traço de inferência, premissas conclusão rrt

Tamanho: px
Começar a partir da página:

Download "traço de inferência, premissas conclusão rrt"

Transcrição

1 Introdução Como vimos antes, quando da exposição informal, uma das importantes noções lógicas é a de regra de inferência. gora introduziremos essa noção de maneira formal (mais precisamente, considerando a linguagem L anteriormente apresentada). Observou-se, então, que uma regra de inferência é determinada por uma relação entre um número finito de asserções (ditas as premissas da regra) e uma proposição, dita a conclusão da regra. Uma maneira perspícua de representar uma regra de inferência é representar o passo inferencial por um traço horizontal escrevendo acima dele as premissas e abaixo a conclusão; ou seja, supondo que as premissas da regra são as fórmulas 1,..., n e a conclusão a fórmula, uma maneira perspícua de representar graficamente uma regra de inferência é através de uma figura da forma: 1,..., n Nessa figura o traço horizontal, dito traço de inferência, representa o passo inferencial, as ocorrências de fórmulas imediatamente acima são as premissas e a ocorrência de fórmula imediatamente abaixo a conclusão 1. Uma derivação, na qual ocorre um encadeamento de passos inferenciais pode ser representado, então, por uma figura complexa na qual as conclusões de figuras mais simples são tomadas como premissas de outras figuras. 2 Dizendo de outro modo, uma derivação é uma construção obtida pelo encadeamento de figuras de inferência, de sorte que uma ou mais aplicações de regras de inferência oferecem as premissas para nova aplicação de alguma regra. Podemos, assim, compreender derivações como árvores, mais precisamente, como árvores enraizadas finitas 3, cujos nós ( vértices ) são ocorrências de fórmulas da linguagem (observe-se bem que dizemos ocorrência de fórmulas e não simplesmente fórmulas) e cujas conexões ( arestas ) são determinadas pelas passos inferenciais simples. ssim, salvo a árvore trivial, constituída de uma única ocorrência de fórmula, as figuras aqui empregadas para representar deduções serão formadas pela composição de figuras da forma acima apresentada. Observe que as figuras inferenciais, tais como acima apresentadas, diferem da maneira usual de representar árvores, porquanto, usualmente a raiz de uma árvore é representada acima de seus sucessores e as arestas são representadas por linhas verticais ligando cada ponto a seus sucessores imediatos. Se fosse empregada a maneira usual de 1 Em GENTZEN, 1939, p. 72, essas figuras simples são denominadas de figuras inferenciais e as formadas a partir delas por composição são ditas figuras de prova ou simplesmente derivações. 2 Essa maneira de grafar, ao explorar as duas dimensões (horizontal e vertical) do suporte da escrita, representa um afastamento da maneira usual (linear) de escrever as línguas ocidentais, mas tem a vantagem de explicitar o vínculo imediato das diversas premissas com a correspondente conclusão. 3 noção de árvore enraizada pode ser definida de maneira rigorosa de diferentes maneiras, entre elas, como um par de conjuntos < T, R > satisfazendo as seguintes condições: a) T não é vazio (dito o conjunto dos nós) e R é uma relação binária em T (o conjunto das arestas); b) para todo t em T, existe no máximo um t 0 em T, tal que t 0 R t; b) Existe um e apenas um elemento de T, r, dito a raiz de T, tal que nenhum elemento está relacionado a ele (isto é, para todo t em T, o par < t, r > não pertence a R ) e para qualquer elemento t em T distinto de r, existem t 1,...,t n em T, tais que rrt I... Rt n

2 representar árvores, um passo inferencial seria representado por uma figura como a seguinte: 1,..., n \... / Importa destacar que as figuras que consideraremos aqui se situam num plano bidimensional, no qual distinguimos as relações estar acima ou estar abaixo, em particular estar imediatamente acima ou imediatamente abaixo, bem como a relação estar ao lado, mas não distinguimos estar à esquerda ou estar à direita. Ou seja, uma figura e sua imagem especular são consideradas a mesma figura. Numa figura complexa, formada da maneira acima dita, uma mesma ocorrência de uma fórmula pode ser a conclusão de uma figura inferencial e simultaneamente a premissa (ou uma das premissas) de outra figura inferencial. Numa tal figura complexa, chamamos de suposições iniciais aquelas ocorrências de fórmulas que se dão apenas como premissas de uma regra de inferência, mas não como, simultaneamente, conclusões de eventualmente outras. noção de árvore permite uma representação perspícua da relação entre as premissas e a conclusão de uma regra de inferência. Todavia, comumente uma dedução envolve um encadeamento de inferências, no qual as premissas de uma inferência são derivadas de outras fórmulas, por outras inferências. Ou não raramente, numa dedução, introduzimos novas suposições (chamadas de hipóteses auxiliares) apenas para viabilizar a demonstração, mas que são tais que a correção da conclusão final não depende estritamente. ssim, na análise de uma dedução é importante considerar não apenas os vínculos locais entre premissas e conclusões da aplicação de uma regra de inferência, mas os vínculos globais (considerando a figura como um todo) entre conclusões e suas suposições iniciais. E esses vínculos não são precipuamente expressos na árvore, dado a possibilidade de uma suposição inicial ser apenas uma hipótese auxiliar (caso em que dizemos que ela é descartada ou cortada). Uma suposição descartada será assinalada pondo-a entre colchetes e apondo um subscrito numérico repetido ao lado do traço de inferência da regra da qual ela era uma hipótese auxiliar. Lembrando sempre que o processo aqui descrito como descarte de suposições é sempre opcional (ou seja, não é obrigatório descartá-la). ssim, numa dedução em forma de arvore, considerada globalmente, as suposições serão apenas aquelas suposições iniciais que não ocorrerem entre colchetes. 2

3 O SISTEM DE DEDUÇÃO NTURL PR LPC Regras básicas INTRODUÇÃO I, ELIMINÇÃO E I E [] [] C C C I E [] I [] [] E [] I T T I [] I E E 3

