RESUMO TEÓRICO PRIMEIRA AULA

Tamanho: px
Começar a partir da página:

Download "RESUMO TEÓRICO PRIMEIRA AULA"

Transcrição

1 ESTRUTURAS, DIAGRAMAS E LÓGICA DE ARGUMENTAÇÃO TÓPICO 1 RESUMO TEÓRICO PRIMEIRA AULA Como qualquer linguagem, a Matemática utiliza os seus termos - palavras ou símbolos - e as suas proposições - combinações de termos, de acordo com determinadas regras que constituem o que chamamos de sintaxe matemática. A lógica matemática tem como base as seguintes regras fundamentais: Princípio da não contradição: Uma proposição não pode ser verdadeira e falsa ao mesmo tempo. Princípio do terceiro excluído: Toda proposição ou é verdadeira ou é falsa, ou seja, verifica-se sempre um destes casos e nunca um terceiro. As regras que determinam quais as proposições que devem ser consideradas verdadeiras constituem a lógica matemática. 1. Proposição 1.1. Definição É a expressão verbal de um juízo-sentença. Enunciado verbal suscetível de ser dito verdadeiro ou falso.uma proposição não pode ser exclamativa e nem interrogativa. Exemplos: E.1) São proposições: a) 2 = 3 b) 5 > 4 c) Tóquio é a capital da Holanda E.2) Não são proposições: a) Maria é bela!, por ser exclamativa. b) ocê é inteligente?, por ser interrogativa. c) x = 2, por não ser ou alor lógico de uma proposição Chamamos valor lógico de uma proposição a verdade se a proposição é verdadeira e a falsidade se a proposição for falsa. Notação: Os valores lógicos verdade e falsidade serão indicados respectivamente por e. Os possíveis valores lógicos para a negação são dados pela tabela abaixo, chamada tabela-verdade. 3. Conectivos lógicos 3.1. Definição p p Chamamos conectivos lógicos ou simplesmente conectivos as palavras ou símbolos que se usam para formar novas proposições a partir de outras proposições dadas. Os conectivos usuais da lógica matemática são as seguintes palavras: ou, e, não, Se... então... e... se e somente se..., que serão indicados geralmente pelos símbolos:,,, e, respectivamente. 4. Proposições simples ou compostas 4.1. Definição de proposição simples Diz-se que uma proposição é uma proposição simples (ou atômica) se esta não possui nenhuma proposição como parte integrante de si mesma Definição de proposição composta Diz-se que uma proposição é uma proposição composta (ou molecular) se esta é uma combinação de duas ou mais proposições simples. Observações: O.1) A combinação de duas ou mais proposições simples é feita por meio dos conectivos lógicos:,,, e, como nos mostra os exemplos a seguir. O.2) Uma proposição composta P que é obtida por meio da combinação das proposições simples p, q, r,... será denotada por: P( p, q, r,...). p q p q p q p q p q 2. Negação de uma proposição (modificador ) A negação de uma proposição p, indicada por p (lê-se: não p ) é, por definição, a proposição que é verdadeira ou falsa conforme p é falsa ou verdadeira. 1

2 EXERCÍCIOS PARA DISCUSSÃO E TREINAMENTO 1. (UNIERSA SAPeJUS/GO AGENTE DE SEGURANÇA PRISIONAL) Considerando que uma proposição corresponde a uma sentença bem definida, isto é, que pode ser classificada como verdadeira ou falsa, excluindo-se qualquer outro julgamento, assinale a alternativa em que a sentença apresentada corresponde a uma proposição. (A) Ele foi detido sem ter cometido crime algum? (B) Aquela penitenciária não oferece segurança para o trabalho dos agentes prisionais. (C) Os agentes prisionais da penitenciária de Goiânia foram muito bem treinados. (D) ique alerta a qualquer movimentação estranha no pátio do presídio. (E) Houve fuga de presidiários, que tragédia! 2. (CESPE/MRE) Proposições são sentenças que podem ser julgadas como verdadeiras, ou falsas, mas não cabem a elas ambos os julgamentos. As proposições simples são freqüentemente simbolizadas por letras maiúsculas do alfabeto, e as proposições compostas são conexões de proposições simples. Considerando as informações acima, julgue o item seguinte. Considere a seguinte lista de sentenças: I) Qual é o nome pelo qual é conhecido o Ministério das Relações Exteriores? II) O Palácio Itamaraty em Brasília é uma bela construção do século XIX. III) As quantidades de embaixadas e consulados gerais que o Itamaraty possui são, respectivamente, x e y. I) O barão do Rio Branco foi um diplomata notável. Nessa situação, é correto afirmar que entre as sentenças acima, apenas uma delas não é uma proposição. 3. Preencha a tabela-verdade. A B A B A B A B A B 4. Sabendo que as proposições A e B são verdadeiras e que as proposições C e D são falsas, determinar o valor lógico ( ou ) de casa uma das seguintes proposições: a) ( A B) C b) ( B C ) ( A D) c) A ( C D) d) (( B A) ( C D) ) 5. (CESPE/TRT) Considere que as letras P, Q, R e S representam proposições e que os símbolos,,, são operadores lógicos que constroem novas proposições e significam não, e e ou respectivamente. Na lógica proposicional, cada proposição assume um único valor (valor-verdade) que pode ser verdadeiro () ou falso (), mas nunca ambos. Considerando que P, Q, R e S são proposições verdadeiras, julgue os itens seguintes. 1 P Q é verdadeira. 2 ( P Q) ( R S) é verdadeira ( ) 3 P ( Q S) ( R Q) ( P S) 4 ( P ( S) ) ( Q ( R )) é verdadeira é verdadeira 6. Sabendo que as proposições A e B são falsas e que as proposições C e D são verdadeiras, determinar o valor lógico ( ou ) de casa uma das seguintes proposições: a) ( B C ) A b) ( A B) C c) ( A B) ( B D) d) ( A B) ( B D) e) ( D A) ( B C) f) ( B ( C A) ) ( D B) A B C D A D C g) ( ) ( ) ( ) 7. (ESA/GESTOR AZENDÁRIO - MG) Considere a afirmação P: P: A ou B onde A e B, por sua vez, são as seguintes afirmações: A: Carlos é dentista B: Se Enio é economista, então Juca é arquiteto Ora, sabe-se que a afirmação P é falsa. Logo: a) Carlos não é dentista; Enio não é economista; Juca não é 2

