Fórmulas da lógica proposicional

Tamanho: px
Começar a partir da página:

Download "Fórmulas da lógica proposicional"

Transcrição

1 Fórmulas da lógica proposicional As variáveis proposicionais p, q, são fórmulas (V P rop ) é fórmula (falso) α e β são fórmulas, então são fórmulas (α β), (α β), (α β) e ( α) DCC-FCUP -TAI -Sistemas Dedutivos e Teoria de tipos 1 1

2 Semântica da lógica proposicional Os valores de verdade são e, onde representa o valor lógico verdadeiro e, falso Atribuição de valores de verdade(ou valorização)v : V P rop {, } Uma valorização v pode ser estendida ao conjunto das fórmulas,e que se pode resumir usando as seguintes tabelas: α α α β α β α β α β α β α β DCC-FCUP -TAI -Sistemas Dedutivos e Teoria de tipos 1 2

3 Satisfazibilidade e Validade Uma fórmula α é satisfazível se existe uma valorização v tal que v(α) =, escreve-se = v α e diz-se que v satisfaz α tautologia se para todas as valorizações v, v(α) = e escreve-se = α = p p (Terceiro excluído) Ex: contradição se para todas as valorizações v, v(α) = e escreve-se = α Ex: = p p DCC-FCUP -TAI -Sistemas Dedutivos e Teoria de tipos 1 3

4 Consequência semântica Seja Γ um conjunto de fórmulas Uma valorização v satisfaz Γ se e só se v satisfaz toda a fórmula β Γ Γ é satisfazível se existe uma valorização que o satisfaz Uma fórmula α é uma consequência semântica de Γ se para toda a valorização v que satisfaz Γ, se tem v(α) = ; e escreve-se Γ = α = α é equivalente a = α DCC-FCUP -TAI -Sistemas Dedutivos e Teoria de tipos 1 4

5 Sistemas dedutivos Conjuntos de regras a partir das quais é possivel obter (deduzir) uma fórmula (supondo ou não um conjunto inicial Γ): α ou Γ α Se α, α diz-se um teorema Pretendem-se sistemas íntegros e completos: α se e só se = α ou mais geralmente: Γ α se e só se Γ = α DCC-FCUP -TAI -Sistemas Dedutivos e Teoria de tipos 1 5

6 Uma regra de inferência é da forma: Regras α 1,, α n β α i (1 i k) são as premissas, β conclusão Dedução (derivação ou prova) de α é uma árvore tal que: cada nó é etiquetado por uma fórmula a fórmula de um nó pai é uma fórmula inferior duma regra de inferência, cujas fórmulas superiores são as fórmulas dos nós filhos as fórmulas das folhas chamam-se iniciais a fórmula da raiz é a fórmula final α DCC-FCUP -TAI -Sistemas Dedutivos e Teoria de tipos 1 6

7 Sistemas de dedução natural Sistema inventado por G Gentzen (1935) e que cujas regras pretendem reflectir as formas de raciocínio usadas nas demonstrações matemáticas Não tem axiomas Só regras de inferência Para cada conectiva lógica existem dois tipos de regras: de introdução e de eliminação As fórmulas iniciais podem ser hipóteses (premissas) introduzidas para a aplicação duma regra: iniciam um sub-dedução que quando termina cancela as respectivas hipóteses Por exemplo para deduzir: (p (q r)) ((p q) (p r)) DCC-FCUP -TAI -Sistemas Dedutivos e Teoria de tipos 1 7

8 1 (p (q r) 2 p 3 p q I, 2 4 p r I, 2 5 ((p q) (p r)) I, 3, 4 6 q r 7 q E, 6 8 r E, 6 9 p q I, 6 10 p r I, 6 11 ((p q) (p r)) I, 3, 4 12 ((p q) (p r)) E, 1, 2 5, (p (q r)) ((p q) (p r)) I, 1 12 DCC-FCUP -TAI -Sistemas Dedutivos e Teoria de tipos 1 8

9 Dedução natural, NK 0 Introdução Eliminação α β α β I α β α E 1 α β β E 2 [α] [β] α α β I 1 β α β I 2 α β γ γ γ E [α] β α β I α β α β E DCC-FCUP -TAI -Sistemas Dedutivos e Teoria de tipos 1 9

10 Exemplos 1 α (β α) 1 α 2 β 3 α R, 1 4 β α I, α (β α) I, 1 4 DCC-FCUP -TAI -Sistemas Dedutivos e Teoria de tipos 1 10

11 2 (α (β θ)) ((α β) (α θ)) 1 α (β θ) 2 (α β) 3 α 4 β E, 2, 3 5 β θ E, 1, 3 6 θ E, 4, 5 7 α θ I, (α β) (α θ) I, (α (β θ)) (α β) (α θ) I, 1 8 DCC-FCUP -TAI -Sistemas Dedutivos e Teoria de tipos 1 11

12 Dedução natural, NK 0 (cont) Introdução Eliminação [α] α I α β α E α α I α α E Regra da Repetição α α R DCC-FCUP -TAI -Sistemas Dedutivos e Teoria de tipos 1 12