4 Nomenclatura e observações gerais. Como já foi dito, premissas de uma regra são as fórmulas (eventualmente uma única) que ocorrem imediatamente acima do traço de inferência. Naquelas regras de eliminação que possuem mais de uma premissa, a que contém o símbolo lógico correspondente é dita a premissa maior e as outras, menores. Numa derivação as ocorrências de fórmulas supremas (isto é aquelas que ocorrem acima de um traço de inferência, mas não abaixo de nenhum outro) são as suposições da derivação. ocorrência de fórmula ínfima (isto é, que ocorre abaixo de um traço de inferência, mas não encimando algum traço de inferência) é a conclusão. s suposições que não forem descartadas de uma derivação (isto é, não foram assinaladas por colchetes) são ditas hipóteses da derivação. Dizemos, então que a derivação é uma dedução da fórmula que ocorre como conclusão a partir das fórmulas que ocorrem como hipóteses. Uma demonstração é uma derivação na qual não ocorrem hipóteses. Na verdade, a construção de uma derivação nem sempre é executada peça à peça, antes se da por blocos, ou seja, pela composição por meio de uma regra de inferência, de derivações mais simples (aquelas que forneceram as premissas da regra empregada), formando então uma derivação mais complexa, cuja conclusão é a conclusão da regra de inferência. Não é difícil perceber que as caracterizações de algumas das regras exigem certa dose de bom senso e compreensão para serem bem entendidas, quais sejam, as regras de eliminação da e as de introdução do, do, da e do aquelas fazem referência à noção eliminar suposições (representada pelos colchetes em torno da fórmula). De fato, a caracterização de tais regras exige a consideração não apenas das propriedades formais de suas respectivas premissas e conclusão, mas também de eventuais outras derivações tomadas como previamente dadas (indicadas, na apresentação das regras pelos três pontos verticais), consideração exigida pelo procedimento dito eliminação, corte, descarte (outros nomes ainda são empregados nesse contexto) de suposições. Por essa razão, um importante autor, Prawitz, chama tais regras de regras impróprias (suas caracterizações fazem referência não apenas à conclusão e as suas premissas, mas a outras derivações prévias). Uma definição explicita de derivação, que haveria de ser recursiva, permitiria não apenas explicitar a ideia, antes referida da construção por blocos, como também a noção de eliminação de suposições. Na versão linearizada da D. N. ofereceremos caracterizações precisas das regras. Cabe sempre lembrar, principalmente na hora de aplicar as regras, que o lado no qual ocorre uma dada premissa é inteiramente irrelevante, importa apenas que as premissas sejam apresentadas imediatamente acima do traço de inferência. Pois, derivação são árvores, e arvores são estruturas bidimensionais, orientadas apenas em uma das dimensões, mas não na outra (isso pode ser expresso, representado, afirmandose que arvores tem tanto uma dimensão vertical, quanto uma dimensão horizontal essa é a expressão do caráter bidimensional delas, no entanto, não tem direita e esquerda, embora tenha acima e abaixo(ou seja, orientada numa dimensão, mas não na outra). Observações históricas e bibliográficas O sistema apresentado aqui é tomado, com ligeiras alterações, de Gentzen, 1935, trad. ingl. pp. 77-8, que reaparece em PRWITZ, 1965, pp Em primeiro lugar, a regra de introdução do verum (T) não aparece nesses autores, na verdade, a 4

5 consideração de tal constante sentencial é um tanto quanto inusitada. Por outro lado, as regras que aqui denominamos, respectivamente, regra de introdução da negação e regra de introdução do absurdum são chamadas em GENTZEN, 1935 regra de introdução da negação e regra de eliminação da negação, respectivamente; a regra que aqui denominamos eliminação do absurdo não recebe denominação na obra seminal de Gentzen (e muitas vezes, por exemplo, em Prawitz, ela é denominada regra do absurdo intuicionista). Por último, para restar caracterizada a negação clássica adaptamos uma das regras do sistema de cálculo de sequentes exposto em GENTZEN, 1936, trad. inglesa, p. 153, segundo uma sugestão que já fora dada no artigo de Dada a regra de eliminação da dupla negação, a regra de eliminação do absurdo (Lei de Pseudo Scoto) se torna redundante, como mostra o esquema seguinte de derivação: inda, assim, preferimos manter a regra que expressa o princípio de pseudoscoto, não apenas pelo significado conceitual de tal principio, mas também para tornar fácil distinguir provas intuicionistas de provas não intuicionistas (lembrando que no intuicionismo vale pseudo-scoto, mas não a dupla negação) 5 Prawitz considera também uma constante proposicional para o absurdo, porém define a negação, a partir desse constante e do condicional, de sorte que a regra de introdução da negação, exposta em Gentzen, 1936 se torna um caso da regra de introdução do condicional e a primeira da eliminação, um caso de eliminação do condicional. Para dar conta da negação clássica, introduz a regra do absurdo clássico: [ ] _ _ Esse autor denomina as regras de I, E, I, E, de regras próprias porquanto locais (ou seja, determinadas apenas em termos de características, propriedades, das premissas e da conclusão). o passo que as demais, ou envolvem a noção de corte de suposições,. Observe-se que a conjunção é o único conectivo para o qual as duas regras (de introdução e de eliminação) são locais (próprias na terminologia de Prawitz). 4 Nesse último texto, o autor introduz um misto de Cálculo de Sequentes e Dedução Natural, com as seguintes regras para a negação: Redução, Γ, Γ, Eliminação da dupla negação Γ Γ 5 Uma questão interessante, para a qual não dispomos de resposta (se é que já está respondida) é saber se é possível ter um sistema para a LPC, cujos postulados sejam independentes entre si, tal que se obtenha a Lógica Intuicionista simplesmente eliminando um ou mais postulados. 5

6 Velozo introduz a regra de introdução da negação intuicionista (como no sistema acima), ou seja: I E duas regras ditas de eliminação: [] [] E 1 [ ] E 2 Todavia, o sistema proposto por ela não é propriamente independente, pois a regra I pode ser derivada das duas regras de eliminação, como mostra o seguinte esquema de dedução: E 2 (ii)[ ] [ ] (i) (ii) [ ] [ ] (iii) E 1 (i) (iii) E 1.. E 2 E 1 (ii) EXERCÍCIOS. 1. Considerando cada uma das listas de fórmulas abaixo, construa uma dedução da última fórmula da lista a partir das demais. 1. ; ( ) 2. ; ( T) 3. ; ( ( )) 4. ; C; ; C 5. ; ; C 6. ; C; C; 7. ; ( ) 6

7 8. ( ); ( ) 9. ( ); 10. ; ; 11. ; ; 2. Construa uma demonstração de cada uma das fórmulas abaixo ( ) (( C) ( C)) 4. ( ) ((C ) (C )) 5. ( ) ((C ) (C )) 6. (( ) ) 7. ( ( C)) ( ( C)) 8. (( ) ( ) ( v ) ( v ) 11. ( ) 12. ( ) (( C) ( C)) 13. ( ) ((C ) (C )) 14. ( ) (( C) ( C)) 15. ( ) ((C ) (C )) 16. ( ) 17. (T ) 18. ( ) 19. ( ) ( ) ( ) 22. ( ) ( ) 23. ( ) ( ) 24. ( ) ( ) 25. ( ) (Lei de Clavius) 26. ( ) 27. ( ) 28. ( ) 29. ( ) 7

8 30. ( ) 31. ( ) 32. (( ) ) (Lei de Peirce) 33. ( ) ( ) 34. ( ) ( ) 35. ( ) 36. ( ( ( ))) 37. ( ) (( C) ( C)) 38. ( ) ((C ) (C )) 39. ( ) (( C) ( C)) 40. ( ) ((C ) (C )) 41. ( ) (( C) ( C)) 42. ( ) ((C ) (C )) 43. ( ) (( C) ( C)) 44. ( ) ((C ) (C )) 45. ( ( C)) ( ( C)) 46. ( ( C)) (( ) C) 47. ( ) ( ) } 48. ( ) ( ), 49. ( ) ( ) 50. ( ) ( ) 51. ( ) ( ) 52. ( ) 53. ( ) 54. ( ) 55. ( ( C)) (( ) C) 56. ( ( C)) (( ) C) 57. ( ) ( ) 58. ( ) ( ) 59. ( ( C)) (( ) ( C)) 60. ( ( C)) (( ) ( C)) 61. (( ) (C D)) ((( C) ( D)) (( C) ( D))) 62. (( ) ) 63. (( ) ) 8

