AXIOMATIZAÇÃO Equipe:
|
|
|
- Luiz Guilherme Gorjão Faro
- 9 Há anos
- Visualizações:
Transcrição
1 AXIOMATIZAÇÃO Equipe: André Augusto Kaviatkovski, Daniel Elias Ferreira, Vinicius Zaramella Curso: Engenharia de Computação Disciplina: Lógica para Computação Professor: Adolfo Neto (DAINF) Universidade Tecnológica Federal do Paraná (UTFPR) 1
2 Sistema Dedutivo: Sistemas Dedutivos são métodos utilizados na lógica e em outras ciências para se inferir conseqüências lógicas a partir de um conjunto de fórmulas tomadas a priori. Existem várias formas de se realizar inferências. Entre esses métodos estão os Sistemas de Dedução Natural, Métodos de Tablôs analíticos e as Axiomatizações. Quando um Sistema Dedutivo infere uma fórmula A de uma teoria Γ, escreve-se Γ Ⱶ A. Esta expressão é chamada de sequente. Ela é constituída do antecedente (ou hipótese) Γ e do consequente (ou conclusão) A. 2
3 Axiomatização: O axioma era um importante elemento do método lógico dedutivo dos gregos. Um método dedutivo baseado em axiomas método foi utilizado na apresentação da geometria euclidiana.tratava-se, na época, de axiomatizar uma teoria, a teoria geométrica. Posteriormente, as axiomatizações foram utilizadas em tentativas de prover um fundamento seguro para a matemática. Em lógica, porém, compreende-se axiomatização como uma forma lógica de inferência. Uma axiomatização possui dois elementos distintos: axiomas e regras de inferência. 3
4 Axioma: Um axioma é aceito como verdade e serve como ponto inicial para dedução e inferências de outras verdades (dependentes de teoria). Um axioma não é necessariamente uma verdade autoevidente, mas apenas uma expressão lógica formal usada em uma dedução, visando obter resultados mais facilmente. Axiomatizar um sistema é mostrar que suas inferências podem ser derivadas a partir de um pequeno e bem-definido conjunto de sentenças. 4
5 Regras de inferência: As regras de inferência possuem como características: I)Se a Hipótese inicial for verdadeira, então a Conclusão é verdadeira. II) As premissas de um sistema de inferência são regras sem hipóteses. III) Permitem inferir novas fórmulas a partir de formulas já inferidas. No caso da axiomatização da lógica proposicional clássica será utilizado o Modus Ponens. 5
6 Modus Ponens: A partir de A B e A, infere-se B. O argumento tem duas premissas: -A condição "se - então", nomeadamente que A implica B. -A é verdadeiro. Destas duas premissas pode ser logicamente concluído que B tem de ser também verdadeiro. EXEMPLO: - Se chover, então fico em casa. - Choveu. - Então fico em casa. 6 Fonte: WIKIPEDIA. Modus Ponens. Disponível em: < Acesso em: 21 mar
7 Fonte: CORRÊA DA SILVA, Flávio Soares; FINGER, Marcelo;VIEIRA DE MELO, Ana Cristina. Lógica para computação. São Paulo: Thomson, p Substituição: A substituição de um átomo p por uma fórmula B em uma fórmula A é representada por A[p := B]. A definição formal de substituição se dá por indução estrutural sobre a fórmula A, sobre a qual se processa a substituição, da seguinte maneira: 1.p[p := B] = B 2.q[p := B] = q, para q p. 3.( A) [p:=b]= (A [p:=b]). 4.(A 1 ο A 2 ) [p := B] = (A 1 [p := B]) ο (A 2 [p := B]), para ο {,, } 7