13 ( β α) (( β α) β) 1 β α 2 β α 3 β Exemplo 4 α E, 2, 3 5 α E, 1, 2 6 E, 4, 5 7 β I, β E, 7 9 ( β α) β I, ( β α) ( β α) β I, 1 9 DCC-FCUP -TAI -Sistemas Dedutivos e Teoria de tipos 1 13

14 Algumas regras derivadas: Modus Tollens α β β α 1 α β 2 β 3 α 4 β E, 1, 3 5 E, 2, 4 6 α I, 3 5 MT DCC-FCUP -TAI -Sistemas Dedutivos e Teoria de tipos 1 14

15 Redução ao absurdo [ α] α Se tivermos uma dedução de supondo α podemos ter uma dedução de α Então basta mostrar α α: 1 α 2 α RA 3 E, 1, 2 4 α I, α E, 4 DCC-FCUP -TAI -Sistemas Dedutivos e Teoria de tipos 1 15

16 Terceiro excluído α α TE 1 (α α) 2 α 3 α α I, 2 4 E, 1, 3 5 α I, α α I, 5 7 E, 1, 5 8 α α RA, 1 7 Mostrar que α α α α (sem E) DCC-FCUP -TAI -Sistemas Dedutivos e Teoria de tipos 1 16

17 Teorema 11 O sistema NK 0 é íntegro e completo para a lógica proposicional (clássica): se α sse = α E se Σ α sse Σ = α Teorema 12 É decidível determinar se uma fórmula φ é válida, mas é co-n P -completo DCC-FCUP -TAI -Sistemas Dedutivos e Teoria de tipos 1 17

18 Sequents Computacionalmente é conveniente saber, em cada passo de derivação, quais são as hipóteses que estão activas: Numa dedução, podiamos substituir uma fórmula α que depende das hipóteses (activas) α 1,, α k pela fórmula: α 1 α k α Mas, por questões estruturais, vamos definir, um novo conceito: Sequents (sequências) α 1,, α n β 1,, β m Significado: α 1 α n β 1 β m Antecedente vazio: β 1 β m Consequente vazio: (α 1 α n ) Ambos vazios: DCC-FCUP -TAI -Sistemas Dedutivos e Teoria de tipos 1 18

19 NK 0 em sequents Supondo que Γ (contexto) é um conjunto de fórmulas: Γ,α α Ax Introdução Eliminação Γ α Γ β Γ α β I Γ α β Γ α E 1 Γ α β Γ β E 2 Γ α Γ α β I 1 Γ β Γ α β I 2 Γ α β Γ,α γ Γ,β γ Γ γ E Γ,α β Γ α β I Γ α Γ α β Γ β E Γ,α Γ α I Γ α Γ α Γ β E Γ α Γ α I Γ α Γ α E DCC-FCUP -TAI -Sistemas Dedutivos e Teoria de tipos 1 19

20 DCC-FCUP -TAI -Sistemas Dedutivos e Teoria de tipos 1 20

21 Deduções com sequents Agora os nós das árvores de dedução são sequents e Γ α é o mesmo que Γ α α (β α) α,β α α β α ( I) α (β α) ( I) Enfraquecimento Se se deduz Γ α, então para todo Γ Γ, Γ α é deduzível DCC-FCUP -TAI -Sistemas Dedutivos e Teoria de tipos 1 21

22 Cálculos de sequents de Gentzen Sistemas dedutivos introduzidos por Gentzen (1935) que lhe permitiram obter formas normais para as deduções: se uma fórmula é um teorema então admite uma dedução em forma normal Isto permite obter algoritmos para a validade/satisfazibilidade sem ter de usar a semântica Por exemplo, na regra Modus ponens: α α β β dado β, α pode ser qualquer fórmula Embora o mesmo resultado possa ser obtido para NK 0, estes sistemas também são importantes porque revelam a estrutura das deduções e estão na base dos sistemas dedutivos computacionais: tableaux e resolução Têm regras de introdução de conectivas: mas para o antecedente (L) e para consequente dum sequent (R) DCC-FCUP -TAI -Sistemas Dedutivos e Teoria de tipos 1 22

23 Cálculo de sequents LK 0 Γ,α,α Ax Γ,α Γ,α Γ,Γ, Corte Γ,α,β Γ,α β L Γ,α Γ,β Γ,α β R Γ,α Γ,β Γ,α β L Γ,α,β Γ,α β R Γ α, Γ,β Γ,α β L Γ,α Γ, α L Γ,α,β Γ,α β R Γ,α Γ, α R DCC-FCUP -TAI -Sistemas Dedutivos e Teoria de tipos 1 23

24 ((p q) p) p p p,q p,(p q) ( R) (p (p q)) (p q) p p (p q) p) p ( L) ( R) ((p q) p) p ( L) ( L) (p (p q) (p q) ( R) ( R) (p (p q)) (p q) p p p p p,q q (p q),p q p (p q),p q DCC-FCUP -TAI -Sistemas Dedutivos e Teoria de tipos 1 24

25 NK 0 versus LK 0 Regras NK 0 (em sequents) LK 0 Axioma Axioma Introdução ( I) Introdução no consequente ( R) Eliminação ( E) Introdução no antecedente ( L) O facto das fórmulas não serem eliminadas, excepto na regra do corte, leva à seguinte propriedade: Propriedade da subfórmula Numa dedução de Γ, sem utilizar a lei do corte, todas os sequentes são compostos apenas por subfórmulas das fórmulas de Γ e Então é possível algoritmo que procure uma dedução a partir da raíz DCC-FCUP -TAI -Sistemas Dedutivos e Teoria de tipos 1 25