9 64. (( ) ) 65. (( ) ) 66. (( ) ) 67. (( ) ) 68. (( ) ) 69. ( ) ) 70. ( ( ) ) 71. (Lei do Terceiro Excluído) 72. ( ) (Lei da não contradição) 73. ( ) (( ) ( )) 74. ( ) ( ) 75. (( ) ( C)) ( C) 76. (( ) ) 77. ( ( C)) (( ) C) 78. ( ) ( ( )) 79. ( ) ( ( )) 80. ( ) (( ) ) 81. ( ) (( ) ) 82. ( ) ( ( )) 83. ( ( C)) ( ) ( C)) 84. (( ) C) (( C) ( C)) 85. ( ( C) ( ) ( C)) 86. (( ) C ( C) ( C)) 87. ( ( C)) ( C)) 88. (( ) C) ( ( C)) 89. (( ) ) 90. (( ) ) 91. ( ) ( C) 92. ( ) ( ) 93. ( ) ( ) 94. (( ) C ( C) ) 95. ( ) ((C ( D)) (C ( D))) 96. (( ) ( C)) (C ) 97. (( ) (C D)) (( C) ( D)) 9

10 98. (( ) (C D) ( D)v(C )) 99. (( ) C ( C) (( ) C)) 100. (( ) ( C)) ( C) 101. (( ) ( C)) (( ) ( C)) 102. (( ) C) ((C ) ) 103. (( ) C) (( C) C) 104. ( C) (( C) (( ) C)) 105. ((( ) C) D) (( C) ( D)) 3. Mostre que qualquer instância dos esquemas indicados a seguir é demonstrável (ou seja, para qualquer instancia, existe uma demonstração dela, ou seja, uma dedução sem hipóteses na qual a conclusão é a instância em pauta) 6 1. ( ) 2. ( ( C )) (( ) ( C )) ( ( )) 6. ( ) 7. ( ) 8. ( C ) ( ( C ) (( ) C )) 9. ( ) (( ) ) Esses esquemas poderia ser empregados para fornecer um sistema axiomático correto e completo para LPC se acrescidos da regra de inferência conhecida como modus ponens (correspondente a regra E ) 10

Dedução Natural e Sistema Axiomático Pa(Capítulo 6)

Dedução Natural e Sistema Axiomático Pa(Capítulo 6) Dedução Natural e Sistema Axiomático Pa(Capítulo 6) LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Definições 2. Dedução Natural 3. Sistemas axiomático Pa 4. Lista

Leia mais

Lógica Proposicional

Lógica Proposicional Lógica Proposicional Lógica Computacional Carlos Bacelar Almeida Departmento de Informática Universidade do Minho 2007/2008 Carlos Bacelar Almeida, DIUM LÓGICA PROPOSICIONAL- LÓGICA COMPUTACIONAL 1/28

Leia mais

Fórmulas da lógica proposicional

Fórmulas da lógica proposicional Fórmulas da lógica proposicional As variáveis proposicionais p, q, são fórmulas (V P rop ) é fórmula (falso) α e β são fórmulas, então são fórmulas (α β), (α β), (α β) e ( α) DCC-FCUP -TAI -Sistemas Dedutivos

Leia mais

Lógica para Computação

Lógica para Computação Lógica para Computação Prof. Celso Antônio Alves Kaestner, Dr. Eng. celsokaestner (at) utfpr (dot) edu (dot) br Sistemas Dedutivos Um Sistema Dedutivo (SD) tem por objetivo obter, a partir de um conjunto

Leia mais

O TRATAMENTO MATERIAL DA LPC Valorações como interpretações para a linguagem.

O TRATAMENTO MATERIAL DA LPC Valorações como interpretações para a linguagem. COMPLEMENTO DO ARQUIVO ANTERIOR Texto Outras noções sintáticas que desempenharão um papel importante no futuro são as de esquema de fórmulas e de instância de um esquema. Um esquema de fórmula é uma expressão

Leia mais

Aula 6: Dedução Natural

Aula 6: Dedução Natural Lógica para Computação Segundo Semestre, 2014 DAINF-UTFPR Aula 6: Dedução Natural Prof. Ricardo Dutra da Silva Em busca de uma forma de dedução mais próxima do que uma pessoa costuma fazer, foi criado

Leia mais

Lógica para Computação Primeiro Semestre, Aula 10: Resolução. Prof. Ricardo Dutra da Silva

Lógica para Computação Primeiro Semestre, Aula 10: Resolução. Prof. Ricardo Dutra da Silva Lógica para Computação Primeiro Semestre, 2015 DAINF-UTFPR Aula 10: Resolução Prof. Ricardo Dutra da Silva A resolução é um método de inferência em que: as fórmulas devem estar na Forma Clausal; deduções

Leia mais

A LINGUAGEM DO DISCURSO MATEMÁTICO E SUA LÓGICA

A LINGUAGEM DO DISCURSO MATEMÁTICO E SUA LÓGICA MAT1513 - Laboratório de Matemática - Diurno Professor David Pires Dias - 2017 Texto sobre Lógica (de autoria da Professora Iole de Freitas Druck) A LINGUAGEM DO DISCURSO MATEMÁTICO E SUA LÓGICA Iniciemos

Leia mais

Fundamentos de Lógica Matemática

Fundamentos de Lógica Matemática Webconferência 3-01/03/2012 Inferência Lógica Prof. L. M. Levada http://www.dc.ufscar.br/ alexandre Departamento de Computação (DC) Universidade Federal de São Carlos (UFSCar) 2012/1 Objetivos Análise

Leia mais

Lógica Proposicional (Consequência lógica / Dedução formal)

Lógica Proposicional (Consequência lógica / Dedução formal) Faculdade de Tecnologia Senac Pelotas Curso Superior de Tecnologia em Análise e Desenvolvimento de Sistemas Matemática Aplicada Prof. Edécio Fernando Iepsen Lógica Proposicional (Consequência lógica /

Leia mais

Cálculo proposicional

Cálculo proposicional O estudo da lógica é a análise de métodos de raciocínio. No estudo desses métodos, a lógica esta interessada principalmente na forma e não no conteúdo dos argumentos. Lógica: conhecimento das formas gerais

Leia mais

Lógica. Cálculo Proposicional. Introdução

Lógica. Cálculo Proposicional. Introdução Lógica Cálculo Proposicional Introdução Lógica - Definição Formalização de alguma linguagem Sintaxe Especificação precisa das expressões legais Semântica Significado das expressões Dedução Provê regras