8 Fonte: CORRÊA DA SILVA, Flávio Soares; FINGER, Marcelo;VIEIRA DE MELO, Ana Cristina. Lógica para computação. São Paulo: Thomson, p Substituição: Exemplo: (p (p q))[p := (r s)] = p[p := (r s)] (p q)[p := (r s)] = (r s) (p[p := (r s)] q[p := (r s)]) = (r s) ((r s) q) Quando uma fórmula B é resultante da substituição de um ou mais átomos da fórmula A, dizemos que B é uma instância da fórmula A. 8
9 Dedução, teoremas: Axiomas da lógica proposicional clássica: ( 1 ) p (q p); ( 2 ) (p (q r)) ((p q) (p r)); ( 1 ) p (q (p q)); ( 2 ) (p q ) p ; ( 3 ) (p q ) q ; ( 1 ) p (p q); ( 2 ) q (p q); ( 3 ) (p r) ((q r) ((p q) r)); ( 1 ) (p q) ((p q) p); ( 2 ) p p. Fonte: CORRÊA DA SILVA, Flávio Soares; FINGER, Marcelo;VIEIRA DE MELO, Ana Cristina. Lógica para computação. São Paulo: Thomson, p
10 Dedução, teoremas: Dedução: uma seqüência de fbf A 1, A 2 A n tal que cada fbf na seqüência é uma instância de axioma ou pode ser obtida das fbfs anteriores por meio das regras de inferência. Teorema: uma fbf A tal que existe uma dedução A 1, A 2 A n = A. Neste caso escreve-se Ⱶ A. A axiomatização possui a propriedade da substituição uniforme, isto é, se A é um teorema e se B é uma instância de A, então B também é um teorema 10 Fonte: KAESTNER, Celso A. A. Disponível em: < Acesso em: 18 mar
11 Dedução, teoremas: Pode-se ainda definir o conceito de fórmula dedutível de uma teoria (conjunto de fbf); Diz-se que A é dedutível a partir de uma teoria Γ se há uma dedução, ou seja seqüência de fbf A 1, A 2 A n = A tal que cada fbf na seqüência é: 1. uma fbf da teoria Γ; ou 2. uma instância de um axioma; ou 3. pode ser obtida das fórmulas anteriores por meio das regras de inferência; 11 Fonte: KAESTNER, Celso A. A. Disponível em: < Acesso em: 18 mar
12 Fonte: Adaptado de CORRÊA DA SILVA, Flávio Soares; FINGER, Marcelo;VIEIRA DE MELO, Ana Cristina. Lógica para computação. São Paulo: Thomson, p. 38. Exemplo de dedução: Dedução do teorema I = A A. ( 2 ), onde p := A, q := A A e r := A. Assim temos: 1.(A ((A A) A)) ((A (A A)) (A A)). ( 1 ), onde p := A, q :=A A.Obtemos assim: 2.A ((A A) A). Aplicando Modus Ponens 1, 2, obtemos a fórmula 3: 3. ((A (A A)) (A A). ( 1 ) onde p := A e q := A: 4. A (A A). Aplicando Modus Ponens 3, 4, obtemos a fórmula 5: 5. A A. 12
13 Teorema da dedução: O teorema da dedução diz que: Γ, A Ⱶ B se e somente se Γ Ⱶ A B. É capaz de transformar uma dedução que poderia ser complexa em uma dedução bastante simples. Exemplo: B= (A B) ((C A) (C B)) A B, C A, C Ⱶ B. Tomamos como Hipótese as fórmulas: 1 A B 2 C A 3 C. Aplicamos agora o Modus Ponens 2,3 e obtemos a fórmula: 4 A Por fim, aplicamos o Modus Ponens 1,4 e obtemos a fórmula: 5 B 13
14 Referências: CORRÊA DA SILVA, Flávio Soares; FINGER, Marcelo;VIEIRA DE MELO, Ana Cristina. Lógica para computação. São Paulo: Thomson, p KAESTNER, Celso A. A. Disponível em: < t>. Acesso em: 18 mar WIKIPEDIA. AXIOMA. Disponível em: < Acesso em: 13 mar WIKIPEDIA. Modus Ponens. Disponível em: < Acesso em: 21 mar
Lógica para Computação
Lógica para Computação Prof. Celso Antônio Alves Kaestner, Dr. Eng. celsokaestner (at) utfpr (dot) edu (dot) br Sistemas Dedutivos Um Sistema Dedutivo (SD) tem por objetivo obter, a partir de um conjunto
Lógica Proposicional
Slides da disciplina Lógica para Computação, ministrada pelo Prof. Celso Antônio Alves Kaestner, Dr. Eng. ([email protected]) entre 2007 e 2008. Alterações feitas em 2009 pelo Prof. Adolfo
Fórmulas da lógica proposicional
Fórmulas da lógica proposicional As variáveis proposicionais p, q, são fórmulas (V P rop ) é fórmula (falso) α e β são fórmulas, então são fórmulas (α β), (α β), (α β) e ( α) DCC-FCUP -TAI -Sistemas Dedutivos
