v projv v v v [ ] [ ]. v v v v v projv projv v v v v [ ] [ ] [ ] / e, finalmente, normalizando cada m dos vectores obtidos, temos v q, v >> [ ]'; >> [ ]'; >> [ ]'; >> v; v q, e q v v v >> v-('*v)/(v'*v)*v; >> v-('*v)/(v'*v)*v-('*v)/(v'*v)*v; >> qv/norm(v); >> qv/norm(v); >> qv/norm(v); >> [v v v] Prof. José Amaral ALGA A

10 ans >> [q q q] ans , o simplesmente, recorrendo à fnção orth(a) >> [ ]'; >> [ ]'; >> [ ]'; >> orth([ ]) ans Nota : A fnção orth não tiliza o algoritmo de Gram-Schmidt para obter os U,, pelo qe os versores são diferentes. versores do sbespaço gerado por { }, MISCELÂNEA Em R, com o prodto interno sal, considere os vectores [ ] v [ ]. Determine: a) O ânglo entre e v. b) A projecção ortogonal de sobre v. c) k R tal qe o vector [ k ] seja ortogonal a. e d) odos os vectores perpendiclares a v. e) Um vector nitário simltaneamente perpendiclar aos vectores e v. f) Seja W L( v, ). Indiqe, jstificando, f.) Uma base ortonormada de W. f.) Uma base ortonormada de W. Prof. José Amaral ALGA A8-9--9

11 f.) Uma base ortonormada de R contendo a base indicada em f.. a) Sendo e v vectores não nlos de No caso presente temos: Logo: n R, o ânglo entre eles é v α arccos v v [ ] + [ ] + + v v v [ ] + + v α arccos v arccos arccos b) Sendo e v (não nlo) dois vectores de é proj v n R, a projecção ortogonal de sobre v v v v v v v v No caso presente, atendendo aos cálclos feitos na alínea anterior, temos: c) O vector [ k ] proj v w é ortogonal a sse w. emos então: k k + k [ ] d) O vector [ y z] w R é ortogonal a v sse w v. emos então: y z + y z [ ] Prof. José Amaral ALGA A8-9--9

12 Assim, o conjnto W de todos os vectores perpendiclares a v é { ( yz,, ) R : y z } W + e) ratando-se de vectores de R, m modo simples de calclar m vector nitário simltaneamente perpendiclar aos vectores e v, é recorrer ao cálclo de v. emos e e e v det ( ) e ( ) e + ( ) e [ ] Para obter m vector nitário basta dividir o vector pela sa norma. emos então: w f.) Sendo W L( v, ), para calclar ma base ortonormada de W, podemos, por eemplo, dispor os vectores sobre as linhas de ma matriz, A, e atender a qe W corresponde a lin( A ) e W a Ker(A ). Assim, e atendendo a qe determinamos o núcleo de ma matriz procrando as solções do sistema homogéneo A, temos z A y Uma base de W é então: z y k z z Normalizando o vector temos então qe (,, ) constiti ma base ortonormada de W : { } W L((,, )) k(,, ): k R (nota: poderíamos ter atendido simplesmente à resposta dada na alínea e)). f.) Atendendo aos considerandos e cálclos da alínea anterior, W corresponde a lin( ) A. emos então y k k + z Em geral, poderíamos ter de recorrer ao método de ortogonalização de Gram-Schmidt para obter ma base ortonormada de W. Note no entanto qe (,,) e (,, ) são ortogonais, pelo qe basta normalizar os vectores. emos então qe Prof. José Amaral ALGA A8-9--9

13 e constitem ma base ortonormada de W. [ ] f.) Para obter ma base ortonormada de bases ortonormadas de W e R basta tão simplesmente considerar as W obtidas nas alíneas anteriores: [ ] 8.. Considere a matriz real A a) Indiqe ma base para o espaço linha de A, lin( A ), e ma base para o espaço nlo de A, ker( A ). b) Diga, jstificadamente, qal é a dimensão de cada m dos espaços fndamentais da matriz A. a) Como das matrizes eqivalentes por linhas têm o mesmo espaço linha, para determinar ma base do espaço linha de A basta seleccionar as linhas não nlas da matriz escalonada eqivalente. emos: A Seleccionando as linhas não nlas da matriz, temos m conjnto de vectores [ ], [ ] qe formam ma base do espaço linha de A. Para determinar ma base para o núcleo de ma matriz procramos as solções do sistema homogéneo A. emos z A y z Assim Prof. José Amaral ALGA A8-9--9

14 z z y z z + w y z z z w w, pelo qe, os vectores [ ], [ ] formam ma base do núcleo de A. b) Dos cálclos da alínea anterior, temos O qe confirma car( A) + nl( A ) n. dim(lin( A )) dim(ker( A )) Dado qe dim(lin( A)) dim(col( A )), temos dim(col( A )) Dado qe dim(col( A)) + dim(ker( A ) m, temos dim(ker( A ) Prof. José Amaral ALGA A8-9--9

AULA Exercícios. DETERMINAR A EXPRESSÃO GERAL E A MATRIZ DE UMA TL CONHECIDAS AS IMAGENS DE UMA BASE DO

AULA Exercícios. DETERMINAR A EXPRESSÃO GERAL E A MATRIZ DE UMA TL CONHECIDAS AS IMAGENS DE UMA BASE DO Note bem: a leitra destes apontamentos não dispensa de modo algm a leitra atenta da bibliografia principal da cadeira Chama-se a atenção para a importância do trabalho pessoal a realizar pelo alno resolvendo