Leia mais

IME, UFF 10 de dezembro de 2013

IME, UFF 10 de dezembro de 2013 Lógica IME, UFF 10 de dezembro de 2013 Sumário.... Considere o seguinte argumento Um problema de validade (1) p q q r r s s t p t (1) é válido ou não? A resposta é sim... Uma demonstração Uma demonstração

Leia mais

Lógica Proposicional. LEIC - Tagus Park 2 o Semestre, Ano Lectivo 2007/08. c Inês Lynce c Luísa Coheur

Lógica Proposicional. LEIC - Tagus Park 2 o Semestre, Ano Lectivo 2007/08. c Inês Lynce c Luísa Coheur Capítulo 2 Lógica Proposicional Lógica para Programação LEIC - Tagus Park 2 o Semestre, Ano Lectivo 2007/08 c Inês Lynce c Luísa Coheur Programa Apresentação Conceitos Básicos Lógica Proposicional ou Cálculo

Leia mais

Inteligência Artificial IA II. LÓGICA DE PREDICADOS PARA REPRESENTAÇÃO DO CONHECIMENTO

Inteligência Artificial IA II. LÓGICA DE PREDICADOS PARA REPRESENTAÇÃO DO CONHECIMENTO Inteligência Artificial IA Prof. João Luís Garcia Rosa II. LÓGICA DE PREDICADOS PARA REPRESENTAÇÃO DO CONHECIMENTO 2004 Representação do conhecimento Para representar o conhecimento do mundo que um sistema

Leia mais

Lógica para computação

Lógica para computação Lógica para computação PROPRIEDADES SEMÂNTICAS DA LÓGICA PROPOSICIONAL Professor Marlon Marcon Introdução Esta seção considera a análise de algumas propriedades semânticas da LP que relacionam os resultados

Leia mais

Aula 1 Aula 2. Ana Carolina Boero. Página:

Aula 1 Aula 2. Ana Carolina Boero.   Página: Elementos de lógica e linguagem matemática E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Linguagem matemática A linguagem matemática

Leia mais

Lógica Computacional

Lógica Computacional Aula Teórica 13: Dedução Natural em Lógica Proposicional António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de

Leia mais

Lógica dos Conectivos: demonstrações indiretas

Lógica dos Conectivos: demonstrações indiretas Lógica dos Conectivos: demonstrações indiretas Renata de Freitas e Petrucio Viana IME, UFF 18 de junho de 2015 Sumário Olhe para as premissas Olhe para a conclusão Estratégias indiretas Principais exemplos

Leia mais

Lógica Proposicional Dedução Natural

Lógica Proposicional Dedução Natural Lógica Matemática Lógica Proposicional Dedução Natural Tiago Massoni "testando" argumentos dado que d c como fazer? e t d então c t 2 Assim... Testar argumentos com tabela verdade é proibitivo não escalável

Leia mais

1 TEORIA DOS CONJUNTOS

1 TEORIA DOS CONJUNTOS 1 TEORIA DOS CONJUNTOS Definição de Conjunto: um conjunto é uma coleção de zero ou mais objetos distintos, chamados elementos do conjunto, os quais não possuem qualquer ordem associada. Em outras palavras,

Leia mais

Vimos que a todo o argumento corresponde uma estrutura. Por exemplo ao argumento. Se a Lua é cúbica, então os humanos voam.

Vimos que a todo o argumento corresponde uma estrutura. Por exemplo ao argumento. Se a Lua é cúbica, então os humanos voam. Matemática Discreta ESTiG\IPB 2012/13 Cap1 Lógica pg 10 Lógica formal (continuação) Vamos a partir de agora falar de lógica formal, em particular da Lógica Proposicional e da Lógica de Predicados. Todos

Leia mais

ÍNDICE. Lição 8 Conceitos Fundamentais da Teoria dos Conjuntos 49. Representação Simbólica dos Conceitos Fundamentais da Teoria dos

ÍNDICE. Lição 8 Conceitos Fundamentais da Teoria dos Conjuntos 49. Representação Simbólica dos Conceitos Fundamentais da Teoria dos ÍNDICE Prefácio PARTE I LÓGICA ARISTOTÉLICA Lição 1 Introdução. Lógica Aristotélica: Noções Básicas 9 Lição 2 O Quadrado da Oposição 15 Lição 3 Conversão, Obversão e Contraposição 21 Lição 4 A Teoria do

Leia mais

CONTEÚDO LÓGICA FUZZY LÓGICA FUZZY. Proposições Fuzzy. Regras são implicações lógicas. Introdução Introdução, Objetivo e Histórico

CONTEÚDO LÓGICA FUZZY LÓGICA FUZZY. Proposições Fuzzy. Regras são implicações lógicas. Introdução Introdução, Objetivo e Histórico CONTEÚDO Introdução Introdução, Objetivo e Histórico Conceitos ásicos Definição, Características e Formas de Imprecisão Conjuntos Fuzz Propriedades, Formas de Representação e Operações Relações, Composições,

Leia mais

JOÃO NUNES de SOUZA. LÓGICA para CIÊNCIA da COMPUTAÇÃO. Uma introdução concisa

JOÃO NUNES de SOUZA. LÓGICA para CIÊNCIA da COMPUTAÇÃO. Uma introdução concisa JOÃO NUNES de SOUZA LÓGICA para CIÊNCIA da COMPUTAÇÃO Uma introdução concisa 21 de maio de 2008 1 A linguagem da Lógica Proposicional Introdução Alfabeto da Lógica Proposicional Definição 1.1 (alfabeto)

Leia mais

2 AULA. Conectivos e Quantificadores. lógicas. LIVRO. META: Introduzir os conectivos e quantificadores

2 AULA. Conectivos e Quantificadores. lógicas. LIVRO. META: Introduzir os conectivos e quantificadores 1 LIVRO Conectivos e Quantificadores Lógicos META: Introduzir os conectivos e quantificadores lógicos. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Compreender a semântica dos conectivos

Leia mais

INSTITUTO FEDERAL FARROUPILHA CÂMPUS ALEGRETE

INSTITUTO FEDERAL FARROUPILHA CÂMPUS ALEGRETE 1 1. LÓGICA SETENCIAL E DE PRIMEIRA Conceito de proposição ORDEM Chama-se proposição todo o conjunto de palavras ou símbolos que exprimem um pensamento de sentido completo, seja este verdadeiro ou falso.

Leia mais

Lógica Proposicional

Lógica Proposicional Slides da disciplina Lógica para Computação, ministrada pelo Prof. Celso Antônio Alves Kaestner, Dr. Eng. (kaestner@dainf.ct.utfpr.edu.br) entre 2007 e 2008. Alterações feitas em 2009 pelo Prof. Adolfo

Leia mais

Lógica e Metodologia Jurídica

Lógica e Metodologia Jurídica Lógica e Metodologia Jurídica Argumentos e Lógica Proposicional Prof. Juliano Souza de Albuquerque Maranhão julianomaranhao@gmail.com Quais sentenças abaixo são argumentos? 1. Bruxas são feitas de madeira.