26 α fórmula de corte Eliminação da regra do corte Γ, α Γ, α Γ, Γ, Corte Teorema 13 ( Hauptsatz) O sistema dedutivo LK 0, sem a regra do corte, é íntegro e completo E existe um algoritmo que transforma cada dedução em LK 0, numa dedução do mesmo sequent, sem a regra do corte Para quê então essa regra: permite deduções mais curtas torna mais fácil obter resultados teoricos sobre o sistemas dedutivo existem sistemas que recuperam parte da sua funcionalidadepreservando a forma normal (Tableaux KE) DCC-FCUP -TAI -Sistemas Dedutivos e Teoria de tipos 1 26

27 Transformar para: Ideia da demonstração Γ,α β Γ α β ( R) Γ α Γ β Γ α Γ γ Γ,α β Γ γ Γ,β γ Γ,α β γ Corte Γ,β γ ( L) Corte Corte Transformar aplicações da regra noutras com fórmulas de corte mais simples Passar a aplicação da regra para nós superiores da árvore de derivação É necessária uma dupla indução: na profundidade da aplicação das regras e na complexidade das fórmulas de corte DCC-FCUP -TAI -Sistemas Dedutivos e Teoria de tipos 1 27

28 [?] Cap [?] Cap 71 [?] Leituras DCC-FCUP -TAI -Sistemas Dedutivos e Teoria de tipos 1 28

Lógica Computacional DCC/FCUP 2017/18

Lógica Computacional DCC/FCUP 2017/18 2017/18 Raciocínios 1 Se o André adormecer e alguém o acordar, ele diz palavrões 2 O André adormeceu 3 Não disse palavrões 4 Ninguém o acordou Será um raciocínio válido? Raciocínios Forma geral do raciocínio

Leia mais

Lógica Computacional Aulas 8 e 9

Lógica Computacional Aulas 8 e 9 Lógica Computacional Aulas 8 e 9 DCC/FCUP 2017/18 Conteúdo 1 Lógica proposicional 1 11 Integridade e completude dum sistema dedutivo D 1 111 Integridade do sistema de dedução natural DN 1 112 3 12 Decidibilidade

Leia mais

Sistema dedutivo. Sistema dedutivo

Sistema dedutivo. Sistema dedutivo Sistema dedutivo Estudaremos um sistema dedutivo axiomático axiomas lógicos e axiomas não lógicos (ou esquemas de axiomas) e regras de inferência (ou esquemas de regra) do tipo de Hilbert para a lógica

Leia mais

Lógica Proposicional

Lógica Proposicional Lógica Proposicional Lógica Computacional Carlos Bacelar Almeida Departmento de Informática Universidade do Minho 2007/2008 Carlos Bacelar Almeida, DIUM LÓGICA PROPOSICIONAL- LÓGICA COMPUTACIONAL 1/28

Leia mais

Dedução Natural e Sistema Axiomático Pa(Capítulo 6)

Dedução Natural e Sistema Axiomático Pa(Capítulo 6) Dedução Natural e Sistema Axiomático Pa(Capítulo 6) LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Definições 2. Dedução Natural 3. Sistemas axiomático Pa 4. Lista

Leia mais

Lógica Computacional

Lógica Computacional Aula Teórica 13: Dedução Natural em Lógica Proposicional António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de

Leia mais

Lógica Computacional. Nelma Moreira. Departamento de Ciência de Computadores Faculdade de Ciências, Universidade do Porto

Lógica Computacional. Nelma Moreira. Departamento de Ciência de Computadores Faculdade de Ciências, Universidade do Porto Lógica Computacional Nelma Moreira Departamento de Ciência de Computadores Faculdade de Ciências, Universidade do Porto email: nam@nccuppt 2004 Agradecimentos Estas notas baseam-se parcialmente nos Apontamentos

Leia mais

Lógica para Computação

Lógica para Computação Lógica para Computação Prof. Celso Antônio Alves Kaestner, Dr. Eng. celsokaestner (at) utfpr (dot) edu (dot) br Sistemas Dedutivos Um Sistema Dedutivo (SD) tem por objetivo obter, a partir de um conjunto

Leia mais

Exemplo 7 1 I. p q: Se o time joga bem, então o time ganha o campeonato. q s: Se o time ganha o campeonato então. s: Os torcedores não estão felizes.