Leia mais

Ficha de Trabalho 06 e 07

Ficha de Trabalho 06 e 07 Ficha de rabalho 06 e 07 Produto Interno. (Aulas 1 a 18). Produto interno em R n. Vectores livres: Ângulo de dois vectores. Vectores ortogonais. Vectores em R n : Produto interno. Norma. Desigualdade de

Leia mais

AULA 13 { } 13. Exercícios. DETERMINAR UMA BASE DE UM SUBESPAÇO Determinar uma base do subespaço de

AULA 13 { } 13. Exercícios. DETERMINAR UMA BASE DE UM SUBESPAÇO Determinar uma base do subespaço de Prof. Isabel Matos & José Amaral ALGA A - 8--9. Eercícios. DETERMINAR MA ASE DE M SESPAÇO... Determinar uma base do subespaço de R { } (,,, ) (,,, ) : ( ) ( ) L u u u u R W ma ve que qualquer conjunto

Leia mais

AULA 13 { } 13. Exercícios. DETERMINAR UMA BASE DE UM SUBESPAÇO Determinar uma base do subespaço de

AULA 13 { } 13. Exercícios. DETERMINAR UMA BASE DE UM SUBESPAÇO Determinar uma base do subespaço de Prof. Isabel Matos & José Amaral ALGA A - 6--9. Eercícios. DETERMINAR MA ASE DE M SESPAÇO... Determinar uma base do subespaço de R { } (,,, ) (,,, ) : ( ) ( ) L u u u u R ma ve que qualquer conjunto de

Leia mais

AULA Exercícios. VERIFICAR SE UM VECTOR É UMA COMBINAÇÃO LINEAR DE UM CONJUNTO DE VECTORES.

AULA Exercícios. VERIFICAR SE UM VECTOR É UMA COMBINAÇÃO LINEAR DE UM CONJUNTO DE VECTORES. Note bem: a leitura destes apontamentos não dispensa de modo algum a leitura atenta da bibliografia principal da cadeira Chama-se a atenção para a importância do trabalho pessoal a realizar pelo aluno

Leia mais

TÓPICOS. Valores e vectores próprios. Equação característica. Matrizes semelhantes. Matriz diagonalizável. Factorização PDP -1

TÓPICOS. Valores e vectores próprios. Equação característica. Matrizes semelhantes. Matriz diagonalizável. Factorização PDP -1 Note bem: a leitura destes apontamentos não dispensa de modo algum a leitura atenta da bibliografia principal da cadeira Chama-se a atenção para a importância do trabalho pessoal a realizar pelo aluno

Leia mais

AULA Exercícios. DETERMINAR A EXPRESSÃO GERAL E A MATRIZ DE UMA TL CONHECIDAS AS IMAGENS DE UMA BASE DO

AULA Exercícios. DETERMINAR A EXPRESSÃO GERAL E A MATRIZ DE UMA TL CONHECIDAS AS IMAGENS DE UMA BASE DO Note bem: a leitura destes apontamentos não dispensa de modo algum a leitura atenta da bibliografia principal da cadeira Chama-se a atenção para a importância do trabalho pessoal a realizar pelo aluno

Leia mais

Ficha de Trabalho 08 Transformações Lineares. (Aulas 19 a 22).

Ficha de Trabalho 08 Transformações Lineares. (Aulas 19 a 22). F I C H A D E R A B A L H O 0 8 Ficha de rabalho 08 ransformações Lineares. (Aulas 19 a ). Produto interno em R n. Vectores livres: Ângulo de dois vectores. Vectores ortogonais. Vectores em R n : Produto

Leia mais

TÓPICOS. Matriz escalonada. Pivot. Matriz equivalente por linhas. Característica.

TÓPICOS. Matriz escalonada. Pivot. Matriz equivalente por linhas. Característica. Note bem: a leitura destes apontamentos não dispensa de modo algum a leitura atenta da bibliografia principal da cadeira TÓPICOS Matriz escalonada. AUA Chama-se a atenção para a importância do trabalho

Leia mais

AULA Exercícios. DEMONSTRAR QUE UMA TRANSFORMAÇÃO É LINEAR Se A é uma matriz real m n e. u R, a aplicação T : R R tal que

AULA Exercícios. DEMONSTRAR QUE UMA TRANSFORMAÇÃO É LINEAR Se A é uma matriz real m n e. u R, a aplicação T : R R tal que Note bem: a leitura destes apontamentos não dispensa de modo algum a leitura atenta da bibliografia principal da cadeira Chama-se a atenção para a importância do trabalho pessoal a realizar pelo aluno

Leia mais

[Poole 193 a 200, 252 a 261, 289 a 308, 363 a 405] Valores e Vectores Próprios.