Leia mais

Expressões e enunciados

Expressões e enunciados Lógica para Ciência da Computação I Lógica Matemática Texto 2 Expressões e enunciados Sumário 1 Expressões e enunciados 2 1.1 Observações................................ 2 1.2 Exercício resolvido............................

Leia mais

Afirmações Matemáticas

Afirmações Matemáticas Afirmações Matemáticas Na aula passada, vimos que o objetivo desta disciplina é estudar estruturas matemáticas, afirmações sobre elas e como provar essas afirmações. Já falamos das estruturas principais,

Leia mais

CÁLCULO I. 1 Número Reais. Objetivos da Aula

CÁLCULO I. 1 Número Reais. Objetivos da Aula CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida EMENTA: Conceitos introdutórios de limite, limites trigonométricos, funções contínuas, derivada e aplicações. Noções introdutórias sobre a integral

Leia mais

n. 18 ALGUNS TERMOS...

n. 18 ALGUNS TERMOS... n. 18 ALGUNS TERMOS... DEFINIÇÃO Uma Definição é um enunciado que descreve o significado de um termo. Por exemplo, a definição de linha, segundo Euclides: Linha é o que tem comprimento e não tem largura.

Leia mais

Cálculo proposicional

Cálculo proposicional O estudo da lógica é a análise de métodos de raciocínio. No estudo desses métodos, a lógica esta interessada principalmente na forma e não no conteúdo dos argumentos. Lógica: conhecimento das formas gerais

Leia mais

Lógica Proposicional. Prof. Dr. Silvio do Lago Pereira. Departamento de Tecnologia da Informação Faculdade de Tecnologia de São Paulo

Lógica Proposicional. Prof. Dr. Silvio do Lago Pereira. Departamento de Tecnologia da Informação Faculdade de Tecnologia de São Paulo Lógica Proposicional Prof. Dr. Silvio do Lago Pereira Departamento de Tecnologia da Informação aculdade de Tecnologia de São Paulo Motivação IA IA estuda estuda como como simular simular comportamento

Leia mais

2 Lógica Fuzzy. 2 Lógica Fuzzy. Sintaxe da linguagem

2 Lógica Fuzzy. 2 Lógica Fuzzy. Sintaxe da linguagem 2 Lógica Fuzzy 2.1 Cálculo proposicional (lógica proposicional) 2.2 Lógica de Predicados 2.3 Lógica de múltiplos valores 2.4 Lógica Fuzzy Proposições fuzzy Inferência a partir de proposições fuzzy condicionais

Leia mais

complemento para a disciplina de Matemática Discreta versão 1 - Jerônimo C. Pellegrini Relações de Equivalência e de Ordem

complemento para a disciplina de Matemática Discreta versão 1 - Jerônimo C. Pellegrini Relações de Equivalência e de Ordem Relações de Equivalência e de Ordem complemento para a disciplina de Matemática Discreta versão 1 Jerônimo C. Pellegrini 5 de agosto de 2013 ii Sumário Sumário Nomenclatura 1 Conjuntos e Relações 1 1.1

Leia mais

Matemática Conjuntos - Teoria

Matemática Conjuntos - Teoria Matemática Conjuntos - Teoria 1 - Conjunto: Conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }. Esta forma de representar

Leia mais

Lógicas Construtivas: Intuicionismo, uma

Lógicas Construtivas: Intuicionismo, uma Lógicas Construtivas: Intuicionismo, uma Introdução Ricardo Bianconi 1 Introdução Vamos tratar agora de Lógicas Construtivas, ou seja, aquelas em que se admitem apenas argumentos construtivos. O que seriam

Leia mais

Lógica Formal. Matemática Discreta. Prof Marcelo Maraschin de Souza

Lógica Formal. Matemática Discreta. Prof Marcelo Maraschin de Souza Lógica Formal Matemática Discreta Prof Marcelo Maraschin de Souza Implicação As proposições podem ser combinadas na forma se proposição 1, então proposição 2 Essa proposição composta é denotada por Seja

Leia mais

JOÃO NUNES de SOUZA. LÓGICA para CIÊNCIA da COMPUTAÇÃO. Uma introdução concisa

JOÃO NUNES de SOUZA. LÓGICA para CIÊNCIA da COMPUTAÇÃO. Uma introdução concisa JOÃO NUNES de SOUZA LÓGICA para CIÊNCIA da COMPUTAÇÃO Uma introdução concisa 2 de junho de 2009 1 A linguagem da Lógica Proposicional Errata Caso você encontre algum erro nesse capítulo ou tenha algum

Leia mais

4 AULA. Regras de Inferência e Regras de Equivalência LIVRO. META: Introduzir algumas regras de inferência e algumas regras de equivalência.

4 AULA. Regras de Inferência e Regras de Equivalência LIVRO. META: Introduzir algumas regras de inferência e algumas regras de equivalência. 1 LIVRO Regras de Inferência e Regras de Equivalência 4 AULA META: Introduzir algumas regras de inferência e algumas regras de equivalência. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de:

Leia mais

2 - Conjunto: conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }.

2 - Conjunto: conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }. ASSUNTO DE MATEMATICA=CONJUNTOS REAIS E ETC. 2 - Conjunto: conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }. Esta forma

Leia mais

Em Matemática existem situações em que há necessidade de distinguir dois pares pela ordem dos elementos. Por exemplo, no sistema de equações

Em Matemática existem situações em que há necessidade de distinguir dois pares pela ordem dos elementos. Por exemplo, no sistema de equações UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Relações Prof.: Rogério Dias

Leia mais

SUMÁRIO. Fundamentos Árvores Binárias Árvores Binárias de Busca

SUMÁRIO. Fundamentos Árvores Binárias Árvores Binárias de Busca ÁRVORES SUMÁRIO Fundamentos Árvores Binárias Árvores Binárias de Busca 2 ÁRVORES Utilizadas em muitas aplicações Modelam uma hierarquia entre elementos árvore genealógica Diagrama hierárquico de uma organização

Leia mais

Cap. 2 Conceitos Básicos em Teoria dos Grafos

Cap. 2 Conceitos Básicos em Teoria dos Grafos Teoria dos Grafos e Aplicações 8 Cap. 2 Conceitos Básicos em Teoria dos Grafos 2.1 Grafo É uma noção simples, abstrata e intuitiva, usada para representar a idéia de alguma espécie de relação entre os

Leia mais

Lógica e Metodologia Jurídica

Lógica e Metodologia Jurídica Lógica e Metodologia Jurídica Argumentos e Lógica Proposicional Prof. Juliano Souza de Albuquerque Maranhão julianomaranhao@gmail.com Puzzle 2 pessoas A e B fazem uma oferta um ao outro. O problema é identificar

Leia mais

INTRODUÇÃO À LÓGICA MATEMÁTICA

INTRODUÇÃO À LÓGICA MATEMÁTICA INTRODUÇÃO À LÓGICA MATEMÁTICA Matemática Aplicada a Computação rofessor Rossini A M Bezerra Lógica é o estudo dos princípios e métodos usados para distinguir sentenças verdadeiras de falsas. Definição

Leia mais

Gênesis S. Araújo Pré-Cálculo

Gênesis S. Araújo Pré-Cálculo Gênesis Soares Jaboatão, de de 2016. Estudante: PAR ORDENADO: Um par ordenado de números reais é o conjunto formado por dois números reais em determinada ordem. Os parênteses, em substituição às chaves,

Leia mais

Relações. Relações. {1, 2} = {2, 1}, {3, -1} = {-1, 3}, {a, b} = {b, a}.

