Ordenação por Troca. Bubblesort Quicksort
|
|
|
- Marco Antônio Fontes Barbosa
- 8 Há anos
- Visualizações:
Transcrição
1 Ordeação por roca Bubblesort Quicksort
2 ORDENAÇÃO Ordear é o processo de orgaizar uma lista de iformações similares em ordem crescete ou decrescete. Especificamete, dada uma lista de ites r[0], r[], r[2],..., r[-], cada item a lista é chamado registro. Uma chave, k[i], é associada a cada registro r[i]. Diz-se que a lista está ordeada pela chave se i precede j implicar que k[i] < k[j] (ou k[i] > k[j]) em alguma ordeação as chaves
3 . ORDENAÇÃO POR ROCA. Ordeação por Bolha Em cada um dos exemplos subsequetes, x é um vetor de iteiros do qual os primeiros devem ser ordeados de modo que x[i] x[j] para 0 i < j <. A ideia básica por trás da ordeação por bolha é percorrer a lista sequecialmete varias vezes. Cada passagem cosiste em comparar cada elemeto a lista com seu sucessor (x[i] com x[i+]) e trocar os dois elemetos se eles ão estiverem a ordem correta
4 Exemplo, 25, 57, 48, 37, 2, 92, 86, 33 Primeira Passagem x[0] com x[] (25 com 57) ehuma troca x[] com x[2] (57 com 48) troca x[2] com x[3] (57 com 37) troca x[3] com x[4] (57 com 2) troca x[4] com x[5] (57 com 92) ehuma troca x[5] com x[6] (92 com 86) troca x[6] com x[7] (92 com 33) troca
5 Observe que, depois da primeira passagem, o maior elemeto está em sua posição correta. Em geral x[-i] ficara a posição correta depois da iteração i. 25, 57, 48, 37, 2, 92, 86, 33 O cojuto completo de iterações fica assim: iteração iteração iteração iteração iteração iteração iteração iteração
6 Algoritmo bubblesort0 (it x[ ], it ) { it j, pass; for (pass = 0; pass < ; pass++){ /*repetição extera, cotrola - passages*/ for (j = 0; j < pass; j++){ /*repetição itera, cotrola as comparações*/ if (x[j] > x[j+]) { /*elemeto fora da ordem é ecessária uma troca*/ troca(x[j], x[j+]); } } } }
7 Algoritmo aprimorado bubblesort (it x[ ], it ) { it j, pass; bool switched = true; for (pass = 0; pass < - && switched; pass++){ /*repetição extera, cotrola o de passages*/ switched = false; for (j = 0; j < - pass - 2; j++){ /*repetição itera, cotrola cada passagem idividual*/ if (x[j] > x[j+]){ /*elemeto fora da ordem é ecessária uma troca*/ } } } } switched = true; troca(x[j], x[j+]);
8 Complexidade de empo Sem o aprimorameto Numero de comparações: (-)/2 Numero de trocas: melhor caso: ehuma pior caso: (-)/2 Com o aprimorameto Numero de comparações será (-) + (-2) (-k) = (2k-k 2 -k)/2 Como k = O(), etão, o aprimorameto ão muda a complexidade de tempo do algoritmo Coclusão fial: A complexidade do algoritmo de ordeação por bolha = O( 2 )
9 .2 QuickSort A ordeação por troca de partição ou quicksort é provavelmete o algoritmo de ordeação mais utilizado.
10 Idéia Básica Quicksort trabalha particioado um vetor em duas partes e etão as ordeado separadamete. Especificamete, seja x um vetor e o umero de elemetos o vetor a ser classificados. Escolha um elemeto a uma posição especifica detro do vetor, digamos a posição j. Os elemetos de x são particioados de modo que a é colocado a posição j e as seguites codições são observadas:. Cada elemeto as posições 0 até j- são meor ou igual a a. 2. Cada elemeto as posições j+ até - são maior que a a. O mesmo processo é repetido com os subvetores x[0] até x[j-] e x[j+] até x[-] e com quaisquer vetores criados pelo processo em sucessivas iterações, o resultado fial será uma lista ordeada.