[Poole 193 a 200, 252 a 261, 289 a 308, 363 a 405] Valores e Vectores Próprios. Módlo 7 Note bem, a letra destes apontamentos não dspensa de modo algm a letra atenta da bblografa prncpal da cadera Chama-se à atenção para a mportânca do trabalho pessoal a realzar pelo alno resolendo

Leia mais

f R e P o D. Vimos que (Po x

f R e P o D. Vimos que (Po x Universidade Salvador UNIFACS Crsos de Engenharia Cálclo IV Proa: Ilka Reboças Freire Cálclo Vetorial Teto 0: Derivada Direcional e Gradiente. A Derivada Direcional Consideremos a nção escalar : D R R

Leia mais

7 Formas Quadráticas

7 Formas Quadráticas Nova School of Business and Economics Prática Álgebra Linear 1 Definição Forma quadrática em variáveis Função polinomial, de grau, cuja expressão tem apenas termos de grau. Ex. 1: é uma forma quadrática

Leia mais

Álgebra Linear e Geometria Analítica. Rectas no plano, no espaço e em IR n Planos no espaço e em IR n

Álgebra Linear e Geometria Analítica. Rectas no plano, no espaço e em IR n Planos no espaço e em IR n Álgebra Linear e Geometria Analítica Rectas no plano, no espaço e em IR n Planos no espaço e em IR n Em geometria eclidiana: pontos definem ma recta o ponto e a direcção da recta o seja: ponto vector (

Leia mais

7 Formas Quadráticas

7 Formas Quadráticas Nova School of Business and Economics Apontamentos Álgebra Linear 1 Definição Forma quadrática em variáveis Função polinomial, de grau, cuja expressão tem apenas termos de grau. Ex. 1: é uma forma quadrática

Leia mais

Álgebra Linear e Geometria Analítica

Álgebra Linear e Geometria Analítica Álgebra Linear e Geometria Analítica Engenharia Electrotécnica Escola Superior de Tecnologia de Viseu www.est.ip.pt/paginaspessoais/lucas lucas@mat.est.ip.pt 007/008 Álgebra Linear e Geometria Analítica

Leia mais

ÁLGEBRA LINEAR. Espaços Vetoriais Euclidianos, Produto Interno. Prof. Susie C. Keller

ÁLGEBRA LINEAR. Espaços Vetoriais Euclidianos, Produto Interno. Prof. Susie C. Keller ÁLGEBRA LINEAR Espaços Vetoriais Eclidianos, Prodto Interno Prof. Ssie C. Keller Prodto Interno Prodto interno no espaço etorial V é ma fnção de V V em IR qe a todo par de etores (, ) V V associa m número

Leia mais

Instituto Superior de Engenharia de Lisboa Engenharia Informática e de Computadores

Instituto Superior de Engenharia de Lisboa Engenharia Informática e de Computadores Instituto Superior de Engenharia de Lisboa Engenharia Informática e de Computadores Teoria dos Sinais e dos Sistemas O procedimento de Gram-Schmidt: definição, exemplos e aplicações Artur Ferreira {arturj@isel.pt}

Leia mais

Álgebra Linear. 8 a Lista: a) Use o processo de ortogonalização de Gram Schmidt para construir uma base ortonormada para W.

Álgebra Linear. 8 a Lista: a) Use o processo de ortogonalização de Gram Schmidt para construir uma base ortonormada para W. Álgebra Linear Cursos: Química, Engenharia Química, Engenharia de Materiais, Engenharia Biológica, Engenharia do Ambiente 1 ō ano/1 ō Semestre 2006/07 8 a Lista: Nos exercícios em que n~ao se especifica

Leia mais

10 a Lista de Exercícios

10 a Lista de Exercícios Álgebra Linear Licenciaturas: Eng. Biológica, Eng. Ambiente, Eng. Química, Química 1 ō ano 2004/05 10 a Lista de Exercícios Problema 1. Decida quais das expressões seguintes definem um produto interno.

Leia mais

Determinante Introdução. Algumas Propriedades Definição Algébrica Equivalências Propriedades Fórmula Matriz

Determinante Introdução. Algumas Propriedades Definição Algébrica Equivalências Propriedades Fórmula Matriz ao erminante Área e em R 2 O qe é? Qais são sas propriedades? Como se calcla (Qal é a fórmla o algoritmo para o cálclo)? Para qe sere? A = matriz. P paralelogramo com arestas e. + A é a área (com sinal)

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA TÓPICOS DE RESOLUÇÃO do Teste Final 2012/2013

ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA TÓPICOS DE RESOLUÇÃO do Teste Final 2012/2013 ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA TÓPICOS DE RESOLUÇÃO do Teste Final 0/0 A) B) C) D) [,0]. Considere as seguintes a rmações: I. ~x

Leia mais

Álgebra Linear e Geometria Anaĺıtica. Espaços Vetoriais Reais

Álgebra Linear e Geometria Anaĺıtica. Espaços Vetoriais Reais universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 4 Espaços Vetoriais Reais Definição de espaço vetorial real [4 01] O conjunto

Leia mais

Conceitos Fundamentais 1.1

Conceitos Fundamentais 1.1 Conceitos Fndamentais. Capítlo Conceitos Fndamentais. Introdção Um sólido deformável sob a acção de forças eternas, deformar-se-á e no sólido desenvolver-se-ão esforços internos. Estes esforços serão em

Leia mais

PRODUTOS DE VETORES. Álgebra Linear e Geometria Analítica Prof. Aline Paliga

PRODUTOS DE VETORES. Álgebra Linear e Geometria Analítica Prof. Aline Paliga PRODUTOS DE VETORES Álgebra Linear e Geometria Analítica Prof. Aline Paliga 3.1 PRODUTO ESCALAR Chama-se prodto escalar (o prodto interno sal) de dois vetores =x 1 i + y 1 j+z 1 k e v= x 2 i + y 2 j+z

