Ordenação por Troca. Bubblesort Quicksort

Tamanho: px
Começar a partir da página:

Download "Ordenação por Troca. Bubblesort Quicksort"

Transcrição

1 Ordeação por roca Bubblesort Quicksort

2 ORDENAÇÃO Ordear é o processo de orgaizar uma lista de iformações similares em ordem crescete ou decrescete. Especificamete, dada uma lista de ites r[0], r[], r[2],..., r[-], cada item a lista é chamado registro. Uma chave, k[i], é associada a cada registro r[i]. Diz-se que a lista está ordeada pela chave se i precede j implicar que k[i] < k[j] (ou k[i] > k[j]) em alguma ordeação as chaves

3 . ORDENAÇÃO POR ROCA. Ordeação por Bolha Em cada um dos exemplos subsequetes, x é um vetor de iteiros do qual os primeiros devem ser ordeados de modo que x[i] x[j] para 0 i < j <. A ideia básica por trás da ordeação por bolha é percorrer a lista sequecialmete varias vezes. Cada passagem cosiste em comparar cada elemeto a lista com seu sucessor (x[i] com x[i+]) e trocar os dois elemetos se eles ão estiverem a ordem correta

4 Exemplo, 25, 57, 48, 37, 2, 92, 86, 33 Primeira Passagem x[0] com x[] (25 com 57) ehuma troca x[] com x[2] (57 com 48) troca x[2] com x[3] (57 com 37) troca x[3] com x[4] (57 com 2) troca x[4] com x[5] (57 com 92) ehuma troca x[5] com x[6] (92 com 86) troca x[6] com x[7] (92 com 33) troca

5 Observe que, depois da primeira passagem, o maior elemeto está em sua posição correta. Em geral x[-i] ficara a posição correta depois da iteração i. 25, 57, 48, 37, 2, 92, 86, 33 O cojuto completo de iterações fica assim: iteração iteração iteração iteração iteração iteração iteração iteração

6 Algoritmo bubblesort0 (it x[ ], it ) { it j, pass; for (pass = 0; pass < ; pass++){ /*repetição extera, cotrola - passages*/ for (j = 0; j < pass; j++){ /*repetição itera, cotrola as comparações*/ if (x[j] > x[j+]) { /*elemeto fora da ordem é ecessária uma troca*/ troca(x[j], x[j+]); } } } }

7 Algoritmo aprimorado bubblesort (it x[ ], it ) { it j, pass; bool switched = true; for (pass = 0; pass < - && switched; pass++){ /*repetição extera, cotrola o de passages*/ switched = false; for (j = 0; j < - pass - 2; j++){ /*repetição itera, cotrola cada passagem idividual*/ if (x[j] > x[j+]){ /*elemeto fora da ordem é ecessária uma troca*/ } } } } switched = true; troca(x[j], x[j+]);

8 Complexidade de empo Sem o aprimorameto Numero de comparações: (-)/2 Numero de trocas: melhor caso: ehuma pior caso: (-)/2 Com o aprimorameto Numero de comparações será (-) + (-2) (-k) = (2k-k 2 -k)/2 Como k = O(), etão, o aprimorameto ão muda a complexidade de tempo do algoritmo Coclusão fial: A complexidade do algoritmo de ordeação por bolha = O( 2 )

9 .2 QuickSort A ordeação por troca de partição ou quicksort é provavelmete o algoritmo de ordeação mais utilizado.

10 Idéia Básica Quicksort trabalha particioado um vetor em duas partes e etão as ordeado separadamete. Especificamete, seja x um vetor e o umero de elemetos o vetor a ser classificados. Escolha um elemeto a uma posição especifica detro do vetor, digamos a posição j. Os elemetos de x são particioados de modo que a é colocado a posição j e as seguites codições são observadas:. Cada elemeto as posições 0 até j- são meor ou igual a a. 2. Cada elemeto as posições j+ até - são maior que a a. O mesmo processo é repetido com os subvetores x[0] até x[j-] e x[j+] até x[-] e com quaisquer vetores criados pelo processo em sucessivas iterações, o resultado fial será uma lista ordeada.