11 Algoritmo Básico quicksort (it x[], it lb, it ub) { it j; } if (lb > ub) retur; j = partitio(x, lb, ub); quicksort(x, lb, j-); quicksort(x, j+, ub); Os parâmetros lb e ub delimitam os subvetores detro do vetor origial, detro dos quais a ordeação ocorre. A chamada iicial pode ser feita com quicksort(x, 0, -); O poto crucial é o algoritmo de partição.
12 Exemplo: Ordeação do vetor iicial Supohamos que o primeiro elemeto (25) é escolhido para colocar a sua posição correta, teremos: Como 25 está a sua posição fial, o problema foi decomposto a ordeação dos subvetores: (2) e ( ). O subvetor (2) já está classificado. Repetir o processo para x[2]...x[7] resulta em: 2 25 ( ) 57 (92 86)
13 Exemplo: Se cotiuarmos particioado 2 25 ( ) 57 (92 86), teremos: 2 25 (37 33) (92 86) 2 25 (33) (92 86) (92 86) (86)
14 Método de Particioameto Cosidere a = x[lb] como o elemeto cuja posição fial é a procurada. Dois poteiros up e dow são iicializados como os limites máximo e míimo do subvetor que vamos aalisar. Em qualquer poto da execução, todo elemeto acima de up é maior do que a e todo elemeto abaixo de dow é meor ou igual a a.
15 Os dois poteiros up e dow são movidos um em direção ao outro da seguite forma:. Icremete dow em uma posição até que x[dow] > a. 2. Decremete up em uma posição até que x[up] a. 3. Se a up > dow, troque x[dow] por x[up]. O processo é repetido até que a codição descrita em 3. falhe (quado up dow). Neste poto x[up] será trocado por x[lb], cuja posição fial era procurada, e up é retorado em j.
16 Exemplo: A = x[lb] = 25 dow--> dow up <--up dow <--up dow <--up dow up dow up
17 dow--> up dow up dow up dow up up,dow up 2 dow up dow
18 Algoritmo de Particioameto it partitio(it x[], it lb, it ub) { it a, dow, up; } a = x[lb]; up = ub; dow = lb; while (dow < up) { while (x[dow] <= a && dow < ub) dow++; while (x[up] > a) up--; if (dow < up) troca(x[dow], x[up]); } x[lb] = x[up]; x[up] = a; retur up;
19 Eficiêcia do Quicksort O tempo de execução do QuickSort depede se o particioameto é balaceado ou ão.. O pior caso do QuickSort ocorre quado o particioameto gera um cojuto com elemeto e outro com - elemetos para todos os passos do algoritmo. Desde que o particioameto custa O() a recorrêcia este caso tora-se () = (-) + O() como () = O(), ão é difícil mostrar que () = O( 2 ). (() = + (-) = + (-) + (-2) ())
20 2. O melhor caso ocorre quado o particioameto sempre gera dois sub-cojutos de tamaho /2, temos a recorrêcia () = 2(/2) + O() Etão, () = O(log).
21 ( )=2 ( 2 ) +α =2 ( 2 ( 4 ) +α 2 ) +α=22 ( 4 ) +α+α =2 2 ( 2 ( 8 ) +α 4 ) +α+α2=23 ( 8 ) +α+α+α =2 log ( )+α+...+α log =2 log +α log = O ( log ) 2 m = m=log 2 log < log log 2 log <log ( log ) log <log +log (log )
22 3. Caso Médio. O algoritmo partitio leva tempo proporcioal ao, deotado. Supohamos que a lista é separada em duas sublistas de comprimeto k e --k, respectivamete. Etão, temos () = + (k) + ( - - k) Mas, ão sabemos o valor exato do k. Portato, calculamos a media de todas possibilidades de k: ( ) k 0 k k
23 ) ( 2 S S S Substrai as duas formulas e rearraja: Isso pode ser simplificado para: (Porquê?) ( )=α+ 2 k = ( k )
24 H S H H S k k S S k k od e S H Etão, () = O(l ) H ( )= ~ l
25 Aproximado H() x dx x dx l l l l H
26 Cometários sobre o Quicksort Para evitar o pior caso e casos ruis ode elemetos estão em grupos ordeados pode-se utilizar uma estratégia probabilística: Selecioe, ao ivés do primeiro elemeto para ser a, um elemeto aleatório. Critérios: Seleção totalmete radômica: selecioe qualquer elemeto do subvetor usado um gerador de úmeros aleatórios. Desvatagem: tempo de processameto extra para o gerador. Seleção da mediaa etre os três elemetos: lb, ub e elemeto o meio. Seleção média: usa o valor media do subvetor. odos estes métodos melhoram a performace média.