Exemplo 7 1 I. p q: Se o time joga bem, então o time ganha o campeonato. q s: Se o time ganha o campeonato então. s: Os torcedores não estão felizes. Exemplo 7 1 I p q: Se o time joga bem, então o time ganha o campeonato }{{}}{{} p q p r: Se o time não joga bem, então o técnico é o culpado }{{}}{{} p r q s: Se o time ganha o campeonato então }{{} q

Leia mais

NHI Lógica Básica (Lógica Clássica de Primeira Ordem)

NHI Lógica Básica (Lógica Clássica de Primeira Ordem) NHI2049-13 (Lógica Clássica de Primeira Ordem) página da disciplina na web: http://professor.ufabc.edu.br/~jair.donadelli/logica O assunto O que é lógica? Disciplina que se ocupa do estudo sistemático

Leia mais

3.3 Cálculo proposicional clássico

3.3 Cálculo proposicional clássico 81 3.3 Cálculo proposicional clássico 3.3.1 Estrutura dedutiva Neste parágrafo serão apresentados, sem preocupação com excesso de rigor e com riqueza de detalhes, alguns conceitos importantes relativos

Leia mais

Lógica Computacional

Lógica Computacional Lógica Computacional Modus Ponens e Raciocínio Hipotético Introdução e eliminação da Implicação e da Equivalência Completude e Coerência do Sistema de Dedução Natural 24 Outubro 2016 Lógica Computacional

Leia mais

Lógica Computacional. Nelma Moreira. Departamento de Ciência de Computadores Faculdade de Ciências, Universidade do Porto

Lógica Computacional. Nelma Moreira. Departamento de Ciência de Computadores Faculdade de Ciências, Universidade do Porto Lógica Computacional Nelma Moreira Departamento de Ciência de Computadores Faculdade de Ciências, Universidade do Porto email: nam@nccuppt Versão: 2010 Conteúdo 1 Lógica proposicional 5 11 Linguagens

Leia mais

Lógica Computacional. Nelma Moreira. Departamento de Ciência de Computadores Faculdade de Ciências, Universidade do Porto

Lógica Computacional. Nelma Moreira. Departamento de Ciência de Computadores Faculdade de Ciências, Universidade do Porto Lógica Computacional Nelma Moreira Departamento de Ciência de Computadores Faculdade de Ciências, Universidade do Porto email: nam@dccuppt Versão: 2016 Conteúdo 1 Lógica proposicional 7 11 Linguagens

Leia mais

Lógica. Cálculo Proposicional. Introdução

Lógica. Cálculo Proposicional. Introdução Lógica Cálculo Proposicional Introdução Lógica - Definição Formalização de alguma linguagem Sintaxe Especificação precisa das expressões legais Semântica Significado das expressões Dedução Provê regras

Leia mais

AXIOMATIZAÇÃO Equipe:

AXIOMATIZAÇÃO Equipe: AXIOMATIZAÇÃO Equipe: André Augusto Kaviatkovski, Daniel Elias Ferreira, Vinicius Zaramella Curso: Engenharia de Computação Disciplina: Lógica para Computação Professor: Adolfo Neto (DAINF) Universidade

Leia mais

Lógica Proposicional

Lógica Proposicional Slides da disciplina Lógica para Computação, ministrada pelo Prof. Celso Antônio Alves Kaestner, Dr. Eng. ([email protected]) entre 2007 e 2008. Alterações feitas em 2009 pelo Prof. Adolfo

Leia mais

Indução Matemática. George Darmiton da Cunha Cavalcanti CIn - UFPE

Indução Matemática. George Darmiton da Cunha Cavalcanti CIn - UFPE Indução Matemática George Darmiton da Cunha Cavalcanti CIn - UFPE Introdução Qual é a fórmula para a soma dos primeiros n inteiros ímpares positivos? Observando os resultados para um n pequeno, encontra-se

Leia mais

DIM Resolução e método tableaux DIM / 37

DIM Resolução e método tableaux DIM / 37 DIM0436 21. Resolução e método tableaux 20141014 DIM0436 20141014 1 / 37 Sumário 1 Demostração automática de fórmulas 2 Resolução 3 O método tableaux DIM0436 20141014 2 / 37 1 Demostração automática de

Leia mais

Aula 6: Dedução Natural

Aula 6: Dedução Natural Lógica para Computação Primeiro Semestre, 2015 DAINF-UTFPR Aula 6: Dedução Natural Prof. Ricardo Dutra da Silva Em busca de uma forma de dedução mais próxima do que uma pessoa costuma fazer, foi criado

Leia mais

Alfabeto da Lógica Proposicional

Alfabeto da Lógica Proposicional Ciência da Computação Alfabeto da Lógica Sintaxe e Semântica da Lógica Parte I Prof. Sergio Ribeiro Definição 1.1 (alfabeto) - O alfabeto da é constituído por: símbolos de pontuação: (, ;, ) símbolos de

Leia mais

Lógica Proposicional. LEIC - Tagus Park 2 o Semestre, Ano Lectivo 2007/08. c Inês Lynce c Luísa Coheur

Lógica Proposicional. LEIC - Tagus Park 2 o Semestre, Ano Lectivo 2007/08. c Inês Lynce c Luísa Coheur Capítulo 2 Lógica Proposicional Lógica para Programação LEIC - Tagus Park 2 o Semestre, Ano Lectivo 2007/08 c Inês Lynce c Luísa Coheur Programa Apresentação Conceitos Básicos Lógica Proposicional ou Cálculo

Leia mais

Dedução Natural para Lógica Proposicional

Dedução Natural para Lógica Proposicional Dedução Natural para Lógica Proposicional Matemática Discreta I Rodrigo Ribeiro Departamento de Ciências Exatas e Aplicadas Universidade de Federal de Ouro Preto 11 de dezembro de 2012 Motivação (I) Considere

Leia mais

Lógica Proposicional (Consequência lógica / Dedução formal)