3 b) Carlos não é dentista; Enio é economista; Juca não é c) Carlos não é dentista; Enio é economista; Juca é d) Carlos é dentista; Enio não é economista; Juca não é e) Carlos é dentista; Enio é economista; Juca não é 8. (JC) Sendo a proposição P : A B responda SIM ou NÃO às perguntas seguintes: 1 Considere a proposição P verdadeira. Se a proposição A for verdadeira, posso afirmar corretamente que a proposição B é também verdadeira? 2 Considere a proposição P falsa. Se a proposição B for falsa, posso afirmar corretamente que a proposição A é falsa também? 3 Considere a proposição P falsa. Se a proposição A for falsa, posso afirmar corretamente que a proposição B é verdadeira? 4 Considere a proposição P verdadeira. Se a proposição B for verdadeira, posso afirmar corretamente que a proposição A é falsa? a) sim, não, sim, não b) sim, sim, sim, não c) não, sim, não, sim d) sim, não, sim, sim e) sim, não, não, não 9. (ESA/ARE) O reino está sendo atormentado por um terrível dragão. O mago diz ao rei: O dragão desaparecerá amanhã se e somente se Aladim beijou a princesa ontem. O rei, tentando compreender melhor as palavras do mago, faz as seguintes perguntas ao lógico da corte: 1 Se a afirmação do mago é falsa e se o dragão desaparecer amanhã, posso concluir corretamente que Aladim beijou a princesa ontem? 2 Se a afirmação do mago é verdadeira e se o dragão desaparecer amanhã, posso concluir corretamente que Aladim beijou a princesa ontem? 10. (JC) Sendo a proposição P : A B responda SIM ou NÃO às perguntas seguintes: 1 Considere a proposição P verdadeira. Posso afirmar corretamente que a proposição B é verdadeira? 2 Considere a proposição P falsa. Se a proposição B for falsa, posso afirmar corretamente que a proposição A é falsa também? 3 Considere a proposição P falsa. Se a proposição A for falsa, posso afirmar corretamente que a proposição B é verdadeira? 4 Considere a proposição P falsa. Se a proposição B for verdadeira, posso afirmar corretamente que a proposição A é falsa? a) sim, não, sim, não b) sim, sim, sim, não c) não, sim, não, sim d) sim, não, não, sim e) sim, não, não, não 11. (ESA/MPOG) As seguintes afirmações, todas elas verdadeiras, foram feitas sobre a ordem de chegada dos participantes de uma prova de ciclismo. 1 Guto chegou antes de Aires e depois de Dada. 2 Guto chegou antes de Juba e Juba chegou antes de Aires, se e somente se Aires chegou depois de Dada. 3 Cacau não chegou junto com Juba, se e somente se Aires chegou junto com Guto. Logo: A) Cacau chegou antes de Aires, depois de Dada e junto com Juba; B) Guto chegou antes de Cacau, depois de Dada e junto com Aires; C) Aires chegou antes de Dada, depois de Juba e antes de Guto; D) Aires chegou depois de Juba, depois de Cacau e junto com Dada; E) Juba chegou antes de Dada, depois de Guto e junto com Cacau. 3 Se a afirmação do mago é falsa e se Aladim não beijou a princesa ontem, posso concluir corretamente que o dragão desaparecerá amanhã? O lógico da corte, então, diz acertadamente que as respostas logicamente corretas para as três perguntas são, respectivamente: a) Não, sim, não b) Não, não, sim c) Sim, sim, sim d) Não, sim, sim e) Sim, não, sim 3

4 12. (CC/TRT-PR) Seja A o conjunto de todas as pessoas com mais de 1,80 m de altura, B o conjunto de todas as pessoas com mais de 80 kg de massa, e C o conjunto de todas as pessoas com mais de 30 anos de idade. Tânia diz que Lucas tem menos de 1,80 m e mais de 80 kg. Irene diz que Lucas tem mais de 80 kg e mais de 30 anos de idade. Sabendo que a afirmação de Tânia é verdadeira e a de Irene falsa, um diagrama cuja parte sombreada indica corretamente o conjunto ao qual Lucas pertence é: a) Sabendo-se que todas as afirmações do professor são verdadeiras, conclui-se corretamente que a nota de: A) Alice é maior do que a de Elenise, menor do que a de Claúdia e igual à de Beatriz B) Elenise é maior do que a de Beatriz, menor do que a de Claúdia e igual à de Denise C) Beatriz é maior do que a de Claúdia, menor do que a de Denise e menor do que a de Alice D) Beatriz é menor do que a de Denise, menor do que a de Elenise e igual à de Claúdia E) Denise é maior do que a de Claúdia, maior do que a de Alice e igual à de Elenise. 14. (JC) Sendo a proposição P : A B responda SIM ou NÃO às perguntas seguintes: b) 1 Considere a proposição P verdadeira. Se a proposição A for verdadeira, posso afirmar corretamente que a proposição B é também verdadeira? 2 Considere a proposição P falsa. Posso afirmar corretamente que a proposição A é falsa? c) 3 Considere a proposição P verdadeira. Se a proposição B for verdadeira, posso afirmar corretamente que a proposição A é falsa? 4 Considere a proposição P verdadeira. Se a proposição B for falsa, posso afirmar corretamente que a proposição A é verdadeira? d) a) não, não, sim, não b) não, sim, sim, sim c) não, sim, não, sim d) sim, não, não, sim e) sim, não, não, não E) 15. (EC/MPA) Sabemos que "Rita vai à praia ou ao cinema". Ocorre que Rita não foi ao cinema, logo: 13. (ESA/AC) Perguntado sobre as notas de cinco alunas (Alice, Beatriz, Claúdia, Denise e Elenise), um professor de Matemática respondeu com as seguintes afirmações: 1 A nota de Alice é maior do que a de Beatriz e menor do que a de Claúdia 2 A nota de Alice é maior do que a de Denise e a nota de Denise é maior do que a de Beatriz, se e somente se a nota de Beatriz é menor do que a de Claúdia. a) Rita não foi à praia. b) Rita foi à praia. c) Rita foi à praia e ao cinema. d) Rita pode não ter ido à praia. e) Rita foi ao cinema. 16. (ESA/ANEEL) Surfo ou estudo. umo ou não surfo. elejo ou não estudo. Ora, não velejo. Assim, a) estudo e fumo. b) não fumo e surfo. c) não velejo e não fumo. d) estudo e não fumo. e) fumo e surfo. 3 Elenise e Denise não têm a mesma nota, se e somente se a nota de Beatriz é igual à de Alice. 4