Quicksort. Algoritmos e Estruturas de Dados II
Quicksort Algoritmos e Estruturas de Dados II História Proposto por Hoare em 960 e publicado em 962 É o algoritmo de ordeação itera mais rápido que se cohece para uma ampla variedade de situações Provavelmete
ANÁLISE DE COMPLEXIDADE DE ALGORITMOS
1 FEUP/LEEC Algoritmos e Estruturas de Dados 2001/2002 ANÁLISE DE COMPLEXIDADE DE ALGORITMOS João Pascoal Faria http://www.fe.up.pt/~jpf 2 Itrodução Algoritmo: cojuto claramete especificado de istruções
Ordenação. David Menotti Algoritmos e Estruturas de Dados II DInf UFPR
Ordeação David Meotti Algoritmos e Estruturas de Dados II DIf UFPR Critério de Ordeação Ordea-se de acordo com uma chave: typedef it ChaveTipo; typedef struct ChaveTipo Chave; /* outros compoetes */ Item;
O Problema da Ordenação Métodos de Ordenação Parte 1
Métodos de Ordenação Parte 1 SCC-201 Introdução à Ciência da Computação II Rosane Minghim 2010 Ordenação (ou classificação) é largamente utilizada Listas telefônicas e dicionários Grandes sistemas de BD
Estudando complexidade de algoritmos
Estudado complexidade de algoritmos Dailo de Oliveira Domigos wwwdadomicombr Notas de aula de Estrutura de Dados e Aálise de Algoritmos (Professor Adré Bala, mestrado UFABC) Durate os estudos de complexidade
CT-234. Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches
CT34 Estruturas de Dados, Aálise de Aoritmos e Complexidade Estrutural Carlos Alberto Aloso Saches CT34 6) Ordeação HeapSort, QuicSort, Rede Bitôica A estrutura heap Heap é uma árvore biária com duas propriedades:
Dessa forma, concluímos que n deve ser ímpar e, como 120 é par, então essa sequência não possui termo central.
Resoluções das atividades adicioais Capítulo Grupo A. a) a 9, a 7, a 8, a e a 79. b) a, a, a, a e a.. a) a, a, a, a 8 e a 6. 9 b) a, a 6, a, a 9 e a.. Se a 9 e a k são equidistates dos extremos, etão existe
Análise Infinitesimal II LIMITES DE SUCESSÕES
-. Calcule os seguites limites Aálise Ifiitesimal II LIMITES DE SUCESSÕES a) lim + ) b) lim 3 + 4 5 + 7 + c) lim + + ) d) lim 3 + 4 5 + 7 + e) lim + ) + 3 f) lim + 3 + ) g) lim + ) h) lim + 3 i) lim +
Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos
Aálise de Algoritmos Aálise de Algoritmos Prof Dr José Augusto Baraauskas DFM-FFCLRP-USP A Aálise de Algoritmos é um campo da Ciêcia da Computação que tem como objetivo o etedimeto da complexidade dos
Métodos de Classificação
Métodos de Classificação 261 Objetivos e Caracterizações O acesso a um conjunto de dados é facilitado se o mesmo está armazenado conforme uma certa ordem, baseada num critério conhecido. O objetivo básico
Distribuição Amostral da Média: Exemplos
Distribuição Amostral da Média: Eemplos Talvez a aplicação mais simples da distribuição amostral da média seja o cálculo da probabilidade de uma amostra ter média detro de certa faia de valores. Vamos
Uma recorrência é uma equação que descreve uma função em termos do seu valor em entradas menores