11 Algoritmo Básico quicksort (it x[], it lb, it ub) { it j; } if (lb > ub) retur; j = partitio(x, lb, ub); quicksort(x, lb, j-); quicksort(x, j+, ub); Os parâmetros lb e ub delimitam os subvetores detro do vetor origial, detro dos quais a ordeação ocorre. A chamada iicial pode ser feita com quicksort(x, 0, -); O poto crucial é o algoritmo de partição.

12 Exemplo: Ordeação do vetor iicial Supohamos que o primeiro elemeto (25) é escolhido para colocar a sua posição correta, teremos: Como 25 está a sua posição fial, o problema foi decomposto a ordeação dos subvetores: (2) e ( ). O subvetor (2) já está classificado. Repetir o processo para x[2]...x[7] resulta em: 2 25 ( ) 57 (92 86)

13 Exemplo: Se cotiuarmos particioado 2 25 ( ) 57 (92 86), teremos: 2 25 (37 33) (92 86) 2 25 (33) (92 86) (92 86) (86)

14 Método de Particioameto Cosidere a = x[lb] como o elemeto cuja posição fial é a procurada. Dois poteiros up e dow são iicializados como os limites máximo e míimo do subvetor que vamos aalisar. Em qualquer poto da execução, todo elemeto acima de up é maior do que a e todo elemeto abaixo de dow é meor ou igual a a.

15 Os dois poteiros up e dow são movidos um em direção ao outro da seguite forma:. Icremete dow em uma posição até que x[dow] > a. 2. Decremete up em uma posição até que x[up] a. 3. Se a up > dow, troque x[dow] por x[up]. O processo é repetido até que a codição descrita em 3. falhe (quado up dow). Neste poto x[up] será trocado por x[lb], cuja posição fial era procurada, e up é retorado em j.

16 Exemplo: A = x[lb] = 25 dow--> dow up <--up dow <--up dow <--up dow up dow up

17 dow--> up dow up dow up dow up up,dow up 2 dow up dow

18 Algoritmo de Particioameto it partitio(it x[], it lb, it ub) { it a, dow, up; } a = x[lb]; up = ub; dow = lb; while (dow < up) { while (x[dow] <= a && dow < ub) dow++; while (x[up] > a) up--; if (dow < up) troca(x[dow], x[up]); } x[lb] = x[up]; x[up] = a; retur up;

19 Eficiêcia do Quicksort O tempo de execução do QuickSort depede se o particioameto é balaceado ou ão.. O pior caso do QuickSort ocorre quado o particioameto gera um cojuto com elemeto e outro com - elemetos para todos os passos do algoritmo. Desde que o particioameto custa O() a recorrêcia este caso tora-se () = (-) + O() como () = O(), ão é difícil mostrar que () = O( 2 ). (() = + (-) = + (-) + (-2) ())

20 2. O melhor caso ocorre quado o particioameto sempre gera dois sub-cojutos de tamaho /2, temos a recorrêcia () = 2(/2) + O() Etão, () = O(log).

21 ( )=2 ( 2 ) +α =2 ( 2 ( 4 ) +α 2 ) +α=22 ( 4 ) +α+α =2 2 ( 2 ( 8 ) +α 4 ) +α+α2=23 ( 8 ) +α+α+α =2 log ( )+α+...+α log =2 log +α log = O ( log ) 2 m = m=log 2 log < log log 2 log <log ( log ) log <log +log (log )

22 3. Caso Médio. O algoritmo partitio leva tempo proporcioal ao, deotado. Supohamos que a lista é separada em duas sublistas de comprimeto k e --k, respectivamete. Etão, temos () = + (k) + ( - - k) Mas, ão sabemos o valor exato do k. Portato, calculamos a media de todas possibilidades de k: ( ) k 0 k k

23 ) ( 2 S S S Substrai as duas formulas e rearraja: Isso pode ser simplificado para: (Porquê?) ( )=α+ 2 k = ( k )