5 17. (CESPE/TRT-ES) Considere que cada uma das proposições seguintes tenha valor lógico. I Tânia estava no escritório ou Jorge foi ao centro da cidade. II Manuel declarou o imposto de renda na data correta e Carla não pagou o condomínio. III Jorge não foi ao centro da cidade. A partir dessas proposições, é correto afirmar que a proposição: 1 Tânia não estava no escritório tem, obrigatoriamente, valor lógico. 2 Carla pagou o condomínio tem valor lógico. 18. (ESA/AT) De três irmãos José, Adriano e Caio, sabe-se que: 1) ou José é o mais velho, ou Adriano é o mais moço; 2) ou Adriano é o mais velho, ou Caio é o mais velho. Então, o mais velho e o mais moço dos três irmãos são, respectivamente: a) Caio e José; b) Caio e Adriano; c) Adriano e Caio; d) Adriano e José; e) José e Adriano. 19. (ESA/MPOG) Ana possui tem três irmãs: uma gremista, uma corintiana e outra fluminense. Uma das irmãs é loira, a outra morena, e a outra ruiva. Sabe-se que: 1) ou a gremista é loira, ou a fluminense é loira; 2) ou a gremista é morena, ou a corintiana é ruiva; 3) ou a corintiana é morena, ou a fluminense é morena. Portanto, a gremista, a corintiana e a fluminense, são, respectivamente, a) loira, ruiva, morena. b) ruiva, morena, loira. c) ruiva, loira, morena. d) loira, morena, ruiva. e) morena, loira, ruiva. 20. (G/IOCRUZ) Três jovens, Mário, Nelson e Paulo têm idades diferentes. As duas afirmativa a seguir são verdadeiras: I. ou Mário é o mais velho ou Nelson é o mais novo. II. ou Nelson é o mais velho ou Paulo é o mais velho. (B) Nelson e Mário. (C) Paulo e Nelson. (D) Paulo e Mário. (E) Mário e Paulo. 21. (ESA/ ISCAL DO TRABALHO) Maria tem três carros: um gol, um corsa e um fiesta. Um dos carros é branco, o outro é preto, e o outro é azul. Sabe-se que: 1) ou gol é branco, ou o fiesta é branco. 2) ou o gol é preto, ou o corsa é azul. 3) ou o fiesta é azul, ou o corsa é azul. 4) ou o corsa é preto, ou o fiesta é preto. Portanto, as cores do gol, do corsa e do fiesta são, respectivamente: a) branco, preto, azul; b) preto, azul, branco; c) azul, branco, preto; d) preto, branco, azul; e) branco, azul, preto. 22. (G/IOCRUZ) Três amigos, ábio, Hugo e Mário torcem, cada um, por um time diferente. Um deles é flamenguista, outro é vascaíno, e outro é botafoguense. As afirmativas a seguir são todas verdadeiras: I. ou ábio é vascaíno ou Mário é vascaíno. II. ou ábio é botafoguense ou Hugo é flamenguista. III. ou Mário é flamenguista ou Hugo é flamenguista. I. ou Hugo é botafoguense ou Mário é botafoguense. Os times de ábio, Hugo e Mário são, respectivamente: (A) Botafogo, asco e lamengo. (B) asco, Botafogo e lamengo. (C) Botafogo, lamengo e asco. (D) lamengo, asco e Botafogo. (E) asco, lamengo e Botafogo. 23. (ESA/MPU) Ricardo, Rogério e Renato são irmãos. Um deles é médico, outro é professor, e o outro é músico. Sabe-se que: 1) ou Ricardo é médico, ou Renato é médico, 2) ou Ricardo é professor, ou Rogério é músico; 3) ou Renato é músico, ou Rogério é músico, 4) ou Rogério é professor, ou Renato é professor. Portanto, as profissões de Ricardo, Rogério e Renato são, respectivamente, a) professor, médico, músico. b) médico, professor, músico. c) professor, músico, médico. d) músico, médico, professor. e) médico, músico, professor. O mais novo e o mais velho são, respectivamente: (A) Nelson e Paulo. 5