Relações. Relações. {1, 2} = {2, 1}, {3, -1} = {-1, 3}, {a, b} = {b, a}. UNIVERSIDDE DO ESTDO DE MTO GROSSO CMPUS UNIVERSITÁRIO DE SINOP FCULDDE DE CIÊNCIS EXTS E TECNOLÓGICS CURSO DE ENGENHRI CIVIL DISCIPLIN: FUNDMENTOS DE MTEMÁTIC Relações. Par ordenado Em Matemática eistem

Leia mais

Árvores. Prof. César Melo DCC/ICE/UFAM

Árvores. Prof. César Melo DCC/ICE/UFAM Árvores Prof. César Melo DCC/ICE/UFAM Introdução As estruturas anteriores são chamadas de unidimensionais (ou lineares) Exemplo são vetores e listas Não podem ser usadas como hierarquias. Exemplo: árvore

Leia mais

Simbolização de Enunciados com Conectivos

Simbolização de Enunciados com Conectivos Lógica para Ciência da Computação I Lógica Matemática Texto 4 Simbolização de Enunciados com Conectivos Sumário 1 Conectivos: simbolização e sintaxe 2 2 Enunciados componentes 5 2.1 Observações................................

Leia mais

Lógica. Fernando Fontes. Universidade do Minho. Fernando Fontes (Universidade do Minho) Lógica 1 / 65

Lógica. Fernando Fontes. Universidade do Minho. Fernando Fontes (Universidade do Minho) Lógica 1 / 65 Lógica Fernando Fontes Universidade do Minho Fernando Fontes (Universidade do Minho) Lógica 1 / 65 Outline 1 Introdução 2 Implicações e Equivalências Lógicas 3 Mapas de Karnaugh 4 Lógica de Predicados

Leia mais

Raciocínio Lógico Matemático Cap. 3 Tautologias, Contradições e Contingências

Raciocínio Lógico Matemático Cap. 3 Tautologias, Contradições e Contingências Raciocínio Lógico Matemático Cap. 3 Tautologias, Contradições e Contingências Capítulo3 Tautologias, Contradições e Contingências No capítulo anterior discutimos alguns aspectos da lógica matemática, destacando

Leia mais

Lógica Matemática. Prof. Gerson Pastre de Oliveira

Lógica Matemática. Prof. Gerson Pastre de Oliveira Lógica Matemática Prof. Gerson Pastre de Oliveira Programa da Disciplina Proposições e conectivos lógicos; Tabelas-verdade; Tautologias, contradições e contingências; Implicação lógica e equivalência lógica;

Leia mais

Aula 4: Consequência Lógica e Equivalência Lógica

Aula 4: Consequência Lógica e Equivalência Lógica Lógica para Computação Segundo Semestre, 2014 Aula 4: Consequência Lógica e Equivalência Lógica DAINF-UTFPR Prof. Ricardo Dutra da Silva Definição 4.1. Em lógica proposicional dizemos que uma fórmula B

Leia mais

Prof. Jorge Cavalcanti

Prof. Jorge Cavalcanti Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 01 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

Abordagem ER. Capítulo 2

Abordagem ER. Capítulo 2 Abordagem ER Capítulo 2 Abordagem Entidade-Relacionamento Técnica para construir modelos conceituais de bases de dados. Técnica de modelagem de dados mais difundida e utilizada. Criada em 1976, por Peter

Leia mais

LÓGICA PROPOSICIONAL

LÓGICA PROPOSICIONAL LÓGICA PROPOSICIONAL Prof. Cesar Tacla/UTFPR/Curitiba Slides baseados no capítulo 1 de DA SILVA, F. S. C.; FINGER M. e de MELO A. C. V.. Lógica para Computação. Thomson Pioneira Editora, 2006. Conceitos

Leia mais

Matemática Básica Relações / Funções

Matemática Básica Relações / Funções Matemática Básica Relações / Funções 04 1. Relações (a) Produto cartesiano Dados dois conjuntos A e B, não vazios, denomina-se produto cartesiano de A por B ao conjunto A B cujos elementos são todos os

Leia mais

INF 1771 Inteligência Artificial

INF 1771 Inteligência Artificial Edirlei Soares de Lima INF 1771 Inteligência Artificial Aula 06 Lógica Proposicional Lógica Proposicional Lógica simples. A sentenças são formadas por conectivos como: e, ou, então.

Leia mais

Elementos de Cálculo I - Conjuntos de pontos no plano 1 Prof Carlos Alberto Santana Soares

Elementos de Cálculo I - Conjuntos de pontos no plano 1 Prof Carlos Alberto Santana Soares Elementos de Cálculo I - Conjuntos de pontos no plano Prof Carlos Alberto Santana Soares Você certamente está familiarizado com o plano cartesiano desde o término do seu ensino fundamental Neste início

Leia mais

Lógica Fuzzy. Conectivos e Inferência. Professor: Mário Benevides. Monitores: Bianca Munaro Diogo Borges Jonas Arêas Renan Iglesias Vanius Farias

Lógica Fuzzy. Conectivos e Inferência. Professor: Mário Benevides. Monitores: Bianca Munaro Diogo Borges Jonas Arêas Renan Iglesias Vanius Farias Lógica Fuzzy Conectivos e Inferência Professor: Mário Benevides Monitores: Bianca Munaro Diogo Borges Jonas Arêas Renan Iglesias Vanius Farias Conectivos O que são conectivos? São operadores que conectam

Leia mais

Lógica dos Quantificadores: sintaxe

Lógica dos Quantificadores: sintaxe Lógica dos Quantificadores: sintaxe Renata de Freitas e Petrucio Viana IME, UFF 18 de junho de 2015 Sumário 1. Princípios sintáticos 2. Alfabeto de LQ 3. Fórmulas de LQ 4. Variáveis livres, variáveis ligadas

Leia mais

Métodos para a construção de algoritmo

Métodos para a construção de algoritmo Métodos para a construção de algoritmo Compreender o problema Identificar os dados de entrada e objetos desse cenário-problema Definir o processamento Identificar/definir os dados de saída Construir o

Leia mais

Lógica para Computação

Lógica para Computação Lógica para Computação Prof. Celso Antônio Alves Kaestner, Dr. Eng. celsokaestner (at) utfpr (dot) edu (dot) br Linguagem informal x linguagem formal; Linguagem proposicional: envolve proposições e conectivos,

Leia mais

INTRODUÇÃO À TEORIA DOS CONJUNTOS1

INTRODUÇÃO À TEORIA DOS CONJUNTOS1 INTRODUÇÃO À TEORIA DOS CONJUNTOS1 TÓPICO Gil da Costa Marques 1.1 Elementos da Teoria dos Conjuntos 1.2 Introdução 1.3 Conceitos Básicos 1.4 Subconjuntos e Intervalos 1.5 Conjuntos Numéricos 1.5.1 O Conjunto

Leia mais

Aula 2: Linguagem Proposicional

Aula 2: Linguagem Proposicional Lógica para Computação Primeiro Semestre, 2015 Aula 2: Linguagem Proposicional DAINF-UTFPR Prof. Ricardo Dutra da Silva Linguagens naturais, como o nosso Português, podem expressar ideias ambíguas ou imprecisas.