24 H S H H S k k S S k k od e S H Etão, () = O(l ) H ( )= ~ l

25 Aproximado H() x dx x dx l l l l H

26 Cometários sobre o Quicksort Para evitar o pior caso e casos ruis ode elemetos estão em grupos ordeados pode-se utilizar uma estratégia probabilística: Selecioe, ao ivés do primeiro elemeto para ser a, um elemeto aleatório. Critérios: Seleção totalmete radômica: selecioe qualquer elemeto do subvetor usado um gerador de úmeros aleatórios. Desvatagem: tempo de processameto extra para o gerador. Seleção da mediaa etre os três elemetos: lb, ub e elemeto o meio. Seleção média: usa o valor media do subvetor. odos estes métodos melhoram a performace média.

Quicksort. Algoritmos e Estruturas de Dados II

Quicksort. Algoritmos e Estruturas de Dados II Quicksort Algoritmos e Estruturas de Dados II História Proposto por Hoare em 960 e publicado em 962 É o algoritmo de ordeação itera mais rápido que se cohece para uma ampla variedade de situações Provavelmete

Leia mais

ANÁLISE DE COMPLEXIDADE DE ALGORITMOS

ANÁLISE DE COMPLEXIDADE DE ALGORITMOS 1 FEUP/LEEC Algoritmos e Estruturas de Dados 2001/2002 ANÁLISE DE COMPLEXIDADE DE ALGORITMOS João Pascoal Faria http://www.fe.up.pt/~jpf 2 Itrodução Algoritmo: cojuto claramete especificado de istruções

Leia mais

Ordenação. David Menotti Algoritmos e Estruturas de Dados II DInf UFPR

Ordenação. David Menotti Algoritmos e Estruturas de Dados II DInf UFPR Ordeação David Meotti Algoritmos e Estruturas de Dados II DIf UFPR Critério de Ordeação Ordea-se de acordo com uma chave: typedef it ChaveTipo; typedef struct ChaveTipo Chave; /* outros compoetes */ Item;

Leia mais

O Problema da Ordenação Métodos de Ordenação Parte 1

O Problema da Ordenação Métodos de Ordenação Parte 1 Métodos de Ordenação Parte 1 SCC-201 Introdução à Ciência da Computação II Rosane Minghim 2010 Ordenação (ou classificação) é largamente utilizada Listas telefônicas e dicionários Grandes sistemas de BD

Leia mais

Estudando complexidade de algoritmos

Estudando complexidade de algoritmos Estudado complexidade de algoritmos Dailo de Oliveira Domigos wwwdadomicombr Notas de aula de Estrutura de Dados e Aálise de Algoritmos (Professor Adré Bala, mestrado UFABC) Durate os estudos de complexidade

Leia mais

CT-234. Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches

CT-234. Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches CT34 Estruturas de Dados, Aálise de Aoritmos e Complexidade Estrutural Carlos Alberto Aloso Saches CT34 6) Ordeação HeapSort, QuicSort, Rede Bitôica A estrutura heap Heap é uma árvore biária com duas propriedades:

Leia mais

Dessa forma, concluímos que n deve ser ímpar e, como 120 é par, então essa sequência não possui termo central.

Dessa forma, concluímos que n deve ser ímpar e, como 120 é par, então essa sequência não possui termo central. Resoluções das atividades adicioais Capítulo Grupo A. a) a 9, a 7, a 8, a e a 79. b) a, a, a, a e a.. a) a, a, a, a 8 e a 6. 9 b) a, a 6, a, a 9 e a.. Se a 9 e a k são equidistates dos extremos, etão existe

Leia mais

Análise Infinitesimal II LIMITES DE SUCESSÕES

Análise Infinitesimal II LIMITES DE SUCESSÕES -. Calcule os seguites limites Aálise Ifiitesimal II LIMITES DE SUCESSÕES a) lim + ) b) lim 3 + 4 5 + 7 + c) lim + + ) d) lim 3 + 4 5 + 7 + e) lim + ) + 3 f) lim + 3 + ) g) lim + ) h) lim + 3 i) lim +