6 24. (CC - adaptado) Seja A o conjunto de todas as pessoas com mais de 1,80 m de altura, B o conjunto de todas as pessoas com mais de 80 kg de massa, e C o conjunto de todas as pessoas com mais de 30 anos de idade. Tânia diz que Lucas tem menos de 1,80 m ou mais de 80 kg. Irene diz que Lucas tem mais de 80 kg ou mais de 30 anos de idade. Sabendo que a afirmação de Tânia é verdadeira e a de Irene falsa, um diagrama cuja parte sombreada indica corretamente o conjunto ao qual Lucas pertence é: a) b) C) fada e bruxa D) princesa e fada E) fada e princesa 26. (ESA/AC-CGU) Amigas desde a infância, Beatriz, Dalva e alna seguiram diferentes profissões e hoje uma delas é arquiteta, outra é psicóloga, e outra é economista. Sabe-se que ou Beatriz é a arquiteta ou Dalva é a arquiteta. Sabe-se, ainda, que ou Dalva é a psicóloga ou alna é a economista. Sabe-se, também, que ou Beatriz é a economista ou alna é a economista. inalmente, sabe-se que ou Beatriz é a psicóloga ou alna é a psicóloga. As profissões de Beatriz, Dalva e alna são, pois, respectivamente, a) psicóloga, economista, arquiteta. b) arquiteta, economista, psicóloga. c) arquiteta, psicóloga, economista. d) psicóloga, arquiteta, economista. e) economista, arquiteta, psicóloga c) d) 27. (ESA/CGU) Homero não é honesto, ou Júlio é justo. Homero é honesto, ou Júlio é justo, ou Beto é bondoso. Beto é bondoso, ou Júlio não é justo. Beto não é bondoso, ou Homero é honesto. Logo, a) Beto é bondoso, Homero é honesto, Júlio não é justo. b) Beto não é bondoso, Homero é honesto, Júlio não é justo. c) Beto é bondoso, Homero é honesto, Júlio é justo. d) Beto não é bondoso, Homero não é honesto, Júlio não é justo. e) Beto não é bondoso, Homero é honesto, Júlio é justo. e) 25. (ENAP/ENGENHEIRO) Ana,Beatriz e Carla desempenham diferentes papéis em uma peça de teatro. Uma delas faz o papel de bruxa; a outra, o de fada. E a outra, o de princesa.sabe-se que : ou Ana é bruxa, ou Carla é bruxa; ou Ana é fada, ou Beatriz é princesa; ou Carla é princesa, ou Beatriz é princesa; ou Beatriz é fada, ou Carla é fada. Com essas informações, conclui-se que os papéis desempenhados por Ana e Carla são, respectivamente: A) bruxa e fada; B) bruxa e princesa 6

7 GABARITO 1. C 2. E 3. A B A B A B A B A B C E E C B 8. A 9. D 10. D 11. A 12. E 13. B 14. C 15. B 16. E 17. E C 18. B 19. A 20. A 21. E 22. E 23. E 24. D 25. A 26. D 27. C 7

TÓPICO 1 PROPOSIÇÕES E CONECTIVOS RESUMO TEÓRICO

TÓPICO 1 PROPOSIÇÕES E CONECTIVOS RESUMO TEÓRICO TÓPICO 1 PROPOSIÇÕES E CONECTIOS RESUMO TEÓRICO P P Como qualquer linguagem, a Matemática utiliza os seus termos - palavras ou símbolos - e as suas proposições - combinações de termos, de acordo com determinadas

Leia mais

CONCEITOS INICIAIS DE LÓGICA PROPOSIÇÕES

CONCEITOS INICIAIS DE LÓGICA PROPOSIÇÕES CONCEITOS INICIAIS DE LÓGICA PROPOSIÇÕES Nesta aula, mostraremos os principais conceitos que a maioria das bancas utilizam em suas provas. Conceitos como proposição, conectivos, tabela- -verdade, dentre

Leia mais

CASA TRIBUNAIS RACIOCÍNIO LÓGICO

CASA TRIBUNAIS RACIOCÍNIO LÓGICO CASA TRIBUNAIS RACIOCÍNIO LÓGICO Proposição Prof. Bruno Villar www.acasadoconcurseiro.com.br Raciocínio Lógico PROPOSIÇÃO TEMA: PROPOSIÇÃO A proposição lógica é o alicerce na construção do conhecimento

Leia mais

1. Princípio da não-contradição: Uma proposição não pode ser verdadeira e falsa

1. Princípio da não-contradição: Uma proposição não pode ser verdadeira e falsa Raciocínio Lógico Lógica estuda as formas ou estruturas do pensamento, isto é, seu propósito é estudar e estabelecer propriedades das relações formais entre as proposições. DEFINIÇÃO: Proposição: conjunto

Leia mais

Raciocínio Lógico (Professor Uendel)

Raciocínio Lógico (Professor Uendel) Raciocínio Lógico (Professor Uendel) Material (01); SEFAZ; JULHO DE 2017 (Álgebra das Proposições) PROPOSIÇÃO Denomina-se proposição a toda sentença, expressa em palavras ou símbolos, que exprima um pensamento

Leia mais

Simulado Aula 03 CEF RACIOCÍNIO LÓGICO. Prof. Fabrício Biazotto

Simulado Aula 03 CEF RACIOCÍNIO LÓGICO. Prof. Fabrício Biazotto Simulado Aula 03 CEF RACIOCÍNIO LÓGICO Prof. Fabrício Biazotto Raciocínio Lógico 1. Argumento é a afirmação de que uma sequência de proposições, denominadas premissas, acarreta outra proposição, denominada

Leia mais

LÓGICA DE PRIMEIRA ORDEM

LÓGICA DE PRIMEIRA ORDEM Aluno(a): Professor: Emmanuelle Vieira Componente Curricular: Raciocínio lógico Ano/Turma: 2 Ano Turno:( ) Matutino Data: / /2016 LISTA COMPLEMENTAR LÓGICA DE PRIMEIRA ORDEM Questão 01 - Considere as seguintes

Leia mais

RACIOCÍNIO LÓGICO. Lógica de Argumentação. Operadores Lógicos Parte 3. Prof. Renato Oliveira

RACIOCÍNIO LÓGICO. Lógica de Argumentação. Operadores Lógicos Parte 3. Prof. Renato Oliveira RACIOCÍNIO LÓGICO Lógica de Argumentação. Parte 3. Prof. Renato Oliveira 1) Há três suspeitos de um crime: o cozinheiro, a governanta e o mordomo. Sabe-se que o crime foi efetivamente cometido por um ou

Leia mais

Lógica Proposicional

Lógica Proposicional Lógica Proposicional DIAGRAMAS LÓGICOS ü Todo Sinônimos: qualquer um ou outra similar. Representação: Conclusão: Todo A é B. Alguns elementos de B são A ou existem B que são A. Negação: Trocar TODO por