Leia mais

RACIOCÍNIO LÓGICO LÓGICA PROPOSICIONAL

RACIOCÍNIO LÓGICO LÓGICA PROPOSICIONAL RACIOCÍNIO LÓGICO LÓGICA PROPOSICIONAL Atualizado em 12/11/2015 LÓGICA PROPOSICIONAL Lógica é a ciência que estuda as leis do pensamento e a arte de aplicá-las corretamente na investigação e demonstração

Leia mais

Capítulo O objeto deste livro

Capítulo O objeto deste livro Capítulo 1 Introdução 1.1 O objeto deste livro Podemos dizer que a Geometria, como ciência abstrata, surgiu na Antiguidade a partir das intuições acerca do espaço, principalmente do estudo da Astronomia.

Leia mais

Lógica Computacional

Lógica Computacional Aula Teórica 2: Sintaxe da Lógica Proposicional António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de Informática,

Leia mais

AXIOMATIZAÇÃO Equipe:

AXIOMATIZAÇÃO Equipe: AXIOMATIZAÇÃO Equipe: André Augusto Kaviatkovski, Daniel Elias Ferreira, Vinicius Zaramella Curso: Engenharia de Computação Disciplina: Lógica para Computação Professor: Adolfo Neto (DAINF) Universidade

Leia mais

Sumário. 1 CAPÍTULO 1 Revisão de álgebra

Sumário. 1 CAPÍTULO 1 Revisão de álgebra Sumário 1 CAPÍTULO 1 Revisão de álgebra 2 Conjuntos numéricos 2 Conjuntos 3 Igualdade de conjuntos 4 Subconjunto de um conjunto 4 Complemento de um conjunto 4 Conjunto vazio 4 Conjunto universo 5 Interseção

Leia mais

Geometria Euclideana Plana

Geometria Euclideana Plana Geometria Euclideana Plana A partir de agora, iremos iniciar nosso estudo axiomático da Geometria Euclidiana Plana. Vimos que os postulados de Euclides não são suficientes para demonstrar todos os resultados

Leia mais

Lógica Texto 11. Texto 11. Tautologias. 1 Comportamento de um enunciado 2. 2 Classificação dos enunciados Exercícios...

Lógica Texto 11. Texto 11. Tautologias. 1 Comportamento de um enunciado 2. 2 Classificação dos enunciados Exercícios... Lógica para Ciência da Computação I Lógica Matemática Texto 11 Tautologias Sumário 1 Comportamento de um enunciado 2 1.1 Observações................................ 4 2 Classificação dos enunciados 4 2.1

Leia mais

Lógica Matemática UNIDADE II. Professora: M. Sc. Juciara do Nascimento César

Lógica Matemática UNIDADE II. Professora: M. Sc. Juciara do Nascimento César Lógica Matemática UNIDADE II Professora: M. Sc. Juciara do Nascimento César 1 1 - Álgebra das Proposições 1.1 Propriedade da Conjunção Sejam p, q e r proposições simples quaisquer e sejam t e c proposições

Leia mais

Raciocínio lógico matemático

Raciocínio lógico matemático Raciocínio lógico matemático Unidade 3: Dedução Seção 3.3 - Contrapositiva 1 Lembrando Modus pones p q, p q Se Pedro guarda dinheiro, então ele não fica negativado. Pedro guardou dinheiro. Dessa forma

Leia mais

Lógica Matemática UNIDADE I. Professora: M.Sc. Juciara do Nascimento César

Lógica Matemática UNIDADE I. Professora: M.Sc. Juciara do Nascimento César Lógica Matemática UNIDADE I Professora: M.Sc. Juciara do Nascimento César 1 A Lógica na Cultura Helênica A Lógica foi considerada na cultura clássica e medieval como um instrumento indispensável ao pensamento

Leia mais

Normalizagão para a Lógica clássica'

Normalizagão para a Lógica clássica' Normalizagão para a Lógica clássica' Luiz Carlos P. D. Pereira e Cosme Massi Em teoria da prova, temos três tipos de resultados fundamentais sobre a forma que derivações pertencentes a um dado sistema

Leia mais

GEOMETRIA DE POSIÇÃO OU GEOMETRIA EUCLIDIANA

GEOMETRIA DE POSIÇÃO OU GEOMETRIA EUCLIDIANA GEOMETRIA DE POSIÇÃO OU GEOMETRIA EUCLIDIANA PONTO, RETA, PLANO E ESPAÇO; PROPOSIÇÕES GEOMÉTRICAS; POSIÇOES RELATIVAS POSIÇÕES RELATIVAS ENTRE PONTO E RETA POSIÇÕES RELATIVAS DE PONTO E PLANO POSIÇÕES

Leia mais

MODELAGEM DE DADOS UNIDADE 3 Modelo Entidade-Relacionamento. Luiz Leão

MODELAGEM DE DADOS UNIDADE 3 Modelo Entidade-Relacionamento. Luiz Leão Luiz Leão luizleao@gmail.com http://www.luizleao.com Conteúdo Programático 3.1 Modelo Entidade-Relacionamento 3.1.1 Modelo de Banco de Dados 3.1.2 Modelo Conceitual 3.1.3 Modelo lógico 3.2 As Principais

Leia mais

Notas de Aulas 1 - Conjuntos Prof Carlos A S Soares

Notas de Aulas 1 - Conjuntos Prof Carlos A S Soares Notas de Aulas 1 - Conjuntos Prof Carlos A S Soares 1 Preliminares e relação de pertinência Nestas notas não temos a pretensão de apresentar a teoria de conjuntos e seus axiomas, tão somente pretendemos

Leia mais

n. 11 Argumentos e Regras de Inferência

n. 11 Argumentos e Regras de Inferência n. 11 Argumentos e Regras de Inferência A lógica formal lida com um tipo particular de argumento, denominado de argumento dedutivo, que nos permite deduzir uma conclusão Q, com base num conjunto de proposições

Leia mais

1 Lógica de primeira ordem

1 Lógica de primeira ordem 1 Lógica de primeira ordem 1.1 Sintaxe Para definir uma linguagem de primeira ordem é necessário dispor de um alfabeto. Este alfabeto introduz os símbolos à custa dos quais são construídos os termos e

Leia mais

Desenho Técnico. Corte. Prof. João Paulo Barbosa

Desenho Técnico. Corte. Prof. João Paulo Barbosa Desenho Técnico Corte Prof. João Paulo Barbosa Corte - NBR 10.067 /1987 Analise as duas figuras anteriores. Pela foto, você forma uma idéia do aspecto exterior do objeto melhor detalhado em qual desenho?