Uma recorrêcia é uma equação que descreve uma fução em termos do seu valor em etradas meores T( ) O( 1) T( 1) 1 se 1 se 1 Útil para aálise de complexidade de algoritmos recursivos ou do tipo dividir para
Lista de Exercícios #4 Assunto: Variáveis Aleatórias Contínuas
. ANPEC 8 - Questão Seja x uma variável aleatória com fução desidade de probabilidade dada por: f(x) = x, para x f(x) =, caso cotrário. Podemos afirmar que: () E[x]=; () A mediaa de x é ; () A variâcia
Algoritmos de Ordenação
Algoritmos de Ordenação! Problema: encontrar um número de telefone em uma lista telefônica! simplificado pelo fato dos nomes estarem em ordem alfabética! e se estivesse sem uma ordem?! Problema: busca
Introdução a Complexidade de Algoritmos
Itrodução a Complexidade de Algoritmos Estruturas de Dados Prof. Vilso Heck Juior Apresetação Revisão - O Algoritmo; A Complexidade; Exercício. Complexidade de Algoritmos REVISÃO - O ALGORITMO O Algoritmo
Séquências e Séries Infinitas de Termos Constantes
Capítulo Séquêcias e Séries Ifiitas de Termos Costates.. Itrodução Neste capítulo estamos iteressados em aalisar as séries ifiitas de termos costates. Etretato, para eteder as séries ifiitas devemos ates
Stela Adami Vayego DEST/UFPR
Resumo 3 Resumo dos dados uméricos por meio de úmeros 1. Medidas de Tedêcia Cetral A tedêcia cetral da distribuição de freqüêcias de uma variável em um cojuto de dados é caracterizada pelo valor típico
3. Seja C o conjunto dos números complexos. Defina a soma em C por
Eercícios Espaços vetoriais. Cosidere os vetores = (8 ) e = ( -) em. (a) Ecotre o comprimeto de cada vetor. (b) Seja = +. Determie o comprimeto de. Qual a relação etre seu comprimeto e a soma dos comprimetos
3.4.2 Cálculo da moda para dados tabulados. 3.4 Moda Cálculo da moda para uma lista Cálculo da moda para distribuição de freqüências
14 Calcular a mediaa do cojuto descrito pela distribuição de freqüêcias a seguir. 8,0 10,0 10 Sabedo-se que é a somatória das, e, portato, = 15+25+16+34+10 = 100, pode-se determiar a posição cetral /2
Provas de Matemática Elementar - EAD. Período
Provas de Matemática Elemetar - EAD Período 01. Sérgio de Albuquerque Souza 4 de setembro de 014 UNIVERSIDADE FEDERAL DA PARAÍBA CCEN - Departameto de Matemática http://www.mat.ufpb.br/sergio 1 a Prova
ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p
ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p Objetivo Estimar uma proporção p (descohecida) de elemetos em uma população, apresetado certa característica de iteresse, a partir da iformação forecida por uma amostra.
(i) (1,5 val.) Represente na forma de um intervalo ou de uma união disjunta de intervalos cada um dos conjuntos seguintes:
Istituto Superior Técico Departameto de Matemática o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I - Versão A MEAero o Sem. 0/3 0//0 Duração: h30m RESOLUÇÃO. 3,0 val. i,5 val. Represete a forma de um itervalo
Matemática E Extensivo V. 1
Extesivo V. 0) a) r b) r c) r / d) r 7 0) A 0) B P.A. 7,,,... r a + ( ). a +. + 69 a 5 P.A. (r, r, r ) r ( r + r) 6r r r r 70 Exercícios 05) a 0 98 a a a 06) E 07) B 08) B 7 0 0; 8? P.A. ( 7, 65, 58,...)