Leia mais

Rodada #1 Raciocínio Lógico

Rodada #1 Raciocínio Lógico Rodada #1 Raciocínio Lógico Professor Guilherme Neves Assuntos da Rodada 1. Estruturas Lógicas. 2. Lógica de Argumentação. 3. Diagramas Lógicos. 4. Trigonometria. 5. Matrizes, Determinantes e Solução de

Leia mais

RACIOCÍNIO LÓGICO / ESTRUTURAS LÓGICAS

RACIOCÍNIO LÓGICO / ESTRUTURAS LÓGICAS RACIOCÍNIO LÓGICO / ESTRUTURAS LÓGICAS RESUMO TEÓRICO Como qualquer linguagem, a Matemática utiliza os seus termos - palavras ou símbolos - e as suas proposições - combinações de termos, de acordo com

Leia mais

OBS.1: As palavras Se e então podem estar ocultas na. Proposição

OBS.1: As palavras Se e então podem estar ocultas na. Proposição RACIOCÍNIO LÓGICO PRO. IGOR BRASIL 1) Proposição: Observação!!! Não são proposições 1. 2. 3. 4. 5. 6. 7. 2) Conectivos São utilizados em proposições.» O conectivo e é conhecido por, representado pelo símbolo

Leia mais

Questões de Concursos Aula 04 CEF RACIOCÍNIO LÓGICO. Prof. Fabrício Biazotto

Questões de Concursos Aula 04 CEF RACIOCÍNIO LÓGICO. Prof. Fabrício Biazotto Questões de Concursos Aula 04 CEF RACIOCÍNIO LÓGICO Prof. Fabrício Biazotto Raciocínio Lógico 1. Julgue os itens a seguir: A seguinte argumentação é inválida. Premissa 1: Todo funcionário que sabe lidar

Leia mais

LISTA 01 RACIOCÍNIO LÓGICO TRIBUNAIS 2014 LISTA 01 RACIOCÍNIO LÓGICO TRIBUNAIS 2014

LISTA 01 RACIOCÍNIO LÓGICO TRIBUNAIS 2014 LISTA 01 RACIOCÍNIO LÓGICO TRIBUNAIS 2014 LISTA 01 RACIOCÍNIO LÓGICO TRIBUNAIS 2014 1) Determinar o valor verdade da proposição (p q) r, sabendo-se que AL (p) =, AL (q) = e AL (r) =. Proposições são afirmações que podem ser julgadas como verdadeira

Leia mais

ESTRUTURAS LÓGICAS CARREIRAS FISCAIS / 2015

ESTRUTURAS LÓGICAS CARREIRAS FISCAIS / 2015 ESTRUTURAS LÓGICAS 1.1) CONCEITO DE PROPOSIÇÃO É todo conjunto de palavras ou símbolos que exprimem uma ideia de sentido completo e que, além disso, pode ser julgado como verdadeiro () ou falso (). Exemplos:

Leia mais

Não sou o melhor, sei disso, mas faço o melhor que posso!! RANILDO LOPES

Não sou o melhor, sei disso, mas faço o melhor que posso!! RANILDO LOPES Lógica Matemática e Computacional Não sou o melhor, sei disso, mas faço o melhor que posso!! RANILDO LOPES 2. Conceitos Preliminares 2.1. Sentença, Verdade e Proposição Cálculo Proposicional Como primeira

Leia mais

AULA 1 Frases, proposições e sentenças 3. AULA 2 Conectivos lógicos e tabelas-verdade 5. AULA 3 Negação de proposições 8

AULA 1 Frases, proposições e sentenças 3. AULA 2 Conectivos lógicos e tabelas-verdade 5. AULA 3 Negação de proposições 8 Índice AULA 1 Frases, proposições e sentenças 3 AULA 2 Conectivos lógicos e tabelas-verdade 5 AULA 3 Negação de proposições 8 AULA 4 Tautologia, contradição, contingência e equivalência 11 AULA 5 Argumentação

Leia mais

Exame Analítico Questão 1: Se não fumo, bebo. Se estou cansado, fumo. Se fumo, não estou cansado. Se não estou cansado, não bebo.

Exame Analítico Questão 1: Se não fumo, bebo. Se estou cansado, fumo. Se fumo, não estou cansado. Se não estou cansado, não bebo. Exame Analítico 2009 Questão 1: Se não fumo, bebo. Se estou cansado, fumo. Se fumo, não estou cansado. Se não estou cansado, não bebo. Logo, a) Não fumo, estou cansado e não bebo. b) Fumo, estou cansado

Leia mais

MÓDULO RACIOCÍNIO LÓGICO CONCURSOS

MÓDULO RACIOCÍNIO LÓGICO CONCURSOS MÓDULO RACIOCÍNIO LÓGICO CONCURSOS Prof.(A) RUBÃO SOARES 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 5) BICONDICIONAL Bicondicional é a composta em que as componentes

Leia mais

Questões de Concursos Aula 02 CEF RACIOCÍNIO LÓGICO. Prof. Fabrício Biazotto

Questões de Concursos Aula 02 CEF RACIOCÍNIO LÓGICO. Prof. Fabrício Biazotto Questões de Concursos Aula 02 CEF RACIOCÍNIO LÓGICO Prof. Fabrício Biazotto Raciocínio Lógico 1. Considere as afirmações: I. A camisa é azul ou a gravata é branca. II. Ou o sapato é marrom ou a camisa

Leia mais

PROPOSIÇÕES - VERDADEIRO

PROPOSIÇÕES - VERDADEIRO PROPOSIÇÕES Definição: Chama-se de proposição todo conjunto de palavras ou símbolos que exprimem um pensamento de sentido completo, declarativa (afirmativa) que admite um e somente um dos dois valores

Leia mais

CCAE. Lógica Aplicada a Computação - Cálculo Proposicional - Parte I. UFPB - Campus IV - Litoral Norte. Centro de Ciências Aplicadas e Educação