Dedução Natural e Sistema Axiomático Pa(Capítulo 6)
Dedução Natural e Sistema Axiomático Pa(Capítulo 6) LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Definições 2. Dedução Natural 3. Sistemas axiomático Pa 4. Lista
Dedução Natural LÓGICA APLICADA A COMPUTAÇÃO. Professor: Rosalvo Ferreira de Oliveira Neto
Dedução Natural LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Definições 2. Dedução Natural 3. Lista Um dos objetivos principais da lógica é o estudo de estruturas
Lógica para Computação Primeiro Semestre, Aula 10: Resolução. Prof. Ricardo Dutra da Silva
Lógica para Computação Primeiro Semestre, 2015 DAINF-UTFPR Aula 10: Resolução Prof. Ricardo Dutra da Silva A resolução é um método de inferência em que: as fórmulas devem estar na Forma Clausal; deduções
Lógica Proposicional
Lógica Proposicional Lógica Proposicional As notações lógicas formais representam proposições em forma simbólica fbf Lembrando: fbf: fórmula bem formulada; Essas fbfs também são chamadas de fbfs proposicionais
3.3 Cálculo proposicional clássico
81 3.3 Cálculo proposicional clássico 3.3.1 Estrutura dedutiva Neste parágrafo serão apresentados, sem preocupação com excesso de rigor e com riqueza de detalhes, alguns conceitos importantes relativos
LÓGICA I ANDRÉ PONTES
LÓGICA I ANDRÉ PONTES 4. Lógica Proposicional A Linguagem da Lógica Proposicional Letras Proposicionais: P, Q, R, S, T,... Conectivos Lógicos: Símbolos auxiliares: (, ), = Conectivo Leitura Símbolo Símbolos
Aula 8: Tableaux Analíticos
Lógica para Computação Segundo Semestre, 2014 Aula 8: Tableaux Analíticos DAINF-UTFPR Prof. Ricardo Dutra da Silva O métodos de Dedução Natural não permite inferir a falsidade de um sequente, ou seja,
LÓGICA PROPOSICIONAL
LÓGICA PROPOSICIONAL Prof. Cesar Tacla/UTFPR/Curitiba Slides baseados no capítulo 1 de DA SILVA, F. S. C.; FINGER M. e de MELO A. C. V.. Lógica para Computação. Thomson Pioneira Editora, 2006. Conceitos
Aula 6: Dedução Natural
Lógica para Computação Primeiro Semestre, 2015 DAINF-UTFPR Aula 6: Dedução Natural Prof. Ricardo Dutra da Silva Em busca de uma forma de dedução mais próxima do que uma pessoa costuma fazer, foi criado
Aula 6: Dedução Natural
Lógica para Computação Segundo Semestre, 2014 DAINF-UTFPR Aula 6: Dedução Natural Prof. Ricardo Dutra da Silva Em busca de uma forma de dedução mais próxima do que uma pessoa costuma fazer, foi criado
Lógica Proposicional (Consequência lógica / Dedução formal)
Faculdade de Tecnologia Senac Pelotas Curso Superior de Tecnologia em Análise e Desenvolvimento de Sistemas Matemática Aplicada Prof. Edécio Fernando Iepsen Lógica Proposicional (Consequência lógica /
Fundamentos de Lógica Matemática
Webconferência 3-01/03/2012 Inferência Lógica Prof. L. M. Levada http://www.dc.ufscar.br/ alexandre Departamento de Computação (DC) Universidade Federal de São Carlos (UFSCar) 2012/1 Objetivos Análise
Fundamentos de Lógica Matemática
Webconferência 5-22/03/2012 Prova por resolução Prof. L. M. Levada http://www.dc.ufscar.br/ alexandre Departamento de Computação (DC) Universidade Federal de São Carlos (UFSCar) 2012/1 Introdução É possível
Exemplo 7 1 I. p q: Se o time joga bem, então o time ganha o campeonato. q s: Se o time ganha o campeonato então. s: Os torcedores não estão felizes.