Universidade Federal de Lavras Departamento de Estatística Prof. Daniel Furtado Ferreira 1 a Aula Prática Técnicas de somatório
Uiversidade Federal de Lavras Departameto de Estatística Prof. Daiel Furtado Ferreira 1 a Aula Prática Técicas de somatório Notação e propriedades: 1) Variáveis e ídices: o símbolo x j (leia x ídice j)
Estatística: Aplicação ao Sensoriamento Remoto SER ANO Teoria da amostragem
Estatística: Aplicação ao Sesoriameto Remoto SER 04 - ANO 017 Teoria da amostragem Camilo Daleles Reó [email protected] http://www.dpi.ipe.br/~camilo/estatistica/ Algumas Cosiderações... É importate ter
Solução Comentada Prova de Matemática
0 questões. Sejam a, b e c os três meores úmeros iteiros positivos, tais que 5a = 75b = 00c. Assiale com V (verdadeiro) ou F (falso) as opções abaixo. ( ) A soma a b c é igual a 9 ( ) A soma a b c é igual
1 Amintas engenharia
1 Amitas egeharia 2 Cálculo Numérico 1. Itrodução Amitas Paiva Afoso 3 1. Itrodução O que é o Cálculo Numérico? 4 1. Itrodução O Cálculo Numérico correspode a um cojuto de ferrametas ou métodos usados
MATEMÁTICA CADERNO 1 CURSO E FRENTE 1 ÁLGEBRA. Módulo 1 Equações do 1 ọ Grau e
MATEMÁTICA CADERNO CURSO E FRENTE ÁLGEBRA Módulo Equações do ọ Grau e do ọ Grau ) [ ( )] = [ + ] = + = + = + = = Resposta: V = { } 9) Na equação 6 = 0, tem-se a = 6, b = e c =, etão: I) = b ac = + = b
Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas
Fudametos de Aálise Matemática Profª Aa Paula Sequêcia Ifiitas Defiição 1: Uma sequêcia umérica a 1, a 2, a 3,,a,é uma fução, defiida o cojuto dos úmeros aturais : f : f a Notação: O úmero é chamado de
Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença?
Amostras Aleatórias e Distribuições Amostrais Probabilidade e Estatística: afial, qual é a difereça? Até agora o que fizemos foi desevolver modelos probabilísticos que se adequavam a situações reais. Por
DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia
ROTEIRO DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL 1. Itrodução. Teorema Cetral do Limite 3. Coceitos de estimação potual 4. Métodos de estimação potual 5. Referêcias Estatística Aplicada à Egeharia 1 Estatística
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 2
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Aluo: N.º Turma: Professor: Classificação: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações
Universidade Federal Fluminense ICEx Volta Redonda Introdução a Matemática Superior Professora: Marina Sequeiros
3. Poliômios Defiição: Um poliômio ou fução poliomial P, a variável x, é toda expressão do tipo: P(x)=a x + a x +... a x + ax + a0, ode IN, a i, i = 0,,..., são úmeros reais chamados coeficietes e as parcelas
MATEMÁTICA MÓDULO 6 ESTATÍSTICA. Professor Haroldo Filho
MATEMÁTICA Professor Haroldo Filho MÓDULO 6 ESTATÍSTICA 1.1 ESTATÍSTICA É a ciêcia que utiliza a coleta de dados, sua classificação, sua apresetação, sua aálise e sua iterpretação para se tomar algum tipo
Busca binária. Busca em arquivos. Busca binária. Busca binária. Ordenação e busca em arquivos
Algoritmos e Estruturas de Dados II Profa. Debora Medeiros Ordeação e Busca em Arquivos Idexação de Arquivos I: Ídices Simples Ordeação e busca em arquivos É relativamete fácil buscar elemetos em cojutos
XIX Semana Olímpica de Matemática. Nível U. Algumas Técnicas com Funções Geratrizes. Davi Lopes
XIX Semaa Olímpica de Matemática Nível U Algumas Técicas com Fuções Geratrizes Davi Lopes O projeto da XIX Semaa Olímpica de Matemática foi patrociado por: Algumas Técicas com Fuções Geratrizes Davi Lopes
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 4
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ao de escolaridade Versão 4 Nome: N.º Turma: Professor: José Tioco //8 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 3
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ao de escolaridade Versão Nome: N.º Turma: Professor: José Tioco //8 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar
MÉTODOS DE ORDENAÇÃO. Introdução à Programação SI2
MÉTODOS DE ORDENAÇÃO Introdução à Programação SI2 2 Conteúdo Conceitos básicos Classificação por troca Classificação por inserção Classificação por seleção 3 Conceitos Básicos Ordenar: processo de rearranjar
Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005.