CCAE. Lógica Aplicada a Computação - Cálculo Proposicional - Parte I. UFPB - Campus IV - Litoral Norte. Centro de Ciências Aplicadas e Educação CCAE Centro de Ciências Aplicadas e Educação UFPB - Campus IV - Litoral Norte Lógica Aplicada a Computação - Cálculo Proposicional - Parte I Estes slides foram criados pelo Professor Alexandre Duarte Para

Leia mais

RACIOCÍNIO LÓGICO QUANTITATIVO PARA AFRFB PROFESSOR: GUILHERME NEVES

RACIOCÍNIO LÓGICO QUANTITATIVO PARA AFRFB PROFESSOR: GUILHERME NEVES Aula 1 Parte 2 Lógica de Argumentação... 2 Relação das questões comentadas nesta aula... 20 Gabaritos.... 23 Prof. Guilherme Neves www.pontodosconcursos.com.br 1 Lógica de Argumentação 01. (ANVISA 2010/CETRO)

Leia mais

Simulado Aula 01 CEF RACIOCÍNIO LÓGICO. Prof. Fabrício Biazotto

Simulado Aula 01 CEF RACIOCÍNIO LÓGICO. Prof. Fabrício Biazotto Simulado Aula 01 CEF RACIOCÍNIO LÓGICO Prof. Fabrício Biazotto Raciocínio Lógico 1. As proposições P, Q e R a seguir referem-se a um ilícito penal envolvendo João, Carlos, Paulo e Maria: P: João e Carlos

Leia mais

RACIOCÍNIO LÓGICO. Raciocínio Lógico Ficha 1 Prof. Nelson Carnaval

RACIOCÍNIO LÓGICO. Raciocínio Lógico Ficha 1 Prof. Nelson Carnaval RACIOCÍNIO LÓGICO Lógica proposicional Chama-se proposição toda sentença declarativa que pode ser classificada em verdadeira ou falsa, mas não as duas. Letras são usualmente utilizadas para denotar proposições.

Leia mais

LÓGICA PROPOSICIONAL

LÓGICA PROPOSICIONAL LÓGICA PROPOSICIONAL Proposições frases AFIRMATIVAS que aceitam julgamento: Verdadeiro - Acontece Falso - Não acontece Há frases que não aceitam valorações lógicas Verdadeiro/Falso Exemplos: 1) Interrogativas:

Leia mais

Raciocínio Lógico (Professor Uendel)

Raciocínio Lógico (Professor Uendel) Raciocínio Lógico (Professor Uendel) Material (02); SEFAZ; JULHO DE 2017 (Álgebra das Proposições) PROPOSIÇÕES EQUIVALENTES P Q Lê se: P é LOGICAMENTE equivalent e a Q São proposições cujas tabelas-verdade

Leia mais

Com relação a lógica sentencial, contagem e combinação, julgue os itens a seguir.

Com relação a lógica sentencial, contagem e combinação, julgue os itens a seguir. Considerando-se como V a proposição "Sem linguagem, não há acesso à realidade", conclui-se que a proposição "Se não há linguagem, então não há acesso à realidade" é também V. Certo Errado Com relação a

Leia mais

Anotações LÓGICA PROPOSICIONAL DEFEITOS DO RACIOCÍNIO HUMANO PROPOSIÇÕES RICARDO ALEXANDRE - CURSOS ON-LINE RACIOCÍNIO LÓGICO AULA 01 DEFINIÇÃO

Anotações LÓGICA PROPOSICIONAL DEFEITOS DO RACIOCÍNIO HUMANO PROPOSIÇÕES RICARDO ALEXANDRE - CURSOS ON-LINE RACIOCÍNIO LÓGICO AULA 01 DEFINIÇÃO RACIOCÍNIO LÓGICO AULA 01 LÓGICA PROPOSICIONAL DEFINIÇÃO A Lógica estuda o pensamento como ele deveria ser, sem a influência de erros ou falácias. As falácias em torno do raciocínio humano se devem a atalhos

Leia mais

Prof.ª Dr.ª Donizete Ritter. MÓDULO I PARTE 2: Lógica Proposicional

Prof.ª Dr.ª Donizete Ritter. MÓDULO I PARTE 2: Lógica Proposicional Bacharelado em Sistemas de Informação Disciplina: Lógica Prof.ª Dr.ª Donizete Ritter MÓDULO I PARTE 2: Lógica Proposicional 1 OPERAÇÕES LÓGICAS SOBRE PROPOSIÇÕES Os conectivos lógicos são responsáveis

Leia mais

Questões de Concursos Aula 01 CEF RACIOCÍNIO LÓGICO. Prof. Fabrício Biazotto

Questões de Concursos Aula 01 CEF RACIOCÍNIO LÓGICO. Prof. Fabrício Biazotto Questões de Concursos Aula 01 CEF RACIOCÍNIO LÓGICO Prof. Fabrício Biazotto Raciocínio Lógico 1. Filho meu, ouve minhas palavras e atenta para meu conselho. A resposta branda acalma o coração irado. O

Leia mais

Lógica Proposicional Parte I. Raquel de Souza Francisco Bravo 11 de outubro de 2016

Lógica Proposicional Parte I. Raquel de Souza Francisco Bravo   11 de outubro de 2016 Lógica Proposicional Parte I e-mail: [email protected] 11 de outubro de 2016 Lógica Matemática Cáculo Proposicional Uma aventura de Alice Alice, ao entrar na floresta, perdeu a noção dos dias da semana.

Leia mais

RACIOCÍNIO LÓGICO-MATEMÁTICO

RACIOCÍNIO LÓGICO-MATEMÁTICO Josimar Padilha RACIOCÍNIO LÓGICO-MATEMÁTICO FUNDAMENTOS E MÉTODOS PRÁTICOS 2016 Capítulo 1 Lógica de Primeira Ordem-Proposicional Estruturas Lógicas CONCEITOS INICIAIS A lógica formal não se ocupa com

Leia mais

Como primeira e indispensável parte da Lógica Matemática temos o Cálculo Proporcional ou Cálculo Sentencial ou ainda Cálculo das Sentenças.