Lógica Proposicional (Consequência lógica / Dedução formal) Faculdade de Tecnologia Senac Pelotas Curso Superior de Tecnologia em Análise e Desenvolvimento de Sistemas Matemática Aplicada Prof. Edécio Fernando Iepsen Lógica Proposicional (Consequência lógica /

Leia mais

LÓGICA PROPOSICIONAL

LÓGICA PROPOSICIONAL LÓGICA PROPOSICIONAL Prof. Cesar Tacla/UTFPR/Curitiba Slides baseados no capítulo 1 de DA SILVA, F. S. C.; FINGER M. e de MELO A. C. V.. Lógica para Computação. Thomson Pioneira Editora, 2006. Conceitos

Leia mais

Lista: Lógica Proposicional - Dedução Natural (Gabarito)

Lista: Lógica Proposicional - Dedução Natural (Gabarito) Universidade de Brasília - Instituto de Ciências Exatas Departamento de Ciência da Computação CIC 117366 Lógica Computacional 1 - Turmas A e B (2018/1) 16 de abril de 2018 Lista: Lógica Proposicional -

Leia mais

Aula 6: Dedução Natural

Aula 6: Dedução Natural Lógica para Computação Segundo Semestre, 2014 DAINF-UTFPR Aula 6: Dedução Natural Prof. Ricardo Dutra da Silva Em busca de uma forma de dedução mais próxima do que uma pessoa costuma fazer, foi criado

Leia mais

Conhecimento e Raciocínio Lógica Proposicional

Conhecimento e Raciocínio Lógica Proposicional Conhecimento e Raciocínio Lógica Proposicional Agente Baseado em Conhecimento ou Sistema Baseado em Conhecimento Representa conhecimento sobre o mundo em uma linguagem formal (KB) Raciocina sobre o mundo

Leia mais

Dedução Natural LÓGICA APLICADA A COMPUTAÇÃO. Professor: Rosalvo Ferreira de Oliveira Neto

Dedução Natural LÓGICA APLICADA A COMPUTAÇÃO. Professor: Rosalvo Ferreira de Oliveira Neto Dedução Natural LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Definições 2. Dedução Natural 3. Lista Um dos objetivos principais da lógica é o estudo de estruturas

Leia mais

Lógica Proposicional. Prof. Dr. Silvio do Lago Pereira. Departamento de Tecnologia da Informação Faculdade de Tecnologia de São Paulo

Lógica Proposicional. Prof. Dr. Silvio do Lago Pereira. Departamento de Tecnologia da Informação Faculdade de Tecnologia de São Paulo Lógica Proposicional Prof. Dr. Silvio do Lago Pereira Departamento de Tecnologia da Informação aculdade de Tecnologia de São Paulo Motivação IA IA estuda estuda como como simular simular comportamento

Leia mais

01/09/2014. Capítulo 3. Propriedades semânticas da Lógica Proposicional

01/09/2014. Capítulo 3. Propriedades semânticas da Lógica Proposicional Capítulo 3 Propriedades semânticas da Lógica Proposicional 1 Introdução Propriedades Definição 3.1 (propriedades semânticas básicas da Lógica Proposicional) Sejam H, G, H 1, H 2,...,H n, fórmulas da Lógica

Leia mais

Começamos essa seção com o seguinte exemplo ao qual nos referimos por Exemplo as seguintes sentenças atômicas

Começamos essa seção com o seguinte exemplo ao qual nos referimos por Exemplo as seguintes sentenças atômicas 31 5 ARGUMENTOS VÁLIDOS Começamos essa seção com o seguinte exemplo ao qual nos referimos por Exemplo Consideremos as seguintes sentenças atômicas p: O time joga bem q: O time ganha o campeonato r : O

Leia mais

Inteligência Artificial. Prof. Tiago A. E. Ferreira Aula 15 Agentes que Raciocinam Logicamente

Inteligência Artificial. Prof. Tiago A. E. Ferreira Aula 15 Agentes que Raciocinam Logicamente Inteligência Artificial Prof. Tiago A. E. Ferreira Aula 15 Agentes que Raciocinam Logicamente 1 Bem-vindos ao Mundo do Wumpus Wumpus Agente caçador de tesouros 2 Codificação do Mundo do Wumpus 4 3 fedor

Leia mais

JOÃO NUNES de SOUZA. LÓGICA para CIÊNCIA da COMPUTAÇÃO. Uma introdução concisa

JOÃO NUNES de SOUZA. LÓGICA para CIÊNCIA da COMPUTAÇÃO. Uma introdução concisa JOÃO NUNES de SOUZA LÓGICA para CIÊNCIA da COMPUTAÇÃO Uma introdução concisa 21 de maio de 2008 1 A linguagem da Lógica Proposicional Introdução Alfabeto da Lógica Proposicional Definição 1.1 (alfabeto)

Leia mais

Lógica. Fernando Fontes. Universidade do Minho. Fernando Fontes (Universidade do Minho) Lógica 1 / 65

Lógica. Fernando Fontes. Universidade do Minho. Fernando Fontes (Universidade do Minho) Lógica 1 / 65 Lógica Fernando Fontes Universidade do Minho Fernando Fontes (Universidade do Minho) Lógica 1 / 65 Outline 1 Introdução 2 Implicações e Equivalências Lógicas 3 Mapas de Karnaugh 4 Lógica de Predicados