Ageda Aálise e Técicas de Algoritmos Jorge Figueiredo Relação de de Recorrêcia Derivado recorrêcia Resolvedo recorrêcia Aálise de de algoritmos recursivos Aálise de de Algoritmos Recursivos Itrodução A
CÁLCULO DIFERENCIAL E INTEGRAL I MEC & LEGM 1 o SEM. 2009/10 7 a FICHA DE EXERCÍCIOS
Istituto Superior Técico Departameto de Matemática Secção de Álgebra e Aálise CÁLCULO DIFERENCIAL E INTEGRAL I MEC & LEGM 1 o SEM. 009/10 7 a FICHA DE EXERCÍCIOS I. Poliómio e Teorema de Taylor. 1) Determie
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 2
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ao de escolaridade Versão Nome: N.º Turma: Professor: José Tioco /0/08 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 1
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ao de escolaridade Versão Nome: N.º Turma: Professor: José Tioco /0/08 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar
Soluções dos Exercícios do Capítulo 6
Soluções dos Eercícios do Capítulo 6 1. O poliômio procurado P() a + b + c + d deve satisfazer a idetidade P(+1) P() +, ou seja, a(+1) + b(+1) + c(+1) + d a + b + c + d +, o que é equivalete a (a 1) +
A letra x representa números reais, portanto
Aula 0 FUNÇÕES UFPA, 8 de março de 05 No ial desta aula, você seja capaz de: Saber dizer o domíio e a imagem das uções esseciais particularmete esta aula as uções potêcias; Fazer o esboço de gráico da
Aula 5 de Bases Matemáticas
Aula 5 de Bases Matemáticas Rodrigo Hause de julho de 04 Pricípio da Idução Fiita. Versão Fraca Deição (P.I.F., versão fraca) Seja p() uma proposição aberta o uiverso dos úmeros aturais. SE valem ambas
1. Revisão Matemática
Sequêcias de Escalares Uma sequêcia { } diz-se uma sequêcia de Cauchy se para qualquer (depedete de ε ) tal que : ε > 0 algum K m < ε para todo K e m K Uma sequêcia { } diz-se ser limitada superiormete
NOTAÇÕES. denota o segmento que une os pontos A e B. In x denota o logarítmo natural de x. A t denota a matriz transposta da matriz A.
MATEMÁTICA NOTAÇÕES é o cojuto dos úmeros compleos. é o cojuto dos úmeros reais. = {,,, } i deota a uidade imagiária, ou seja, i =. Z é o cojugado do úmero compleo Z Se X é um cojuto, PX) deota o cojuto
Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,...
Curso Metor www.cursometor.wordpress.com Sucessão ou Sequêcia Defiição Sucessão ou seqüêcia é todo cojuto que cosideramos os elemetos dispostos em certa ordem. jaeiro,fevereiro,...,dezembro Exemplo : Exemplo
Sumário. 2 Índice Remissivo 19
i Sumário 1 Estatística Descritiva 1 1.1 Coceitos Básicos.................................... 1 1.1.1 Defiições importates............................. 1 1.2 Tabelas Estatísticas...................................