Leia mais

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Resolução do 2º Teste

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Resolução do 2º Teste ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Resolução do 2º Teste 11 de Junho de 2013 Ano Lectivo: 2012-2013 Semestre: Verão ISEL è ADM Secção de Álgebra ç ALGA Álgebra Linear e Geometria Analítica - Resolução

Leia mais

Produto interno no espaço vectorial R n

Produto interno no espaço vectorial R n ALGA - 00/0 - Produto interno 8 Produto interno no espaço vectorial R n A noção de produto interno de vectores foi introduzida no ensino secundário, para vectores de R e R : Neste capítulo generaliza-se

Leia mais

ALGA I. Bases, coordenadas e dimensão

ALGA I. Bases, coordenadas e dimensão Módulo 5 ALGA I. Bases, coordenadas e dimensão Contents 5.1 Bases, coordenadas e dimensão............. 58 5.2 Cálculos com coordenadas. Problemas......... 65 5.3 Mudanças de base e de coordenadas..........

Leia mais

Utilização do MATLAB (Control System Toolbox)

Utilização do MATLAB (Control System Toolbox) Utilização do MALAB (Control Sstem oolbox). Introdção Estas notas constitem ma breve introdção à tilização do Control Sstem oolbox (versão 4) do MALAB no estdo de sistemas dinâmicos lineares. O comando

Leia mais

Ficha Prática nº 5: Espaços Vectoriais. a11 a 12 a : a 11, a 12, a 21 R

Ficha Prática nº 5: Espaços Vectoriais. a11 a 12 a : a 11, a 12, a 21 R Álgebra Linear e Geometria Analítica Eng. Electrotécnica e Eng. Mecânica Ano lectivo: 2006/07 Ficha Prática nº 5: Espaços Vectoriais 1. Considere o espaço vectorial real V = {x, y, z : 2x + 3y + 5z = 0.

Leia mais

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Resolução da Repetição do 2º Teste

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Resolução da Repetição do 2º Teste ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Resolução da Repetição do 2º Teste 30 de Junho de 2014 Ano Lectivo: 2013-2014 Semestre: Verão Aceda aqui à página de ALGA ISEL è ADMat Secção de Álgebra ç ALGA Álgebra

Leia mais

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Resolução do Exame (Época de Recurso) 15 de Julho de 2015; 10:00 Ano Lectivo: 2014-2015 Semestre: Verão Aceda aqui à página de ALGA ISEL è ADMat Secção de Álgebra ç

Leia mais

TÓPICOS. Matriz pseudo-inversa. 28. Quadrados mínimos e projecção num subespaço. 1 W. , temos, neste caso,

TÓPICOS. Matriz pseudo-inversa. 28. Quadrados mínimos e projecção num subespaço. 1 W. , temos, neste caso, Note be: a leitura destes apontaentos não dispensa de odo algu a leitura atenta da bibliografia principal da cadeira Chaa-se a atenção para a iportância do trabalho pessoal a realizar pelo aluno resolvendo

Leia mais

UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA LICENCIATURA EM ENGENHARIA CIVIL ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA LICENCIATURA EM ENGENHARIA CIVIL ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA LICENCIATURA EM ENGENHARIA CIVIL REGIME NOCTURNO - º SEMESTRE - º ANO - 7 / 8 ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA º FREQUÊNCIA de Janeiro de 8 Duração:

Leia mais

AULA 4. Produto escalar. Produto escalar definição algébrica. , chamamos de produto. escalar o número real: Notação: u v ou u, v e se lê: u escalar v.

AULA 4. Produto escalar. Produto escalar definição algébrica. , chamamos de produto. escalar o número real: Notação: u v ou u, v e se lê: u escalar v. AULA 4 Prodto escalar Prodto escalar definição algébrica Sejam,, e,, escalar o número real:, chamamos de prodto Notação: o, e se lê: escalar. Eemplos: ) Dados os etores,,3 e 3,4,, calclar: a) =. (-3) +.

Leia mais

Módulo 04. Vectores em R 2 e R 3. [Poole 003 a 028]

Módulo 04. Vectores em R 2 e R 3. [Poole 003 a 028] Módlo 4 [Pool a 8] Vctors m R R Vctors lirs. Sgmnto orintado. Origm xtrmidad. Vctors igais. Vctor simétrico. Soma d ctors. Propridads. Vctor nlo. Prodto d m scalar por m ctor. Propridads. Norma. Vctor

Leia mais

Conjunto Ortogonal de Vetores

Conjunto Ortogonal de Vetores Processo de Ortogonalização de Gram-Schmidt Seja V um espaço vetorial de dimensão finita, com produto interno,. Seja B = {v 1, v 2,..., v n } uma base qualquer de V. Sejam Processo de Ortogonalização de

Leia mais

PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE 23 ANOS

PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE 23 ANOS PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE ANOS Ano Lectivo: 009 / 00 Folha de Escola onde se realiza esta prova: Data: 6 / 0 / 009 Prova: MATEMÁTICA Nome do Candidato: Docente(s): Docmento de Identificação

Leia mais

Fernando Nogueira Programação Linear 1

Fernando Nogueira Programação Linear 1 rogramação Linear Fernando Nogeira rogramação Linear Eemplo Típico Uma indstria prodz prodtos I e II sendo qe cada prodto consome m certo número de horas em máqinas A B e C para ser prodzido conforme a