Como primeira e indispensável parte da Lógica Matemática temos o Cálculo Proporcional ou Cálculo Sentencial ou ainda Cálculo das Sentenças. NE-6710 - SISTEMAS DIGITAIS I LÓGICA PROPOSICIONAL, TEORIA CONJUNTOS. A.0 Noções de Lógica Matemática A,0.1. Cálculo Proposicional Como primeira e indispensável parte da Lógica Matemática temos o Cálculo

Leia mais

Matemática Régis Cortes. Lógica matemática

Matemática Régis Cortes. Lógica matemática Lógica matemática 1 INTRODUÇÃO Neste roteiro, o principal objetivo será a investigação da validade de ARGUMENTOS: conjunto de enunciados dos quais um é a CONCLUSÃO e os demais PREMISSAS. Os argumentos

Leia mais

Matemática Computacional

Matemática Computacional Matemática Computacional SLIDE 1I Professor Júlio Cesar da Silva [email protected] site: http://eloquium.com.br/ twitter: @profjuliocsilva facebook: https://www.facebook.com/paginaeloquium Google+:

Leia mais

Matemática Discreta e Raciocínio Lógico

Matemática Discreta e Raciocínio Lógico Matemática Discreta e Raciocínio Lógico 51. (ABC) A negação de o gato mia e o rato chia é: (A) o gato não mia e o rato não chia; (B) o gato mia ou o rato chia; (C) o gato não mia ou o rato não chia; (D)

Leia mais

LÓGICA PROPOSICIONAL

LÓGICA PROPOSICIONAL LÓGICA PROPOSICIONAL NOÇÕES PRELIMINARES A proposição lógica é alicerce da construção do conhecimento da lógica proposicional. Para entendermos o conceito de proposição logica é necessário ter uma noção

Leia mais

COLÉGIO JESUS MARIA JOSÉ

COLÉGIO JESUS MARIA JOSÉ ALUNO: Introdução a teoria de conjuntos 3 Símbolos matemáticos usados na lógica 9 Representação das proposições 17 Construção e classificação da tabela verdade 22 Lógica sentencial 23 Proposições logicamente

Leia mais

Lógica Matemática. Prof. Gerson Pastre de Oliveira

Lógica Matemática. Prof. Gerson Pastre de Oliveira Lógica Matemática Prof. Gerson Pastre de Oliveira Programa da Disciplina Proposições e conectivos lógicos; Tabelas-verdade; Tautologias, contradições e contingências; Implicação lógica e equivalência lógica;

Leia mais

RACIOCÍNIO LÓGICO PARA ANS PROFESSOR: GUILHERME NEVES

RACIOCÍNIO LÓGICO PARA ANS PROFESSOR: GUILHERME NEVES Aula 3 Proposições... 2 Leis do Pensamento... 4 Modificador... 12 Proposições simples e compostas... 13 Conjunção p q... 14 Disjunção Inclusiva... 17 Disjunção Exclusiva p v q... 19 Condicional p... 19

Leia mais

Raciocínio Lógico. Negação da Conjunção e Disjunção Inclusiva (Lei de Morgan) Professor Edgar Abreu.

Raciocínio Lógico. Negação da Conjunção e Disjunção Inclusiva (Lei de Morgan) Professor Edgar Abreu. Raciocínio Lógico Negação da Conjunção e Disjunção Inclusiva (Lei de Morgan) Professor Edgar Abreu www.acasadoconcurseiro.com.br Raciocínio Lógico NEGAÇÃO DE UMA PROPOSIÇÃO COMPOSTA Agora vamos aprender

Leia mais

TÓPICO 3 ESTRUTURAS, DIAGRAMAS E LÓGICA DE ARGUMENTAÇÃO RESUMO TEÓRICO. x > y x y. x y x < y

TÓPICO 3 ESTRUTURAS, DIAGRAMAS E LÓGICA DE ARGUMENTAÇÃO RESUMO TEÓRICO. x > y x y. x y x < y TÓPICO 3 ESTRUTURAS, DIAGRAMAS E LÓGICA DE ARGUMENTAÇÃO RESUMO TEÓRICO 1. Equivalência lógica 1.1. Definição Diz-se que as proposições A e B são logicamente equivalentes, e escreve-se A B, quando A e B

Leia mais

MATEMÁTICA Questões comentadas Daniela Arboite

MATEMÁTICA Questões comentadas Daniela Arboite MATEMÁTICA Questões comentadas Daniela Arboite TODOS OS DIREITOS RESERVADOS. É vedada a reprodução total ou parcial deste material, por qualquer meio ou processo. A violação de direitos autorais é punível

Leia mais

LÓGICA PROPOSICIONAL

LÓGICA PROPOSICIONAL LÓGICA PROPOSICIONAL Proposições frases AFIRMATIVAS que aceitam julgamento: Verdadeiro - Acontece Falso - Não acontece Há frases que não aceitam valorações lógicas Verdadeiro/Falso Exemplos: 1) Interrogativas:

Leia mais

Estrutura lógica de relações arbitrárias entre pessoas, lugares, objetos ou eventos fictícios; deduzir novas informações das relações fornecidas e

Estrutura lógica de relações arbitrárias entre pessoas, lugares, objetos ou eventos fictícios; deduzir novas informações das relações fornecidas e Estrutura lógica de relações arbitrárias entre pessoas, lugares, objetos ou eventos fictícios; deduzir novas informações das relações fornecidas e avaliar as condições usadas para estabelecer a estrutura

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática 1 Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT 131 - Introdução à Álgebra 2017 1 a Lista de Exercícios Tópico: Algumas questões de Lógica 1. Considere que, em

Leia mais

RACIOCÍNIO LÓGICO

RACIOCÍNIO LÓGICO RACIOCÍNIO LÓGICO 01- Analise as premissas e a conclusão do argumento a seguir e responda se é VÁLIDO ou NÃO. "Basta ser estudioso para vencer no concurso; ora, todos os alunos do curso Degrau Cultural

Leia mais

Com base nesse conteúdo, planejei o curso da seguinte maneira: Aula Conteúdo Data. Aula 00 Demonstrativa. Já disponível