Exemplo 7 1 I p q: Se o time joga bem, então o time ganha o campeonato }{{}}{{} p q p r: Se o time não joga bem, então o técnico é o culpado }{{}}{{} p r q s: Se o time ganha o campeonato então }{{} q
Dedução Natural para Lógica Proposicional
Dedução Natural para Lógica Proposicional Matemática Discreta I Rodrigo Ribeiro Departamento de Ciências Exatas e Aplicadas Universidade de Federal de Ouro Preto 11 de dezembro de 2012 Motivação (I) Considere
Lógica Proposicional Parte II. Raquel de Souza Francisco Bravo 25 de outubro de 2016
Lógica Proposicional Parte II e-mail: [email protected] 25 de outubro de 2016 Argumento Válido Um argumento simbólica como: pode ser ser representado em forma P 1 P 2 P 3 P n Q Onde P 1, P 2,,P n são proposições
Lógica. Cálculo Proposicional. Introdução
Lógica Cálculo Proposicional Introdução Lógica - Definição Formalização de alguma linguagem Sintaxe Especificação precisa das expressões legais Semântica Significado das expressões Dedução Provê regras
Aula 7: Dedução Natural 2
Lógica para Computação Segundo Semestre, 2014 DAINF-UTFPR Aula 7: Dedução Natural 2 Prof. Ricardo Dutra da Silva -introdução Dada uma premissa A, nós podemos concluir A B para qualquer fórmula B. A justificativa
Sistema dedutivo. Sistema dedutivo
Sistema dedutivo Estudaremos um sistema dedutivo axiomático axiomas lógicos e axiomas não lógicos (ou esquemas de axiomas) e regras de inferência (ou esquemas de regra) do tipo de Hilbert para a lógica
Lógica Computacional
Lógica Computacional Modus Ponens e Raciocínio Hipotético Introdução e eliminação da Implicação e da Equivalência Completude e Coerência do Sistema de Dedução Natural 24 Outubro 2016 Lógica Computacional
Lógica Computacional DCC/FCUP 2017/18
2017/18 Raciocínios 1 Se o André adormecer e alguém o acordar, ele diz palavrões 2 O André adormeceu 3 Não disse palavrões 4 Ninguém o acordou Será um raciocínio válido? Raciocínios Forma geral do raciocínio
Lógica Proposicional e Dedução Natural 1/48. Douglas O. Cardoso docardoso.github.io
Lógica Proposicional e Dedução Natural [email protected] docardoso.github.io Lógica Proposicional e Dedução Natural 1/48 Roteiro 1 Uma Introdução Intuitiva 2 Proposições 3 DN: regras básicas
Lógica Computacional
Aula Teórica 13: Dedução Natural em Lógica Proposicional António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de
Lógica Proposicional. LEIC - Tagus Park 2 o Semestre, Ano Lectivo 2007/08. c Inês Lynce c Luísa Coheur
Capítulo 2 Lógica Proposicional Lógica para Programação LEIC - Tagus Park 2 o Semestre, Ano Lectivo 2007/08 c Inês Lynce c Luísa Coheur Programa Apresentação Conceitos Básicos Lógica Proposicional ou Cálculo
3.4 Fundamentos de lógica paraconsistente
86 3.4 Fundamentos de lógica paraconsistente A base desta tese é um tipo de lógica denominada lógica paraconsistente anotada, da qual serão apresentadas algumas noções gerais. Como já foi dito neste trabalho,
LÓGICA EM COMPUTAÇÃO
CEC CENTRO DE ENGENHARIA E COMPUTAÇÃO UNIVERSIDADE CATÓLICA DE PETRÓPOLIS LÓGICA EM COMPUTAÇÃO TAUTOLOGIA - EQUIVALÊNCIA E INFERÊNCIA VERSÃO: 0.1 - MARÇO DE 2017 Professor: Luís Rodrigo E-mail: [email protected]
n. 18 ALGUNS TERMOS...