Leia mais

Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos

Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos Aálise de Algoritmos Aálise de Algoritmos Prof Dr José Augusto Baraauskas DFM-FFCLRP-USP A Aálise de Algoritmos é um campo da Ciêcia da Computação que tem como objetivo o etedimeto da complexidade dos

Leia mais

Métodos de Classificação

Métodos de Classificação Métodos de Classificação 261 Objetivos e Caracterizações O acesso a um conjunto de dados é facilitado se o mesmo está armazenado conforme uma certa ordem, baseada num critério conhecido. O objetivo básico

Leia mais

Distribuição Amostral da Média: Exemplos

Distribuição Amostral da Média: Exemplos Distribuição Amostral da Média: Eemplos Talvez a aplicação mais simples da distribuição amostral da média seja o cálculo da probabilidade de uma amostra ter média detro de certa faia de valores. Vamos

Leia mais

Uma recorrência é uma equação que descreve uma função em termos do seu valor em entradas menores

Uma recorrência é uma equação que descreve uma função em termos do seu valor em entradas menores Uma recorrêcia é uma equação que descreve uma fução em termos do seu valor em etradas meores T( ) O( 1) T( 1) 1 se 1 se 1 Útil para aálise de complexidade de algoritmos recursivos ou do tipo dividir para

Leia mais

Lista de Exercícios #4 Assunto: Variáveis Aleatórias Contínuas

Lista de Exercícios #4 Assunto: Variáveis Aleatórias Contínuas . ANPEC 8 - Questão Seja x uma variável aleatória com fução desidade de probabilidade dada por: f(x) = x, para x f(x) =, caso cotrário. Podemos afirmar que: () E[x]=; () A mediaa de x é ; () A variâcia

Leia mais

Algoritmos de Ordenação

Algoritmos de Ordenação Algoritmos de Ordenação! Problema: encontrar um número de telefone em uma lista telefônica! simplificado pelo fato dos nomes estarem em ordem alfabética! e se estivesse sem uma ordem?! Problema: busca

Leia mais

Introdução a Complexidade de Algoritmos

Introdução a Complexidade de Algoritmos Itrodução a Complexidade de Algoritmos Estruturas de Dados Prof. Vilso Heck Juior Apresetação Revisão - O Algoritmo; A Complexidade; Exercício. Complexidade de Algoritmos REVISÃO - O ALGORITMO O Algoritmo

Leia mais

Séquências e Séries Infinitas de Termos Constantes

Séquências e Séries Infinitas de Termos Constantes Capítulo Séquêcias e Séries Ifiitas de Termos Costates.. Itrodução Neste capítulo estamos iteressados em aalisar as séries ifiitas de termos costates. Etretato, para eteder as séries ifiitas devemos ates

Leia mais

Stela Adami Vayego DEST/UFPR

Stela Adami Vayego DEST/UFPR Resumo 3 Resumo dos dados uméricos por meio de úmeros 1. Medidas de Tedêcia Cetral A tedêcia cetral da distribuição de freqüêcias de uma variável em um cojuto de dados é caracterizada pelo valor típico

Leia mais

3. Seja C o conjunto dos números complexos. Defina a soma em C por

3. Seja C o conjunto dos números complexos. Defina a soma em C por Eercícios Espaços vetoriais. Cosidere os vetores = (8 ) e = ( -) em. (a) Ecotre o comprimeto de cada vetor. (b) Seja = +. Determie o comprimeto de. Qual a relação etre seu comprimeto e a soma dos comprimetos

Leia mais

3.4.2 Cálculo da moda para dados tabulados. 3.4 Moda Cálculo da moda para uma lista Cálculo da moda para distribuição de freqüências

3.4.2 Cálculo da moda para dados tabulados. 3.4 Moda Cálculo da moda para uma lista Cálculo da moda para distribuição de freqüências 14 Calcular a mediaa do cojuto descrito pela distribuição de freqüêcias a seguir. 8,0 10,0 10 Sabedo-se que é a somatória das, e, portato, = 15+25+16+34+10 = 100, pode-se determiar a posição cetral /2

Leia mais

Provas de Matemática Elementar - EAD. Período

Provas de Matemática Elementar - EAD. Período Provas de Matemática Elemetar - EAD Período 01. Sérgio de Albuquerque Souza 4 de setembro de 014 UNIVERSIDADE FEDERAL DA PARAÍBA CCEN - Departameto de Matemática http://www.mat.ufpb.br/sergio 1 a Prova

Leia mais

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p Objetivo Estimar uma proporção p (descohecida) de elemetos em uma população, apresetado certa característica de iteresse, a partir da iformação forecida por uma amostra.