Leia mais

4 a LISTA DE EXERCÍCIOS Produto Interno Álgebra Linear - 2 o Semestre /2005 LEE, LEGI, LEIC-TP, LERCI

4 a LISTA DE EXERCÍCIOS Produto Interno Álgebra Linear - 2 o Semestre /2005 LEE, LEGI, LEIC-TP, LERCI 4 a LISTA DE EXERCÍCIOS Produto Interno Álgebra Linear - 2 o Semestre - 2004/2005 LEE, LEGI, LEIC-TP, LERCI Problema 1. Seja u, w um produto interno num espaço linear V. Mostre que i) para qualquer vector

Leia mais

2 - ELEMENTOS FINITOS DE BARRA ARTICULADA. CONCEITOS BÁSICOS

2 - ELEMENTOS FINITOS DE BARRA ARTICULADA. CONCEITOS BÁSICOS Método dos elementos finitos aplicado a estrtras reticladas Capítlo - EEMETOS FIITOS DE BARRA ARTICUADA. COCEITOS BÁSICOS. - Introdção este capítlo o método dos elementos finitos (MEF vai ser aplicado

Leia mais

Instituto Superior Técnico Departamento de Matemática Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A

Instituto Superior Técnico Departamento de Matemática Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A REVISÃO DA PARTE III Parte III - (a) Ortogonalidade Conceitos: produto

Leia mais

7. DECOMPOSIÇÃO EM VALORES SINGULARES (SVD)

7. DECOMPOSIÇÃO EM VALORES SINGULARES (SVD) 7. DECOMPOSIÇÃO EM VALORES SINGULARES (SVD) A decoposição e alores singlares é étodo ito útil para a análise de sisteas ltiariáeis. E teros da operação de processo o étodo SVD facilita a sa aaliação e

Leia mais

Indicação de uma possível resolução do exame

Indicação de uma possível resolução do exame Eame de Álgebra Linear e Geometria Analítica Eng Electrotécnica e Eng Mecânica 3 de Janeiro de 7 Duração horas, Tolerância 5 minutos (Sem consulta) Indicação de uma possível resolução do eame Considere

Leia mais

Esmeralda Sousa Dias. (a) (b) (c) Figura 1: Ajuste de curvas a um conjunto de pontos

Esmeralda Sousa Dias. (a) (b) (c) Figura 1: Ajuste de curvas a um conjunto de pontos Mínimos quadrados Esmeralda Sousa Dias É frequente ser necessário determinar uma curva bem ajustada a um conjunto de dados obtidos experimentalmente. Por exemplo, suponha que como resultado de uma certa

Leia mais

Aula 2: Vetores tratamento algébrico

Aula 2: Vetores tratamento algébrico Ala : Vetores tratamento algébrico Vetores no R e no R Decomposição de etores no plano ( R ) Dados dois etores e não colineares então qalqer etor pode ser decomposto nas direções de e. O problema é determinar

Leia mais

PROF. GILBERTO SANTOS JR VETORES

PROF. GILBERTO SANTOS JR VETORES . Introdção Listas de números Sponha qe os pesos de oito estdantes estão listados abaio: 6,, 4, 4, 78, 4, 6, 9 Podemos denotar todos os alores dessa lista sando apenas m símbolo, por eemplo w, com diferentes

Leia mais

Apontamentos III. Espaços euclidianos. Álgebra Linear aulas teóricas. Lina Oliveira Departamento de Matemática, Instituto Superior Técnico

Apontamentos III. Espaços euclidianos. Álgebra Linear aulas teóricas. Lina Oliveira Departamento de Matemática, Instituto Superior Técnico Apontamentos III Espaços euclidianos Álgebra Linear aulas teóricas 1 o semestre 2017/18 Lina Oliveira Departamento de Matemática, Instituto Superior Técnico Índice Índice i 1 Espaços euclidianos 1 1.1

Leia mais

Fernando Nogueira Programação Linear 1

Fernando Nogueira Programação Linear 1 rogramação Linear Fernando Nogeira rogramação Linear Eemplo Típico Uma padaria prodz olos I e II sendo qe cada olo consome m certa qantidade de açúcar farinha e ovo para ser prodzido conforme a taela:

Leia mais

Álgebra Linear e Geometria Analítica. 10ª aula

Álgebra Linear e Geometria Analítica. 10ª aula Álgbra Linar Gomtria Analítica 0ª ala Vctors no plano Vctors no spaço Vctors m R n ( +, + ) (, ) (, ) (k,k ) k (, ) Prodto intrno (, ); (, ). + Prodto intrno norma (, ); (, ). + +. Prodto intrno m

Leia mais

3- Equação Diferencial Ordinária de 1 a Ordem Homogênea

3- Equação Diferencial Ordinária de 1 a Ordem Homogênea - Eqação Diferencial Ordinária de a Ordem Homogênea Definição de Fnção Homogênea: Se ma fnção f(, y) satisfaz a condição f(t, ty) n f(, y) para algm número real n, então dizemos qe f é ma fnção homogênea

Leia mais

TÓPICOS. Vectores livres. Vectores em Rn. Produto interno. Norma. Desigualdade de Cauchy-Schwarz. Desigualdade triangular. Ângulo. Distância.