Leia mais

Fundamentos de Lógica Matemática

Fundamentos de Lógica Matemática Webconferência 3-01/03/2012 Inferência Lógica Prof. L. M. Levada http://www.dc.ufscar.br/ alexandre Departamento de Computação (DC) Universidade Federal de São Carlos (UFSCar) 2012/1 Objetivos Análise

Leia mais

Lógica dos Conectivos: demonstrações indiretas

Lógica dos Conectivos: demonstrações indiretas Lógica dos Conectivos: demonstrações indiretas Renata de Freitas e Petrucio Viana IME, UFF 18 de junho de 2015 Sumário Olhe para as premissas Olhe para a conclusão Estratégias indiretas Principais exemplos

Leia mais

Aula 8: Tableaux Analíticos

Aula 8: Tableaux Analíticos Lógica para Computação Segundo Semestre, 2014 Aula 8: Tableaux Analíticos DAINF-UTFPR Prof. Ricardo Dutra da Silva O métodos de Dedução Natural não permite inferir a falsidade de um sequente, ou seja,

Leia mais

Lógica Proposicional Parte II. Raquel de Souza Francisco Bravo 25 de outubro de 2016

Lógica Proposicional Parte II. Raquel de Souza Francisco Bravo   25 de outubro de 2016 Lógica Proposicional Parte II e-mail: [email protected] 25 de outubro de 2016 Argumento Válido Um argumento simbólica como: pode ser ser representado em forma P 1 P 2 P 3 P n Q Onde P 1, P 2,,P n são proposições

Leia mais

Lógica Computacional

Lógica Computacional Lógica Computacional 3.ano LCC e LERSI URL: http://www.ncc.up.pt/~nam/aulas/0304/lc Escolaridade: 3.5T e 1P Frequência:Semanalmente serão propostos trabalhos aos alunos, que serão entregues até hora e

Leia mais

Nelma Moreira. Departamento de Ciência de Computadores da FCUP. Aula 12

Nelma Moreira. Departamento de Ciência de Computadores da FCUP. Aula 12 Fundamentos de Linguagens de Programação Nelma Moreira Departamento de Ciência de Computadores da FCUP Fundamentos de Linguagens de Programação Aula 12 Nelma Moreira (DCC-FC) Fundamentos de Linguagens

Leia mais

Lógica Proposicional Métodos de Validação de Fórmulas. José Gustavo de Souza Paiva. Introdução

Lógica Proposicional Métodos de Validação de Fórmulas. José Gustavo de Souza Paiva. Introdução Lógica Proposicional Métodos de Validação de Fórmulas José Gustavo de Souza Paiva Introdução Análise dos mecanismos que produzem e verificam os argumentos válidos apresentados na linguagem da lógica Três

Leia mais

Fundamentos de Lógica Matemática

Fundamentos de Lógica Matemática Webconferência 5-22/03/2012 Prova por resolução Prof. L. M. Levada http://www.dc.ufscar.br/ alexandre Departamento de Computação (DC) Universidade Federal de São Carlos (UFSCar) 2012/1 Introdução É possível

Leia mais

Lógica para Computação Primeiro Semestre, Aula 10: Resolução. Prof. Ricardo Dutra da Silva

Lógica para Computação Primeiro Semestre, Aula 10: Resolução. Prof. Ricardo Dutra da Silva Lógica para Computação Primeiro Semestre, 2015 DAINF-UTFPR Aula 10: Resolução Prof. Ricardo Dutra da Silva A resolução é um método de inferência em que: as fórmulas devem estar na Forma Clausal; deduções

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/26 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)

Leia mais

Lógica dos Conectivos: demonstrações indiretas

Lógica dos Conectivos: demonstrações indiretas Lógica dos Conectivos: demonstrações indiretas Renata de Freitas e Petrucio Viana IME, UFF 5 de novembro de 2014 Sumário Acrescentando premissas. Estratégias indiretas. Principais exemplos. Um problema

Leia mais

Nelma Moreira. Departamento de Ciência de Computadores da FCUP. Aula 2. Nelma Moreira (DCC-FC) Fundamentos de Linguagens de Programação Aula 2 2 / 12

Nelma Moreira. Departamento de Ciência de Computadores da FCUP. Aula 2. Nelma Moreira (DCC-FC) Fundamentos de Linguagens de Programação Aula 2 2 / 12 Fundamentos de Linguagens de Programação Nelma Moreira Departamento de Ciência de Computadores da FCUP Fundamentos de Linguagens de Programação Aula 2 Nelma Moreira (DCC-FC) Fundamentos de Linguagens de

Leia mais

Cálculo proposicional

Cálculo proposicional O estudo da lógica é a análise de métodos de raciocínio. No estudo desses métodos, a lógica esta interessada principalmente na forma e não no conteúdo dos argumentos. Lógica: conhecimento das formas gerais

Leia mais

Matemática Discreta. Lógica Proposicional. Profa. Sheila Morais de Almeida. agosto DAINF-UTFPR-PG