Leia mais

(i) (1,5 val.) Represente na forma de um intervalo ou de uma união disjunta de intervalos cada um dos conjuntos seguintes:

(i) (1,5 val.) Represente na forma de um intervalo ou de uma união disjunta de intervalos cada um dos conjuntos seguintes: Istituto Superior Técico Departameto de Matemática o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I - Versão A MEAero o Sem. 0/3 0//0 Duração: h30m RESOLUÇÃO. 3,0 val. i,5 val. Represete a forma de um itervalo

Leia mais

Matemática E Extensivo V. 1

Matemática E Extensivo V. 1 Extesivo V. 0) a) r b) r c) r / d) r 7 0) A 0) B P.A. 7,,,... r a + ( ). a +. + 69 a 5 P.A. (r, r, r ) r ( r + r) 6r r r r 70 Exercícios 05) a 0 98 a a a 06) E 07) B 08) B 7 0 0; 8? P.A. ( 7, 65, 58,...)

Leia mais

Universidade Federal de Lavras Departamento de Estatística Prof. Daniel Furtado Ferreira 1 a Aula Prática Técnicas de somatório

Universidade Federal de Lavras Departamento de Estatística Prof. Daniel Furtado Ferreira 1 a Aula Prática Técnicas de somatório Uiversidade Federal de Lavras Departameto de Estatística Prof. Daiel Furtado Ferreira 1 a Aula Prática Técicas de somatório Notação e propriedades: 1) Variáveis e ídices: o símbolo x j (leia x ídice j)

Leia mais

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Teoria da amostragem

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Teoria da amostragem Estatística: Aplicação ao Sesoriameto Remoto SER 04 - ANO 017 Teoria da amostragem Camilo Daleles Reó [email protected] http://www.dpi.ipe.br/~camilo/estatistica/ Algumas Cosiderações... É importate ter

Leia mais

Solução Comentada Prova de Matemática

Solução Comentada Prova de Matemática 0 questões. Sejam a, b e c os três meores úmeros iteiros positivos, tais que 5a = 75b = 00c. Assiale com V (verdadeiro) ou F (falso) as opções abaixo. ( ) A soma a b c é igual a 9 ( ) A soma a b c é igual

Leia mais

1 Amintas engenharia

1 Amintas engenharia 1 Amitas egeharia 2 Cálculo Numérico 1. Itrodução Amitas Paiva Afoso 3 1. Itrodução O que é o Cálculo Numérico? 4 1. Itrodução O Cálculo Numérico correspode a um cojuto de ferrametas ou métodos usados

Leia mais

MATEMÁTICA CADERNO 1 CURSO E FRENTE 1 ÁLGEBRA. Módulo 1 Equações do 1 ọ Grau e

MATEMÁTICA CADERNO 1 CURSO E FRENTE 1 ÁLGEBRA. Módulo 1 Equações do 1 ọ Grau e MATEMÁTICA CADERNO CURSO E FRENTE ÁLGEBRA Módulo Equações do ọ Grau e do ọ Grau ) [ ( )] = [ + ] = + = + = + = = Resposta: V = { } 9) Na equação 6 = 0, tem-se a = 6, b = e c =, etão: I) = b ac = + = b

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas Fudametos de Aálise Matemática Profª Aa Paula Sequêcia Ifiitas Defiição 1: Uma sequêcia umérica a 1, a 2, a 3,,a,é uma fução, defiida o cojuto dos úmeros aturais : f : f a Notação: O úmero é chamado de

Leia mais

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença?