n. 18 ALGUNS TERMOS... DEFINIÇÃO Uma Definição é um enunciado que descreve o significado de um termo. Por exemplo, a definição de linha, segundo Euclides: Linha é o que tem comprimento e não tem largura.
Lógica Proposicional
Lógica Proposicional Lógica Computacional Carlos Bacelar Almeida Departmento de Informática Universidade do Minho 2007/2008 Carlos Bacelar Almeida, DIUM LÓGICA PROPOSICIONAL- LÓGICA COMPUTACIONAL 1/28
Lógica Proposicional Parte 3
Lógica Proposicional Parte 3 Nesta aula, vamos mostrar como usar os conhecimentos sobre regras de inferência para descobrir (ou inferir) novas proposições a partir de proposições dadas. Ilustraremos esse
Lógica Formal. Matemática Discreta. Prof Marcelo Maraschin de Souza
Lógica Formal Matemática Discreta Prof Marcelo Maraschin de Souza Implicação As proposições podem ser combinadas na forma se proposição 1, então proposição 2 Essa proposição composta é denotada por Seja
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/81 1 - LÓGICA E MÉTODOS DE PROVA 1.1) Lógica Proposicional
Conhecimento e Raciocínio Lógica Proposicional
Conhecimento e Raciocínio Lógica Proposicional Agente Baseado em Conhecimento ou Sistema Baseado em Conhecimento Representa conhecimento sobre o mundo em uma linguagem formal (KB) Raciocina sobre o mundo
Matemática discreta e Lógica Matemática
AULA 1 - Lógica Matemática Prof. Dr. Hércules A. Oliveira UTFPR - Universidade Tecnológica Federal do Paraná, Ponta Grossa Departamento Acadêmico de Matemática Ementa 1. Lógica proposicional: introdução,
Lógica de Predicados
Lógica de Predicados Slides da disciplina Lógica para Computação ministrada pelo Prof. Celso Antônio Alves Kaestner, Dr. Eng. ([email protected]) entre 2007 e 2008. Alterações feitas em 2009
Matemática Discreta. Lógica Proposicional. Profa. Sheila Morais de Almeida. agosto DAINF-UTFPR-PG
Matemática Discreta Lógica Proposicional Profa. Sheila Morais de Almeida DAINF-UTFPR-PG agosto - 2016 Tautologias Tautologia é uma fórmula proposicional que é verdadeira para todos os possíveis valores-verdade
Fundamentos da Computação 1. Introdução a Argumentos
Fundamentos da Computação 1 Introdução a s Se você tem um senha atualizada, então você pode entrar na rede Você tem uma senha atualizada Se você tem um senha atualizada, então você pode entrar na rede
Corretude e Completude da Dedução Natural. Thiago Alves Rocha
Lógica para Computação Corretude e Completude da Dedução Natural Thiago Alves Rocha [email protected] Thiago Alves Rocha Lógica para Computação 1 / 15 Tópicos 1 Introdução 2 Corretude 3 Completude
Lógica Computacional Aulas 8 e 9
Lógica Computacional Aulas 8 e 9 DCC/FCUP 2017/18 Conteúdo 1 Lógica proposicional 1 11 Integridade e completude dum sistema dedutivo D 1 111 Integridade do sistema de dedução natural DN 1 112 3 12 Decidibilidade
AXIOMÁTICA. Rosa Canelas
AXIOMÁTICA Rosa Canelas O que é uma axiomática? Em determinado ponto da evolução de uma teoria de pensamento matemático, torna-se imperioso ordenar, sistematizar e relacionar todos os conhecimentos entretanto
Lógica Proposicional. Prof. Dr. Silvio do Lago Pereira. Departamento de Tecnologia da Informação Faculdade de Tecnologia de São Paulo