TÓPICOS. Vectores livres. Vectores em Rn. Produto interno. Norma. Desigualdade de Cauchy-Schwarz. Desigualdade triangular. Ângulo. Distância. Note bem: a leitra destes apotametos ão dispesa de modo algm a leitra ateta da bibliografia pricipal da cadeira TÓPICOS Vectores lires AULA 4 Chama-se a ateção para a importâcia do trabalho pessoal a realizar

Leia mais

Matrizes Semelhantes e Matrizes Diagonalizáveis

Matrizes Semelhantes e Matrizes Diagonalizáveis Diagonalização Matrizes Semelhantes e Matrizes Diagonalizáveis Nosso objetivo neste capítulo é estudar aquelas transformações lineares de R n para as quais existe pelo menos uma base em que elas são representadas

Leia mais

TÓPICOS. Diferenciação complexa. Derivadas complexas. Funções analíticas. Equações de Cauchy-Riemann. Funções harmónicas. Regra de L Hospital.

TÓPICOS. Diferenciação complexa. Derivadas complexas. Funções analíticas. Equações de Cauchy-Riemann. Funções harmónicas. Regra de L Hospital. Note be a leitra destes apontaentos não dispensa de odo alg a leitra atenta da bibliograia principal da cadeira Chaa-se à atenção para a iportância do trabalho pessoal a realiar pelo alno resolendo os

Leia mais

Álgebra Linear. Determinantes, Valores e Vectores Próprios. Jorge Orestes Cerdeira Instituto Superior de Agronomia

Álgebra Linear. Determinantes, Valores e Vectores Próprios. Jorge Orestes Cerdeira Instituto Superior de Agronomia Álgebra Linear Determinantes, Valores e Vectores Próprios Jorge Orestes Cerdeira Instituto Superior de Agronomia - 200 - ISA/UTL Álgebra Linear 200/ 2 Conteúdo Determinantes 5 2 Valores e vectores próprios

Leia mais

ÁLGEBRA LINEAR ESPAÇOS VETORIAIS

ÁLGEBRA LINEAR ESPAÇOS VETORIAIS + ÁLGEBRA LINEAR ESPAÇOS VETORIAIS + INTRODUÇÃO n Ao final do séclo XIX, após o estabelecimento das bases matemáticas da teoria de matries, foi obserado pelos matemáticos qe árias entidades matemáticas

Leia mais

ÁLGEBRA LINEAR. Exame Final

ÁLGEBRA LINEAR. Exame Final UNIVERSIDADE DE AVEIRO DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR Exame Final 9/0/00 DURAÇÃO: 3 horas Nome: N o Aluno: Observação: Declaro que desisto: (Justifique sempre as suas respostas) Folha. (4,0

Leia mais

Notas de Aulas 3(Segunda Avaliação)-Produto Interno II Prof. Carlos Alberto S Soares

Notas de Aulas 3(Segunda Avaliação)-Produto Interno II Prof. Carlos Alberto S Soares Notas de Aulas 3(Segunda Avaliação)-Produto Interno II Prof. Carlos Alberto S Soares Neste capítulo, estaremos generalizando a noção de projeção ortogonal já desenvolvida em cursos anteriores. Definição

Leia mais

Nota de aula: Transformações Lineares

Nota de aula: Transformações Lineares Nota de aula: Transformações Lineares Prof. Rebello out/99 rev. out/ São aplicações entre espaços vetoriais, isto é, funções onde tanto o domínio como o contra domínio são espaços vetoriais, portanto todas

Leia mais

5.3.2 Processo de Ortogonalização de Gram-Schmidt

5.3.2 Processo de Ortogonalização de Gram-Schmidt 8 CAPÍTULO. PRODUTO INTERNO.. Processo de Ortogonalização de Gram-Schmidt Bases ortonormais são úteis, como visto na seção anterior; mas como obtê-las? Partindo-se de uma base qualquer de um subespaço,

Leia mais

Espaços Euclidianos. Espaços R n. O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais:

Espaços Euclidianos. Espaços R n. O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais: Espaços Euclidianos Espaços R n O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais: R n = {(x 1,..., x n ) : x 1,..., x n R}. R 1 é simplesmente o conjunto R dos números

Leia mais

1 Espaços Vectoriais

1 Espaços Vectoriais Nova School of Business and Economics Apontamentos Álgebra Linear 1 Definição Espaço Vectorial Conjunto de elementos que verifica as seguintes propriedades: Existência de elementos: Contém pelo menos um

Leia mais

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Resolução do Exame (Época Especial) 17 de Setembro de 2015; 19:00 Ano Lectivo: 2014-2015 Semestre: Verão Aceda aqui à página de ALGA ISEL è ADMat Secção de Álgebra

Leia mais

MÉTODOS DE INTEGRAÇÃO

MÉTODOS DE INTEGRAÇÃO ÁLULO DIFERENIL E INTEGRL MÉTODOS DE INTEGRÇÃO Nem todas as integrais são imediatas segndo o formlário dado, porém algns métodos simples ajdam a obter as primitivas das fnções qe não têm integração imediata.