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença? Amostras Aleatórias e Distribuições Amostrais Probabilidade e Estatística: afial, qual é a difereça? Até agora o que fizemos foi desevolver modelos probabilísticos que se adequavam a situações reais. Por

Leia mais

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia ROTEIRO DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL 1. Itrodução. Teorema Cetral do Limite 3. Coceitos de estimação potual 4. Métodos de estimação potual 5. Referêcias Estatística Aplicada à Egeharia 1 Estatística

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Aluo: N.º Turma: Professor: Classificação: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações

Leia mais

Universidade Federal Fluminense ICEx Volta Redonda Introdução a Matemática Superior Professora: Marina Sequeiros

Universidade Federal Fluminense ICEx Volta Redonda Introdução a Matemática Superior Professora: Marina Sequeiros 3. Poliômios Defiição: Um poliômio ou fução poliomial P, a variável x, é toda expressão do tipo: P(x)=a x + a x +... a x + ax + a0, ode IN, a i, i = 0,,..., são úmeros reais chamados coeficietes e as parcelas

Leia mais

MATEMÁTICA MÓDULO 6 ESTATÍSTICA. Professor Haroldo Filho

MATEMÁTICA MÓDULO 6 ESTATÍSTICA. Professor Haroldo Filho MATEMÁTICA Professor Haroldo Filho MÓDULO 6 ESTATÍSTICA 1.1 ESTATÍSTICA É a ciêcia que utiliza a coleta de dados, sua classificação, sua apresetação, sua aálise e sua iterpretação para se tomar algum tipo

Leia mais

Busca binária. Busca em arquivos. Busca binária. Busca binária. Ordenação e busca em arquivos

Busca binária. Busca em arquivos. Busca binária. Busca binária. Ordenação e busca em arquivos Algoritmos e Estruturas de Dados II Profa. Debora Medeiros Ordeação e Busca em Arquivos Idexação de Arquivos I: Ídices Simples Ordeação e busca em arquivos É relativamete fácil buscar elemetos em cojutos

Leia mais

XIX Semana Olímpica de Matemática. Nível U. Algumas Técnicas com Funções Geratrizes. Davi Lopes

XIX Semana Olímpica de Matemática. Nível U. Algumas Técnicas com Funções Geratrizes. Davi Lopes XIX Semaa Olímpica de Matemática Nível U Algumas Técicas com Fuções Geratrizes Davi Lopes O projeto da XIX Semaa Olímpica de Matemática foi patrociado por: Algumas Técicas com Fuções Geratrizes Davi Lopes

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ao de escolaridade Versão 4 Nome: N.º Turma: Professor: José Tioco //8 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ao de escolaridade Versão Nome: N.º Turma: Professor: José Tioco //8 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar

Leia mais

MÉTODOS DE ORDENAÇÃO. Introdução à Programação SI2

MÉTODOS DE ORDENAÇÃO. Introdução à Programação SI2 MÉTODOS DE ORDENAÇÃO Introdução à Programação SI2 2 Conteúdo Conceitos básicos Classificação por troca Classificação por inserção Classificação por seleção 3 Conceitos Básicos Ordenar: processo de rearranjar

Leia mais

Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005.

Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005. Ageda Aálise e Técicas de Algoritmos Jorge Figueiredo Relação de de Recorrêcia Derivado recorrêcia Resolvedo recorrêcia Aálise de de algoritmos recursivos Aálise de de Algoritmos Recursivos Itrodução A

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I MEC & LEGM 1 o SEM. 2009/10 7 a FICHA DE EXERCÍCIOS

CÁLCULO DIFERENCIAL E INTEGRAL I MEC & LEGM 1 o SEM. 2009/10 7 a FICHA DE EXERCÍCIOS Istituto Superior Técico Departameto de Matemática Secção de Álgebra e Aálise CÁLCULO DIFERENCIAL E INTEGRAL I MEC & LEGM 1 o SEM. 009/10 7 a FICHA DE EXERCÍCIOS I. Poliómio e Teorema de Taylor. 1) Determie