Lógica Proposicional Prof. Dr. Silvio do Lago Pereira Departamento de Tecnologia da Informação aculdade de Tecnologia de São Paulo Motivação IA IA estuda estuda como como simular simular comportamento
LÓGICA EM COMPUTAÇÃO
CEC CENTRO DE ENGENHARIA E COMPUTAÇÃO UNIVERSIDADE CATÓLICA DE PETRÓPOLIS LÓGICA EM COMPUTAÇÃO TAUTOLOGIA - EQUIVALÊNCIA E INFERÊNCIA VERSÃO: 4 - ABRIL DE 2018 Professor: Luís Rodrigo E-mail: [email protected]
Fundamentos de Lógica Matemática
Webconferência 6-29/03/2012 Introdução à Lógica de Predicados Prof. L. M. Levada http://www.dc.ufscar.br/ alexandre Departamento de Computação (DC) Universidade Federal de São Carlos (UFSCar) 2012/1 Introdução
LÓGICA PARA COMPUTAÇÃO
LÓGICA PARA COMPUTAÇÃO Engenharia de Computação Professor: Rosalvo Ferreira de Oliveira Neto Apresentação Conteúdo Programático Referência bibliográfica Avaliações Dados pessoais Rosalvo Ferreira de Oliveira
4 AULA. Regras de Inferência e Regras de Equivalência LIVRO. META: Introduzir algumas regras de inferência e algumas regras de equivalência.
1 LIVRO Regras de Inferência e Regras de Equivalência 4 AULA META: Introduzir algumas regras de inferência e algumas regras de equivalência. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de:
KEMS - Um Provador de Teoremas Multi-Estratégia
Introdução Conteúdo KEMS - Um Provador de Teoremas Multi-Estratégia Adolfo Gustavo Serra Sêca Neto Departamento Acadêmico de Informática Universidade Tecnológica Federal do Paraná http://www.dainf.ct.utfpr.edu.br/
LÓGICA PARA COMPUTAÇÃO
LÓGICA PARA COMPUTAÇÃO Engenharia de Computação Professor: Rosalvo Ferreira de Oliveira Neto Apresentação Conteúdo Programático Referência bibliográfica Avaliações Dados pessoais Rosalvo Ferreira de Oliveira
Lógica Matemática UNIDADE II. Professora: M. Sc. Juciara do Nascimento César
Lógica Matemática UNIDADE II Professora: M. Sc. Juciara do Nascimento César 1 1 - Álgebra das Proposições 1.1 Propriedade da Conjunção Sejam p, q e r proposições simples quaisquer e sejam t e c proposições
Lógica e Matemática Discreta
Lógica e Matemática Discreta Proposições Prof clezio 20 de Março de 2018 Curso de Ciência da Computação Proposições e Conectivos Conceito de proposição Definição: Chama-se proposição a todo conjunto de
Lógica Proposicional
Lógica Proposicional Lógica Proposicional Profa. Sheila Morais de Almeida DAINF-UTFPR-PG junho - 2018 Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho - 2018 1 / 55 Este material é preparado
Regras de Inferência. Matemática Discreta. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG. março
Matemática Discreta Regras de Inferência Profa. Sheila Morais de Almeida DAINF-UTFPR-PG março - 2017 Argumentos Válidos em Lógica Proposicional Considere o argumento: Se João pensa, então João existe.
Lógica predicados. Lógica predicados (continuação)
Lógica predicados (continuação) Uma formula está na forma normal conjuntiva (FNC) se é uma conjunção de cláusulas. Qualquer fórmula bem formada pode ser convertida para uma FNC, ou seja, normalizada, seguindo
Lógica e Metodologia Jurídica
Lógica e Metodologia Jurídica Argumentos e Lógica Proposicional Prof. Juliano Souza de Albuquerque Maranhão [email protected] Quais sentenças abaixo são argumentos? 1. Bruxas são feitas de madeira.