Leia mais

Método arvore semântica. Alunos: Cláudio Moisés Carlos Dória David Cláudio Neymar

Método arvore semântica. Alunos: Cláudio Moisés Carlos Dória David Cláudio Neymar Método arvore semântica Alunos: Cláudio Moisés Carlos Dória David Cláudio Neymar Método arvore semântica Já teve varios nomes Semantic ableaux Semantic ableau Semantic trees Usa-se hoje habitualmente o

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 RELAÇÕES e FUNÇÕES

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 RELAÇÕES e FUNÇÕES PAR ORDENADO... 2 PRODUTO CARTESIANO... 3 REPRESENTAÇÃO GRÁFICA... 4 RELAÇÃO... 8 DOMÍNIO E IMAGEM... 12 CONTRA-DOMÍNIO... 13 RELAÇÃO INVERSA... 17 PROPRIEDADES DA RELAÇÃO INVERSA... 18 FUNÇÕES... 22 IMAGEM

Leia mais

Para provar uma implicação se p, então q, é suficiente fazer o seguinte:

Para provar uma implicação se p, então q, é suficiente fazer o seguinte: Prova de Implicações Uma implicação é verdadeira quando a verdade do seu antecedente acarreta a verdade do seu consequente. Ex.: Considere a implicação: Se chove, então a rua está molhada. Observe que

Leia mais

INF1010 Lista de Exercícios 2

INF1010 Lista de Exercícios 2 INF00 Lista de Exercícios 2 Árvores. Construir algoritmo para dada uma árvore n-ária, transformá-la em uma árvore binária. 2. Qual a maior e menor quantidade de nós que podem existir em uma árvore binária

Leia mais

Teoria da Computação. Unidade 3 Máquinas Universais. Referência Teoria da Computação (Divério, 2000)

Teoria da Computação. Unidade 3 Máquinas Universais. Referência Teoria da Computação (Divério, 2000) Teoria da Computação Referência Teoria da Computação (Divério, 2000) 1 L={(0,1)*00} de forma que você pode usar uma Máquina de Turing que não altera os símbolos da fita e sempre move a direita. MT_(0,1)*00=({0,1},{q

Leia mais

Matemática Discreta. Lógica Proposicional. Profa. Sheila Morais de Almeida. agosto DAINF-UTFPR-PG

Matemática Discreta. Lógica Proposicional. Profa. Sheila Morais de Almeida. agosto DAINF-UTFPR-PG Matemática Discreta Lógica Proposicional Profa. Sheila Morais de Almeida DAINF-UTFPR-PG agosto - 2016 Tautologias Tautologia é uma fórmula proposicional que é verdadeira para todos os possíveis valores-verdade

Leia mais

Professora Bruna FÍSICA A. Aula 17 Desenhando Vetores. Página 203

Professora Bruna FÍSICA A. Aula 17 Desenhando Vetores. Página 203 FÍSICA A Aula 17 Desenhando Vetores Página 203 CARACTERIZAÇÃO DE GRANDEZAS VETORIAIS Como já vimos, grandezas vetoriais se diferenciam das escalares pela necessidade de indicar para onde elas apontam.

Leia mais

8. Árvores. Fernando Silva DCC-FCUP. Estruturas de Dados. Fernando Silva (DCC-FCUP) 8. Árvores Estruturas de Dados 1 / 38

8. Árvores. Fernando Silva DCC-FCUP. Estruturas de Dados. Fernando Silva (DCC-FCUP) 8. Árvores Estruturas de Dados 1 / 38 8. Árvores Fernando Silva DCC-FCUP Estruturas de Dados Fernando Silva (DCC-FCUP) 8. Árvores Estruturas de Dados 1 / 38 Árvores - estruturas não lineares (1) Uma lista é um exemplo de uma estrutura de dados

Leia mais

8. Árvores. Fernando Silva. Estruturas de Dados DCC-FCUP. Fernando Silva (DCC-FCUP) 8. Árvores Estruturas de Dados 1 / 38

8. Árvores. Fernando Silva. Estruturas de Dados DCC-FCUP. Fernando Silva (DCC-FCUP) 8. Árvores Estruturas de Dados 1 / 38 8. Árvores Fernando Silva DCC-FCUP Estruturas de Dados Fernando Silva (DCC-FCUP) 8. Árvores Estruturas de Dados 1 / 38 Árvores - estruturas não lineares (1) Uma lista é um exemplo de uma estrutura de dados

Leia mais

A Negação como uma Operação Formal

A Negação como uma Operação Formal 143 Rogério Saucedo Corrêa 1 A Negação como uma Operação Formal A Negação como uma Operação Formal Rogério Saucedo Corrêa Resumo A distinção entre operação e operação de verdade permite esclarecer o caráter

Leia mais

Teoremas e Propriedades Operatórias

Teoremas e Propriedades Operatórias Capítulo 10 Teoremas e Propriedades Operatórias Como vimos no capítulo anterior, mesmo que nossa habilidade no cálculo de ites seja bastante boa, utilizar diretamente a definição para calcular derivadas

Leia mais

Conjuntos Fuzzy e Lógica Fuzzy

Conjuntos Fuzzy e Lógica Fuzzy 1 Introdução Conjuntos Fuzzy e Lógica Fuzzy users.femanet.com.br/~fabri/fuzzy.htm Os Conjuntos Fuzzy e a Lógica Fuzzy provêm a base para geração de técnicas poderosas para a solução de problemas, com uma

Leia mais

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 3. Paralelogramos Especiais. Oitavo ano do Ensino Fundamental

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 3. Paralelogramos Especiais. Oitavo ano do Ensino Fundamental aterial Teórico - ódulo Elementos ásicos de Geometria Plana - Parte 3 Paralelogramos Especiais Oitavo ano do Ensino Fundamental utor: Prof. Jocelino Sato Revisor: Prof. ntonio aminha. Neto Portal da OEP

Leia mais

C.N.C. Programação Torno

C.N.C. Programação Torno C.N.C. Programação Torno Módulo I Aula 04 Plano Cartesiano Coordenadas Absolutas e Incrementais A reta numérica Um exemplo de reta numérica, com alguns números representados nela. Observe as distâncias

Leia mais

UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO. Prof.ª Danielle Casillo

UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO. Prof.ª Danielle Casillo UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO TEORIA DA COMPUTAÇÃO Aula 03 Programas (Monolítico e Iterativo) Prof.ª Danielle Casillo Programas, Máquinas e Computações Diferentes

Leia mais