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ao de escolaridade Versão Nome: N.º Turma: Professor: José Tioco /0/08 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ao de escolaridade Versão Nome: N.º Turma: Professor: José Tioco /0/08 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar

Leia mais

Soluções dos Exercícios do Capítulo 6

Soluções dos Exercícios do Capítulo 6 Soluções dos Eercícios do Capítulo 6 1. O poliômio procurado P() a + b + c + d deve satisfazer a idetidade P(+1) P() +, ou seja, a(+1) + b(+1) + c(+1) + d a + b + c + d +, o que é equivalete a (a 1) +

Leia mais

A letra x representa números reais, portanto

A letra x representa números reais, portanto Aula 0 FUNÇÕES UFPA, 8 de março de 05 No ial desta aula, você seja capaz de: Saber dizer o domíio e a imagem das uções esseciais particularmete esta aula as uções potêcias; Fazer o esboço de gráico da

Leia mais

Aula 5 de Bases Matemáticas

Aula 5 de Bases Matemáticas Aula 5 de Bases Matemáticas Rodrigo Hause de julho de 04 Pricípio da Idução Fiita. Versão Fraca Deição (P.I.F., versão fraca) Seja p() uma proposição aberta o uiverso dos úmeros aturais. SE valem ambas

Leia mais

1. Revisão Matemática

1. Revisão Matemática Sequêcias de Escalares Uma sequêcia { } diz-se uma sequêcia de Cauchy se para qualquer (depedete de ε ) tal que : ε > 0 algum K m < ε para todo K e m K Uma sequêcia { } diz-se ser limitada superiormete

Leia mais

NOTAÇÕES. denota o segmento que une os pontos A e B. In x denota o logarítmo natural de x. A t denota a matriz transposta da matriz A.

NOTAÇÕES. denota o segmento que une os pontos A e B. In x denota o logarítmo natural de x. A t denota a matriz transposta da matriz A. MATEMÁTICA NOTAÇÕES é o cojuto dos úmeros compleos. é o cojuto dos úmeros reais. = {,,, } i deota a uidade imagiária, ou seja, i =. Z é o cojugado do úmero compleo Z Se X é um cojuto, PX) deota o cojuto

Leia mais

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,...

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,... Curso Metor www.cursometor.wordpress.com Sucessão ou Sequêcia Defiição Sucessão ou seqüêcia é todo cojuto que cosideramos os elemetos dispostos em certa ordem. jaeiro,fevereiro,...,dezembro Exemplo : Exemplo

Leia mais

Sumário. 2 Índice Remissivo 19

Sumário. 2 Índice Remissivo 19 i Sumário 1 Estatística Descritiva 1 1.1 Coceitos Básicos.................................... 1 1.1.1 Defiições importates............................. 1 1.2 Tabelas Estatísticas...................................

Leia mais

MEDIDAS DE TENDÊNCIA CENTRAL E MEDIDAS DE DISPERSÃO Í N D I C E

MEDIDAS DE TENDÊNCIA CENTRAL E MEDIDAS DE DISPERSÃO Í N D I C E MEDIDAS DE TENDÊNCIA CENTRAL E MEDIDAS DE DISPERSÃO Í N D I C E Medidas de Tedêcia Cetral Itrodução... 1- Média Aritmética... - Moda... 3- Mediaa... Medidas de Dispersão 4- Amplitude Total... 5- Variâcia

Leia mais

Tipos abstratos de dados (TADs)

Tipos abstratos de dados (TADs) Tipos abstratos de dados (TADs) Um TAD é uma abstração de uma estrutura de dados Um TAD especifica: Dados armazeados Operações sobre os dados Codições de erros associadas à opers Exemplo: TAD que modela

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ao 08 - a Fase Proposta de resolução Cadero... Como P µ σ < X < µ + σ 0,94, logo como P X < µ σ P X > µ + σ, temos que: P X < µ σ 0,94 E assim, vem que: P X > µ σ P X

Leia mais

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos: 48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa

Leia mais

SUCESSÕES DE NÚMEROS REAIS. Sucessões

SUCESSÕES DE NÚMEROS REAIS. Sucessões SUCESSÕES DE NÚMEROS REAIS Sucessões Chama-se sucessão de úmeros reais ou sucessão em IR a toda a aplicação f do cojuto IN dos úmeros aturais em IR, f : IN IR f ( ) = x IR Chamamos termos da sucessão aos

Leia mais

26/11/2000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR PROVA 2 MATEMÁTICA. Prova resolvida pela Profª Maria Antônia Conceição Gouveia.