Leia mais

Nota de aula: Transformações Lineares

Nota de aula: Transformações Lineares Nota de aula: Transformações Lineares Prof. Rebello out/99 rev. mai/0 São aplicações entre espaços vetoriais, isto é, funções onde tanto o domínio como o contra domínio são espaços vetoriais, portanto

Leia mais

Cálculo 1 4ª Lista de Exercícios Derivadas

Cálculo 1 4ª Lista de Exercícios Derivadas www.matematiqes.com.br Cálclo 4ª Lista de Eercícios Derivadas ) Calclar as derivadas das epressões abaio, sando as fórmlas de derivação: a) y 4 4 d 4 b) f f c) y d d) y R : d df e) 6 f R : 6 d f) 5 y 4

Leia mais

Osciladores lineares contínuos

Osciladores lineares contínuos Osciladores lineares contínos Apontamentos da Disciplina de Dinâmica e Engenharia Sísmica Mestrado em Engenharia de Estrtras Institto Sperior Técnico ís Gerreiro Março de 1999 Osciladores ineares Contínos

Leia mais

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-458 Álgebra Linear para Engenharia II Terceira Lista de Eercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Seja V um espaço vetorial

Leia mais

Análise de Sensibilidade. Fernando Nogueira Análise de Sensibilidade 1

Análise de Sensibilidade. Fernando Nogueira Análise de Sensibilidade 1 Análise de Sensibilidade Fernando Nogeira Análise de Sensibilidade Consiste em esqisar a estabilidade da solção em vista de ossíveis variações dos arâmetros a ij, b i e c j tilizados na Programação Linear,

Leia mais

Produto interno no espaço vectorial R n

Produto interno no espaço vectorial R n ALGA - Eng.Civil e Eng. Topográ ca - ISE - 00/0 - Produto Interno Produto interno no espaço vectorial R n A noção de produto interno (ou escalar) de vectores foi introduzida no ensino secundário, para

Leia mais

António Costa. Paulo Roma Cavalcanti

António Costa. Paulo Roma Cavalcanti Inrodção à Compação Gráfica Geomeria Adapação: Aoria: João alo ereira Anónio Cosa Cladio Esperança alo Roma Caalcani onos e Vecores (2D) ono: Denoa posição no plano ( Vecor: Denoa deslocameno, iso é, incli

Leia mais

Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.

Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A. Teste Intermédio de Matemática A Versão Teste Intermédio Matemática A Versão Dração do Teste: 90 mintos 9.0.0.º Ano de Escolaridade Decreto-Lei n.º 74/004, de 6 de Março Na sa folha de respostas, indiqe

Leia mais

Diagonalização unitária e diagonalização ortogonal. Observação. Neste capítulo considera-se o produto interno

Diagonalização unitária e diagonalização ortogonal. Observação. Neste capítulo considera-se o produto interno Diagonalização unitária e diagonalização ortogonal Observação. Neste capítulo considera-se o produto interno usual. De nição. Chama-se transposta conjugada de uma matriz A à matriz A T e denota-se por

Leia mais

Homework 06 (Equações de estado) Felippe de Souza &&& Y(s) U(s) Y(s) U(s) Y(s) U(s) Y(s) U(s) Y(s) U(s) Y(s) U(s) = e) = Y(s) 2. u 1. 1 u 3.

Homework 06 (Equações de estado) Felippe de Souza &&& Y(s) U(s) Y(s) U(s) Y(s) U(s) Y(s) U(s) Y(s) U(s) Y(s) U(s) = e) = Y(s) 2. u 1. 1 u 3. Homework 6 ) Considere o sistema descrito pela sa eqação diferencial ordinária abaio. Ache a F (Fnção de ransferência). Escreva na forma de Eqações de Estado & A B, C D. Verifiqe qe a eqação característica

Leia mais

Curso de Análise Matricial de Estruturas 1

Curso de Análise Matricial de Estruturas 1 Crso de Análise Matricial de Estrtras IV MÉODO DA IIDEZ IV. Solção eral A modelagem de m sistema estrtral para sa resolção através do método da rigidez deve preferencialmente apretar m número de coordenadas

Leia mais

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Resolução do 1º Teste 29 de Abril de 2015; 18:30 Ano Lectivo: 2014-2015 Semestre: Verão Aceda aqui à página de ALGA ISEL è ADMat Secção de Álgebra ç ALGA Álgebra Linear

Leia mais

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse:

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: A segir, ma demonstração do livro. Para adqirir a versão completa em papel, acesse: www.pagina0.com.br CÁLCULO VOLUME ZERO - REGRAS E PROPRIEDADES INICIAIS DE DERIVAÇÃO f() k f( ) k k k 0 f'() lim lim

Leia mais

Ficha de Trabalho 09 e 10

Ficha de Trabalho 09 e 10 Ficha de Trabalho 09 e 0 Diagonalização. (Aulas a 6). Diagonalização. Valores e vectores próprios. Equação característica. Matrizes semelhantes. Matriz diagonalizável. Factorização PDP -. Diagonalização

Leia mais

MATEMÁTICA 10º A T 2

MATEMÁTICA 10º A T 2 Escola Secndária lfredo Reis Silveira no lectivo 008/009 MTEMÁTIC 0º T Ficha de Trabalho Eqação Vectorial e redzida de ma recta Eqação Vectorial da Recta Dado m ponto e m vector não nlo, podemos definir

Leia mais

Álgebra Linear e Geometria Analítica em R 3

Álgebra Linear e Geometria Analítica em R 3 Módulo 2 Álgebra Linear e Geometria Analítica em R 3 Neste segundo módulo vamos generalizar os conceitos aprendidos no módulo 1, e também no ensino secundário, estudando Álgebra Linear e Geometria Analítica