Raciocínio lógico matemático
Raciocínio lógico matemático Unidade 3: Dedução Seção 3.3 - Contrapositiva 1 Lembrando Modus pones p q, p q Se Pedro guarda dinheiro, então ele não fica negativado. Pedro guardou dinheiro. Dessa forma
Matemática Computacional. Introdução
Matemática Computacional Introdução 1 Definição A Lógica tem, por objeto de estudo, as leis gerais do pensamento, e as formas de aplicar essas leis corretamente na investigação da verdade. 2 Origem Aristóteles
n. 5 Implicações Lógicas Def.: Diz-se que uma proposição P (p, q, r, ) implica V V V V F F F V V F F V
n. 5 Implicações Lógicas A implicação lógica trata de um conjunto de afirmações, proposições simples ou compostas, cujo encadeamento lógico resultará em uma conclusão, a ser descoberta. Tal conclusão deverá
CONTEÚDO LÓGICA FUZZY LÓGICA FUZZY. Proposições Fuzzy. Regras são implicações lógicas. Introdução Introdução, Objetivo e Histórico
CONTEÚDO Introdução Introdução, Objetivo e Histórico Conceitos ásicos Definição, Características e Formas de Imprecisão Conjuntos Fuzz Propriedades, Formas de Representação e Operações Relações, Composições,
2 Lógica Fuzzy. 2 Lógica Fuzzy. Sintaxe da linguagem
2 Lógica Fuzzy 2.1 Cálculo proposicional (lógica proposicional) 2.2 Lógica de Predicados 2.3 Lógica de múltiplos valores 2.4 Lógica Fuzzy Proposições fuzzy Inferência a partir de proposições fuzzy condicionais
NHI Lógica Básica (Lógica Clássica de Primeira Ordem)
NHI2049-13 (Lógica Clássica de Primeira Ordem) página da disciplina na web: http://professor.ufabc.edu.br/~jair.donadelli/logica O assunto O que é lógica? Disciplina que se ocupa do estudo sistemático
Lógica. Fernando Fontes. Universidade do Minho. Fernando Fontes (Universidade do Minho) Lógica 1 / 65
Lógica Fernando Fontes Universidade do Minho Fernando Fontes (Universidade do Minho) Lógica 1 / 65 Outline 1 Introdução 2 Implicações e Equivalências Lógicas 3 Mapas de Karnaugh 4 Lógica de Predicados
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/30 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)
Matemática Discreta - 01
Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 01 Prof. Jorge Cavalcanti [email protected] www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav
Prof. Jorge Cavalcanti
Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 01 Prof. Jorge Cavalcanti [email protected] www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav
n. 11 Argumentos e Regras de Inferência
n. 11 Argumentos e Regras de Inferência A lógica formal lida com um tipo particular de argumento, denominado de argumento dedutivo, que nos permite deduzir uma conclusão Q, com base num conjunto de proposições
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/26 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)
Lógica dos Conectivos: demonstrações indiretas
Lógica dos Conectivos: demonstrações indiretas Renata de Freitas e Petrucio Viana IME, UFF 5 de novembro de 2014 Sumário Acrescentando premissas. Estratégias indiretas. Principais exemplos. Um problema
Para provar uma implicação se p, então q, é suficiente fazer o seguinte:
Prova de Implicações Uma implicação é verdadeira quando a verdade do seu antecedente acarreta a verdade do seu consequente. Ex.: Considere a implicação: Se chove, então a rua está molhada. Observe que
assim são válidas devido à sua estrutura e ao significado dos quantificadores universal e existencial
LÓGICA DE PREDICADOS Na ló predicados uma wff verdadeira significa uma wff vá lida, isto é, uma wff que seja válida em qualquer interpretação possível. AXIOMAS E REGRAS DE INFERêNCIA: wffs predicativas