Matemática Discreta. Lógica Proposicional. Profa. Sheila Morais de Almeida. agosto DAINF-UTFPR-PG Matemática Discreta Lógica Proposicional Profa. Sheila Morais de Almeida DAINF-UTFPR-PG agosto - 2016 Tautologias Tautologia é uma fórmula proposicional que é verdadeira para todos os possíveis valores-verdade

Leia mais

Lógica Computacional DCC/FCUP 2017/18

Lógica Computacional DCC/FCUP 2017/18 2017/18 Funcionamento da disciplina Docentes: Teóricas: Sandra Alves Práticas: Sandra Alves e Nelma Moreira Página web http://www.dcc.fc.up.pt/~sandra/home/lc1718.html (slides de aulas e folhas de exercícios,

Leia mais

n. 18 ALGUNS TERMOS...

n. 18 ALGUNS TERMOS... n. 18 ALGUNS TERMOS... DEFINIÇÃO Uma Definição é um enunciado que descreve o significado de um termo. Por exemplo, a definição de linha, segundo Euclides: Linha é o que tem comprimento e não tem largura.

Leia mais

Lógica e Metodologia Jurídica

Lógica e Metodologia Jurídica Lógica e Metodologia Jurídica Argumentos e Lógica Proposicional Prof. Juliano Souza de Albuquerque Maranhão [email protected] Quais sentenças abaixo são argumentos? 1. Bruxas são feitas de madeira.

Leia mais

Aula 7: Dedução Natural 2

Aula 7: Dedução Natural 2 Lógica para Computação Segundo Semestre, 2014 DAINF-UTFPR Aula 7: Dedução Natural 2 Prof. Ricardo Dutra da Silva -introdução Dada uma premissa A, nós podemos concluir A B para qualquer fórmula B. A justificativa

Leia mais

Lógica dos Conectivos: árvores de refutação

Lógica dos Conectivos: árvores de refutação Lógica dos Conectivos: árvores de refutação Petrucio Viana IME UFF 30 de junho de 2015 Sumário Algoritmos para classificação das fórmulas Intermezzo sobre Redução ao Absurdo Método de refutação Árvores

Leia mais

4 AULA. Regras de Inferência e Regras de Equivalência LIVRO. META: Introduzir algumas regras de inferência e algumas regras de equivalência.

4 AULA. Regras de Inferência e Regras de Equivalência LIVRO. META: Introduzir algumas regras de inferência e algumas regras de equivalência. 1 LIVRO Regras de Inferência e Regras de Equivalência 4 AULA META: Introduzir algumas regras de inferência e algumas regras de equivalência. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de:

Leia mais

Introdução à Lógica Matemática

Introdução à Lógica Matemática Introdução à Lógica Matemática Disciplina fundamental sobre a qual se fundamenta a Matemática Uma linguagem matemática Paradoxos 1) Paradoxo do mentiroso (A) Esta frase é falsa. A sentença (A) é verdadeira

Leia mais

UNIVERSIDADE ESTADUAL DO SUDOESTE DA BAHIA UESB DEPARTAMENTO DE CIÊNCIAS EXATAS E TECNÓLOGICAS DCET CURSO DE LICENCIATURA EM MATEMÁTICA

UNIVERSIDADE ESTADUAL DO SUDOESTE DA BAHIA UESB DEPARTAMENTO DE CIÊNCIAS EXATAS E TECNÓLOGICAS DCET CURSO DE LICENCIATURA EM MATEMÁTICA UNIVERSIDADE ESTADUAL DO SUDOESTE DA BAHIA UESB DEPARTAMENTO DE CIÊNCIAS EXATAS E TECNÓLOGICAS DCET CURSO DE LICENCIATURA EM MATEMÁTICA JÉFFERSON DOS SANTOS RIBEIRO ALGUNS MÉTODOS DE PROVAS EM LÓGICA VITÓRIA

Leia mais

Análise I Solução da 1ª Lista de Exercícios

Análise I Solução da 1ª Lista de Exercícios FUNDAÇÃO EDUCACIONAL SERRA DOS ÓRGÃOS CENTRO UNIVERSITÁRIO SERRA DOS ÓRGÃOS Centro de Ciências e Tecnologia Curso de Graduação em Matemática Análise I 0- Solução da ª Lista de Eercícios. ATENÇÃO: O enunciado

Leia mais

Lógica Matemática UNIDADE II. Professora: M. Sc. Juciara do Nascimento César

Lógica Matemática UNIDADE II. Professora: M. Sc. Juciara do Nascimento César Lógica Matemática UNIDADE II Professora: M. Sc. Juciara do Nascimento César 1 1 - Álgebra das Proposições 1.1 Propriedade da Conjunção Sejam p, q e r proposições simples quaisquer e sejam t e c proposições

Leia mais

traço de inferência, premissas conclusão rrt

traço de inferência, premissas conclusão rrt Introdução Como vimos antes, quando da exposição informal, uma das importantes noções lógicas é a de regra de inferência. gora introduziremos essa noção de maneira formal (mais precisamente, considerando

Leia mais

impossível conclusão falso premissas verdadeiro

impossível conclusão falso premissas verdadeiro Argumento Definição: Um argumento é uma sequência de enunciados(proposições) na qual um dos enunciados é a conclusão e os demais são premissas, as quais servem para provar ou, pelo menos, fornecer alguma