26/11/2000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR PROVA 2 MATEMÁTICA. Prova resolvida pela Profª Maria Antônia Conceição Gouveia. 6//000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR 00- PROVA MATEMÁTICA Prova resolvida pela Profª Maria Atôia Coceição Gouveia RESPONDA ÀS QUESTÕES A SEGUIR, JUSTIFICANDO SUAS SOLUÇÕES QUESTÃO A

Leia mais

Experimento 1 Estudo da Lei de Hooke

Experimento 1 Estudo da Lei de Hooke Experimeto 1 Estudo da Lei de Hooke 1.1 Objetivos Físicos Verificação experimetal da lei de Hooke para uma mola helicoidal: Medida experimetal do módulo de rigidez do material μ. 1. Objetivos Didáticos

Leia mais

Análise Matemática I 2 o Exame

Análise Matemática I 2 o Exame Aálise Matemática I 2 o Exame Campus da Alameda LEC, LET, LEN, LEM, LEMat, LEGM 29 de Jaeiro de 2003, 3 horas Apresete todos os cálculos e justificações relevates I. Cosidere dois subcojutos de R, A e

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ao 00 - a Fase Proposta de resolução GRUPO I 1. Como a probabilidade do João acertar em cada tetativa é 0,, a probabilidade do João acertar as tetativas é 0, 0, 0, 0,

Leia mais

Capítulo I Séries Numéricas

Capítulo I Séries Numéricas Capítulo I Séries Numéricas Capitulo I Séries. SÉRIES NÚMERICAS DEFINIÇÃO Sedo u, u,..., u,... uma sucessão umérica, chama-se série umérica de termo geral u à epressão que habitualmete se escreve u u...

Leia mais

Uma amostra aleatória simples de n elementos é selecionada a partir da população. Calcula-se o valor da média a partir da amostra

Uma amostra aleatória simples de n elementos é selecionada a partir da população. Calcula-se o valor da média a partir da amostra Distribuição amostral de Um dos procedimetos estatísticos mais comus é o uso de uma média da amostra ( ) para fazer iferêcias sobre uma população de média µ. Esse processo é apresetado a figura abaio.

Leia mais

Transformação de similaridade

Transformação de similaridade Trasformação de similaridade Relembrado bases e represetações, ós dissemos que dada uma base {q, q,..., q} o espaço real - dimesioal, qualquer vetor deste espaço pode ser escrito como:. Ou a forma matricial

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Aluo: N.º Turma: Professor: Classificação: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações

Leia mais

Problema de Fluxo de Custo Mínimo

Problema de Fluxo de Custo Mínimo Problema de Fluo de Custo Míimo The Miimum Cost Flow Problem Ferado Nogueira Fluo de Custo Míimo O Problema de Fluo de Custo Míimo (The Miimum Cost Flow Problem) Este problema possui papel pricipal etre

Leia mais

ESTIMAÇÃO DE PARÂMETROS

ESTIMAÇÃO DE PARÂMETROS ESTIMAÇÃO DE PARÂMETROS 1 Estimação de Parâmetros uiverso do estudo (população) dados observados O raciocíio idutivo da estimação de parâmetros Estimação de Parâmetros POPULAÇÃO p =? AMOSTRA Observações:

Leia mais

Avaliação de Desempenho de Sistemas Discretos

Avaliação de Desempenho de Sistemas Discretos Distribuições Comus Avaliação de Desempeho de Sistemas Discretos Probabilidade e Estatística 2 Uiforme Normal Poisso Hipergeométrica Biomial Studet's Geométrica Logormal Expoecial Beta Gamma Qui-Quadrado

Leia mais