Leia mais

Álgebra linear e geometria analítica

Álgebra linear e geometria analítica 27//29 o teste Álgebra linear e geometria analítica OCV Instruç~oes escolha n exercícios e responda em Portugu^es.. (2 valores) Determine uma equação cartesiana da recta que passa pelos pontos (, ) e (

Leia mais

Capítulo 1 - Cálculo Matricial

Capítulo 1 - Cálculo Matricial Capítulo 1 - Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 33 DeMat-ESTiG Sumário Cálculo

Leia mais

Segunda prova de Álgebra Linear Aplicada - 20/02/2013 Prof. Juliana Coelho - 07h00-09h00

Segunda prova de Álgebra Linear Aplicada - 20/02/2013 Prof. Juliana Coelho - 07h00-09h00 Segunda prova de Álgebra Linear Aplicada - 20/02/2013 Prof Juliana Coelho - 07h00-09h00 QUESTÃO 1 (2,0 pts - Considere os seguintes vetores de R3 : u = (3, 2, 2, v = (1, 3, 1 e w = ( 1, 4, 4 Responda as

Leia mais

3 Espaços com Produto Interno

3 Espaços com Produto Interno 3 Espaços com Produto Interno 3.1 Produtos Internos em Espaços Vetoriais Seja V um espaço vetorial. Um produto interno em V é uma função, : V V R que satisfaz P1) = v, u para todos u, v V ; P2) u, v +

Leia mais

ÁLGEBRA LINEAR A FICHA 2

ÁLGEBRA LINEAR A FICHA 2 Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 7/Out/3 ÁLGEBRA LINEAR A FICHA SOLUÇÕES SUMÁRIAS DOS EXERCÍCIOS ÍMPARES Matrizes: Inversão e Formas

Leia mais

2. CONCEITOS FUNDAMENTAIS DA TEORIA DA ELASTICIDADE

2. CONCEITOS FUNDAMENTAIS DA TEORIA DA ELASTICIDADE strtras I Capítlo - Conceitos básicos da teoria da elasticidade. CONCITOS FUNDAMNTAIS DA TORIA DA LASTICIDAD. - Introdção No presente capítlo são apresentados de m modo scinto os conceitos básicos da teoria

Leia mais

2009/2010-2º SEMESTRE- 2ª ÉPOCA EXAME DE ÁLGEBRA LINEAR (1303) 16 de Junho de Respostas

2009/2010-2º SEMESTRE- 2ª ÉPOCA EXAME DE ÁLGEBRA LINEAR (1303) 16 de Junho de Respostas Grupo 1 1- Considere o conjunto S 3 definido por: S x 1,x 2,x 3 3 : x 1 x 2 x 3 0 1.1- Mostre que S éumsub-espaço de 3. Determine a dimensão de S exibindo uma base B de S. [1/20] 1.2- Qual é o complemento

Leia mais

(a) (1,5) Obtenha os autovalores e autovetores de L. (b) (1,0) A matriz de L em relação à base canônica de M 2 2 é diagonalizável? Explique.

(a) (1,5) Obtenha os autovalores e autovetores de L. (b) (1,0) A matriz de L em relação à base canônica de M 2 2 é diagonalizável? Explique. Nome do(a) estudante(a): ALI0001(PRO11-0A) Prova IV 8/06/016 Prof. Helder G. G. de Lima ˆ Identifique-se em todas as folhas. ˆ Mantenha o celular e os demais equipamentos eletrônicos desligados durante

Leia mais

AULA Os 4 espaços fundamentais Complemento ortogonal.

AULA Os 4 espaços fundamentais Complemento ortogonal. Note bem: a letura destes apotametos ão dspesa de modo algum a letura ateta da bblografa prcpal da cadera Chama-se a ateção para a mportâca do trabalho pessoal a realzar pelo aluo resoledo os problemas

Leia mais

Lista de exercícios 8 Bases e Dimensão.

Lista de exercícios 8 Bases e Dimensão. Universidade Federal do Paraná semestre 05. Algebra Linear, CM 005 Olivier Brahic Lista de exercícios 8 Bases e Dimensão. Exercício : No exercício da Folha 7, indique se os vetores formam uma base para

Leia mais

Ficha de Trabalho 02 Sistemas. Matriz Inversa. (Aulas 4 a 6).

Ficha de Trabalho 02 Sistemas. Matriz Inversa. (Aulas 4 a 6). F I C H A D E R A B A L H O 0 Ficha de rabalho 0 Sistemas. Matriz Inversa. (Aulas 4 a 6). Sistemas de equações lineares. Equação linear. Sistema de equações lineares. Equação matricial. Soluções do sistema.

Leia mais

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO

Leia mais

Álgebra Linear e Geometria Analítica. 7ª aula

Álgebra Linear e Geometria Analítica. 7ª aula Álgebra Linear e Geometria Analítica 7ª aula ESPAÇOS VECTORIAIS O que é preciso para ter um espaço pç vectorial? Um conjunto não vazio V Uma operação de adição definida nesse conjunto Um produto de um

Leia mais

Capítulo 1 - Cálculo Matricial

Capítulo 1 - Cálculo Matricial Capítulo 1 - Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 34 DeMat-ESTiG Sumário Cálculo

Leia mais