Leia mais

Lógica Computacional

Lógica Computacional Aula Teórica 6: Semântica da Lógica Proposicional Departamento de Informática 3 de Março de 2011 Motivação Expressividade Os conectivos são independentes? Definiu-se a Lógica Proposicional com os símbolos

Leia mais

Cálculo proposicional

Cálculo proposicional O estudo da lógica é a análise de métodos de raciocínio. No estudo desses métodos, a lógica esta interessada principalmente na forma e não no conteúdo dos argumentos. Lógica: conhecimento das formas gerais

Leia mais

3.4 Fundamentos de lógica paraconsistente

3.4 Fundamentos de lógica paraconsistente 86 3.4 Fundamentos de lógica paraconsistente A base desta tese é um tipo de lógica denominada lógica paraconsistente anotada, da qual serão apresentadas algumas noções gerais. Como já foi dito neste trabalho,

Leia mais

LÓGICA I ANDRÉ PONTES

LÓGICA I ANDRÉ PONTES LÓGICA I ANDRÉ PONTES 4. Lógica Proposicional A Linguagem da Lógica Proposicional Letras Proposicionais: P, Q, R, S, T,... Conectivos Lógicos: Símbolos auxiliares: (, ), = Conectivo Leitura Símbolo Símbolos

Leia mais

Lógica Computacional Aula 1

Lógica Computacional Aula 1 Lógica Computacional Aula 1 DCC/FCUP 2017/18 Funcionamento da disciplina Docentes: Teóricas: Sandra Alves Práticas: Sandra Alves e Nelma Moreira Página web http://www.dcc.fc.up.pt/~sandra/home/lc1718.html

Leia mais

Lógica Proposicional Propriedades Semânticas

Lógica Proposicional Propriedades Semânticas Lógica Proposicional José Gustavo de Souza Paiva Introdução Relacionamento dos resultados das interpretações semânticas de fórmulas Teoria dos modelos estudo das relações entre propriedades sintáticas

Leia mais

Lógica Computacional

Lógica Computacional Lógica Computacional Aula Teórica 6: Semântica da Lógica Proposicional António Ravara Simão Melo de Sousa Marco Giunti Departamento de Informática, Faculdade de Ciências e Tecnologia, NOVA LINCS, Universidade

Leia mais

Métodos para determinação de propriedades semânticas de fórmulas da Lógica Proposicional(Capítulo 4)

Métodos para determinação de propriedades semânticas de fórmulas da Lógica Proposicional(Capítulo 4) Métodos para determinação de propriedades semânticas de fórmulas da Lógica Proposicional(Capítulo 4) LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Tabela-Verdade

Leia mais

2.5 FORMAS NORMAIS. Forma normal da negação

2.5 FORMAS NORMAIS. Forma normal da negação Forma normal da negação 2.5 FORMAS NORMAIS Newton José Vieira 05 de agosto de 2007 Definições preliminares: literal: variável proposicional (literal positivo) ou negação de variável proposicional (literal

Leia mais

Introdução ao Curso. Área de Teoria DCC/UFMG 2019/01. Introdução à Lógica Computacional Introdução ao Curso Área de Teoria DCC/UFMG /01 1 / 22

Introdução ao Curso. Área de Teoria DCC/UFMG 2019/01. Introdução à Lógica Computacional Introdução ao Curso Área de Teoria DCC/UFMG /01 1 / 22 Introdução ao Curso Área de Teoria DCC/UFMG Introdução à Lógica Computacional 2019/01 Introdução à Lógica Computacional Introdução ao Curso Área de Teoria DCC/UFMG - 2019/01 1 / 22 Introdução: O que é

Leia mais

Lógica para computação

Lógica para computação Lógica para computação PROPRIEDADES SEMÂNTICAS DA LÓGICA PROPOSICIONAL Professor Marlon Marcon Introdução Esta seção considera a análise de algumas propriedades semânticas da LP que relacionam os resultados

Leia mais

Vimos que a todo o argumento corresponde uma estrutura. Por exemplo ao argumento. Se a Lua é cúbica, então os humanos voam.

Vimos que a todo o argumento corresponde uma estrutura. Por exemplo ao argumento. Se a Lua é cúbica, então os humanos voam. Matemática Discreta ESTiG\IPB 2012/13 Cap1 Lógica pg 10 Lógica formal (continuação) Vamos a partir de agora falar de lógica formal, em particular da Lógica Proposicional e da Lógica de Predicados. Todos

Leia mais

Para provar uma implicação se p, então q, é suficiente fazer o seguinte:

Para provar uma implicação se p, então q, é suficiente fazer o seguinte: Prova de Implicações Uma implicação é verdadeira quando a verdade do seu antecedente acarreta a verdade do seu consequente. Ex.: Considere a implicação: Se chove, então a rua está molhada. Observe que

Leia mais

Introdu c ao ` a L ogica Matem atica Ricardo Bianconi

Introdu c ao ` a L ogica Matem atica Ricardo Bianconi Introdução à Lógica Matemática Ricardo Bianconi Capítulo 4 Dedução Informal Antes de embarcarmos em um estudo da lógica formal, ou seja, daquela para a qual introduziremos uma nova linguagem artificial

Leia mais