Aula 4: Consequência Lógica e Equivalência Lógica
Lógica para Computação Segundo Semestre, 2014 Aula 4: Consequência Lógica e Equivalência Lógica DAINF-UTFPR Prof. Ricardo Dutra da Silva Definição 4.1. Em lógica proposicional dizemos que uma fórmula B
Inteligência Artificial. Prof. Tiago A. E. Ferreira Aula 15 Agentes que Raciocinam Logicamente
Inteligência Artificial Prof. Tiago A. E. Ferreira Aula 15 Agentes que Raciocinam Logicamente 1 Bem-vindos ao Mundo do Wumpus Wumpus Agente caçador de tesouros 2 Codificação do Mundo do Wumpus 4 3 fedor
Lógica Computacional
Lógica Computacional Aula Teórica 6: Semântica da Lógica Proposicional António Ravara Simão Melo de Sousa Marco Giunti Departamento de Informática, Faculdade de Ciências e Tecnologia, NOVA LINCS, Universidade
Unidade II. A notação de que a proposição P (p, q, r,...) implica a proposição Q (p, q, r,...) por:
LÓGICA Objetivos Apresentar regras e estruturas adicionais sobre o uso de proposições. Conceituar implicação lógica, tautologias, e as propriedade sobre proposições. Apresentar os fundamentos da dedução,
CONTEÚDO LÓGICA FUZZY LÓGICA FUZZY LÓGICA FUZZY. Um dos componentes mais importantes de um sistema fuzzy é o Módulo de Regras.
CONTEÚDO Introdução Introdução, Objetivo e Histórico Conceitos ásicos Definição, Características e Formas de Imprecisão Conjuntos Fuzzy Propriedades, Formas de Representação e Operações Lógica Fuzzy Relações,
Lógica Matemática. Definição. Origem. Introdução
Lógica Matemática Introdução 1 Definição A Lógica tem, por objeto de estudo, as leis gerais do pensamento, e as formas de aplicar essas leis corretamente na investigação da verdade. 2 Origem Aristóteles
Usando as regras de Morgan, de a negação das proposições:
LÓGICA MATEMÁTICA Prof. Esp. Fabiano Taguchi [email protected] http://fabianotaguchi.wordpress.com EXERCÍCIOS Usando as regras de Morgan, de a negação das proposições: a) É falso que não está frio
Matemática discreta e Lógica Matemática
AULA 1 - Lógica Matemática Prof. Dr. Hércules A. Oliveira UTFPR - Universidade Tecnológica Federal do Paraná, Ponta Grossa Departamento Acadêmico de Matemática Ementa 1 Lógica Sentenças, representação
VERDADE E VALIDADE, PROPOSIÇÃO E ARGUMENTO
ENADE 2005 e 2008 1 O que B. Russell afirma da matemática, em Misticismo e Lógica: "uma disciplina na qual não sabemos do que falamos, nem se o que dizemos é verdade", seria particularmente aplicável à
Lógica Computacional
Lógica Computacional Consequência Tautológica e Lógica em Frases Quantificadas Leis de de Morgan Separação de Quantificadores Consequências Analíticas e Método Axiomático 24 Outubro 2017 Lógica Computacional
1 Conjuntos, Números e Demonstrações
1 Conjuntos, Números e Demonstrações Definição 1. Um conjunto é qualquer coleção bem especificada de elementos. Para qualquer conjunto A, escrevemos a A para indicar que a é um elemento de A e a / A para
Lógica Computacional
Lógica Computacional Consequência Tautológica e Lógica em Frases Quantificadas Leis de de Morgan Separação de Quantificadores Consequências Analíticas e Método Axiomático 3 Novembro 2016 Lógica Computacional
Lógica Computacional
Aula Teórica 8: Forma Normal Conjuntiva António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de Informática, Faculdade
X Encontro da Olimpíada Regional de Matemática
completa X Encontro da Olimpíada Regional de Matemática Florianópolis, 28 de Março de 2015. completa Demonstrando igualdades Seja n um número natural qualquer maior do que 1. Qual será o valor da soma