MEDIDAS DE TENDÊNCIA CENTRAL E MEDIDAS DE DISPERSÃO Í N D I C E
MEDIDAS DE TENDÊNCIA CENTRAL E MEDIDAS DE DISPERSÃO Í N D I C E Medidas de Tedêcia Cetral Itrodução... 1- Média Aritmética... - Moda... 3- Mediaa... Medidas de Dispersão 4- Amplitude Total... 5- Variâcia
Tipos abstratos de dados (TADs)
Tipos abstratos de dados (TADs) Um TAD é uma abstração de uma estrutura de dados Um TAD especifica: Dados armazeados Operações sobre os dados Codições de erros associadas à opers Exemplo: TAD que modela
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prova Escrita de MATEMÁTICA A - o Ao 08 - a Fase Proposta de resolução Cadero... Como P µ σ < X < µ + σ 0,94, logo como P X < µ σ P X > µ + σ, temos que: P X < µ σ 0,94 E assim, vem que: P X > µ σ P X
DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:
48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa
SUCESSÕES DE NÚMEROS REAIS. Sucessões
SUCESSÕES DE NÚMEROS REAIS Sucessões Chama-se sucessão de úmeros reais ou sucessão em IR a toda a aplicação f do cojuto IN dos úmeros aturais em IR, f : IN IR f ( ) = x IR Chamamos termos da sucessão aos
26/11/2000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR PROVA 2 MATEMÁTICA. Prova resolvida pela Profª Maria Antônia Conceição Gouveia.
6//000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR 00- PROVA MATEMÁTICA Prova resolvida pela Profª Maria Atôia Coceição Gouveia RESPONDA ÀS QUESTÕES A SEGUIR, JUSTIFICANDO SUAS SOLUÇÕES QUESTÃO A
Experimento 1 Estudo da Lei de Hooke
Experimeto 1 Estudo da Lei de Hooke 1.1 Objetivos Físicos Verificação experimetal da lei de Hooke para uma mola helicoidal: Medida experimetal do módulo de rigidez do material μ. 1. Objetivos Didáticos
Análise Matemática I 2 o Exame
Aálise Matemática I 2 o Exame Campus da Alameda LEC, LET, LEN, LEM, LEMat, LEGM 29 de Jaeiro de 2003, 3 horas Apresete todos os cálculos e justificações relevates I. Cosidere dois subcojutos de R, A e
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prova Escrita de MATEMÁTICA A - 1o Ao 00 - a Fase Proposta de resolução GRUPO I 1. Como a probabilidade do João acertar em cada tetativa é 0,, a probabilidade do João acertar as tetativas é 0, 0, 0, 0,
Capítulo I Séries Numéricas
Capítulo I Séries Numéricas Capitulo I Séries. SÉRIES NÚMERICAS DEFINIÇÃO Sedo u, u,..., u,... uma sucessão umérica, chama-se série umérica de termo geral u à epressão que habitualmete se escreve u u...
Uma amostra aleatória simples de n elementos é selecionada a partir da população. Calcula-se o valor da média a partir da amostra
Distribuição amostral de Um dos procedimetos estatísticos mais comus é o uso de uma média da amostra ( ) para fazer iferêcias sobre uma população de média µ. Esse processo é apresetado a figura abaio.
Transformação de similaridade
Trasformação de similaridade Relembrado bases e represetações, ós dissemos que dada uma base {q, q,..., q} o espaço real - dimesioal, qualquer vetor deste espaço pode ser escrito como:. Ou a forma matricial
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 4
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Aluo: N.º Turma: Professor: Classificação: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações
Problema de Fluxo de Custo Mínimo
Problema de Fluo de Custo Míimo The Miimum Cost Flow Problem Ferado Nogueira Fluo de Custo Míimo O Problema de Fluo de Custo Míimo (The Miimum Cost Flow Problem) Este problema possui papel pricipal etre
ESTIMAÇÃO DE PARÂMETROS
ESTIMAÇÃO DE PARÂMETROS 1 Estimação de Parâmetros uiverso do estudo (população) dados observados O raciocíio idutivo da estimação de parâmetros Estimação de Parâmetros POPULAÇÃO p =? AMOSTRA Observações:
Avaliação de Desempenho de Sistemas Discretos
Distribuições Comus Avaliação de Desempeho de Sistemas Discretos Probabilidade e Estatística 2 Uiforme Normal Poisso Hipergeométrica Biomial Studet's Geométrica Logormal Expoecial Beta Gamma Qui-Quadrado