Com base nesse conteúdo, planejei o curso da seguinte maneira: Aula Conteúdo Data. Aula 00 Demonstrativa. Já disponível Raciocínio Lógico p/ POLITEC-MT agrega alguns assuntos da matemática básica estudada no ensino médio. Vamos dar uma olhada no conteúdo: RACIOCÍNIO LÓGICO 1. Estruturas lógicas. 2. Lógica sentencial ou

Leia mais

MATEMÁTICA E RACIOCÍNIO LÓGICO

MATEMÁTICA E RACIOCÍNIO LÓGICO SENTENÇAS OU PROPOSIÇÕES MODIICADORES São os elementos que expressam uma idéia, mesmo que absurda. Estudaremos apenas as proposições declarativas, que podem ser classificadas ou só como verdadeiras (),

Leia mais

Campos Sales (CE),

Campos Sales (CE), UNIERSIDADE REGIONAL DO CARIRI URCA PRÓ-REITORIA DE ENSINO E GRADUAÇÃO PROGRAD UNIDADE DESCENTRALIZADA DE CAMPOS SALES CAMPI CARIRI OESTE DEPARTAMENTO DE MATEMÁTICA DISCIPLINA: Tópicos de Matemática SEMESTRE:

Leia mais

Iniciação a Lógica Matemática

Iniciação a Lógica Matemática Iniciação a Lógica Matemática Faculdade Pitágoras Prof. Edwar Saliba Júnior Julho de 2012 1 O Nascimento da Lógica É lógico que eu vou!, Lógico que ela disse isso! são expressões que indicam alguma coisa

Leia mais

Introdução à Lógica Proposicional Sintaxe

Introdução à Lógica Proposicional Sintaxe Bacharelado em Ciência e Tecnologia BC&T Introdução à Lógica Proposicional Sintaxe PASSOS PARA O ESTUDO DE LÓGICA Prof a Maria das Graças Marietto [email protected] 2 ESTUDO DE LÓGICA O estudo

Leia mais

Aula 1 Teoria com resolução de questões FGV

Aula 1 Teoria com resolução de questões FGV Aula 1 Teoria com resolução de questões FGV AULA 01 Olá futuro servidor do TRT 12, Meu nome é Fabio Paredes, sou professor de Raciocínio Lógico Matemático e terei o prazer de ajudá-los nesta árdua missão

Leia mais

RACIOCÍNIO LÓGICO QUANTITATIVO PARA AFRFB PROFESSOR: GUILHERME NEVES

RACIOCÍNIO LÓGICO QUANTITATIVO PARA AFRFB PROFESSOR: GUILHERME NEVES Aula 1 Parte 1 Proposições... 2 Leis do Pensamento... 4 Modificador... 12 Proposições simples e compostas... 13 Conjunção p q... 15 17... Disjunção Inclusiva p q Disjunção Exclusiva p v q... 19 19... Condicional

Leia mais

Lóg L ica M ca at M em e ática PROF.. J EAN 1

Lóg L ica M ca at M em e ática PROF.. J EAN 1 Lógica Matemática PRO. JEAN 1 LÓGICA MATEMÁTICA - CONTEÚDO Definição de Termo e Proposição alor Lógico Proposição Simples e Proposição Composta Conectivos Tabela-erdade 2 LÓGICA MATEMÁTICA INTRODUÇÃO ao

Leia mais

Trabalho de Lógica Matemática 1

Trabalho de Lógica Matemática 1 Universidade Tecnológica Federal do Paraná Gerência de Ensino e Pesquisa Departamento Acadêmico de Matemática Trabalho de Lógica Matemática 1 Data: 03/11/2015 Nome: Matrícula: Turma: Justique sua resposta,

Leia mais

01/09/2014. Capítulo 1. A linguagem da Lógica Proposicional

01/09/2014. Capítulo 1. A linguagem da Lógica Proposicional Capítulo 1 A linguagem da Lógica Proposicional 1 Introdução O estudo da Lógica é fundamentado em: Especificação de uma linguagem Estudo de métodos que produzam ou verifiquem as fórmulas ou argumentos válidos.

Leia mais

RECEITA FEDERAL ANALISTA

RECEITA FEDERAL ANALISTA SENTENÇAS OU PROPOSIÇÕES São os elementos que expressam uma idéia, mesmo que absurda. Estudaremos apenas as proposições declarativas, que podem ser classificadas ou só como verdadeiras (V), ou só como

Leia mais

Fundamentos de Lógica e Algoritmos. Aula 1.3 Proposições e Conectivos. Prof. Dr. Bruno Moreno

Fundamentos de Lógica e Algoritmos. Aula 1.3 Proposições e Conectivos. Prof. Dr. Bruno Moreno Fundamentos de Lógica e Algoritmos Aula 1.3 Proposições e Conectivos Prof. Dr. Bruno Moreno [email protected] Argumentos Lógicos As premissas do argumento são chamadas de proposições; A conclusão

Leia mais

RACIOCÍNIO LÓGICO. Jairo Teixeira. 1ª Ed. Revista e atualizada. Para Concurso Técnico e Analista

RACIOCÍNIO LÓGICO. Jairo Teixeira. 1ª Ed. Revista e atualizada. Para Concurso Técnico e Analista Revista e atualizada 1ª Ed RACIOCÍNIO LÓGICO Para Concurso Técnico e Analista Jairo Teixeira Teoria Resumo ao final do capítulo Questões Gabaritadas INSTRUÇÕES NAVEGAÇÃO: Toque para acessar as miniaturas

Leia mais

QUESTÕES COMENTADAS DE RACIOCÍNIO LÓGICO PARTE I

QUESTÕES COMENTADAS DE RACIOCÍNIO LÓGICO PARTE I QUESTÕES COMENTADAS DE RACIOCÍNIO LÓGICO PARTE I Olá pessoal, tudo em paz? amos apresentar a vocês nessas aulas, um pequeno resumo com questões comentadas, que servirá de modelo na resolução de outras

Leia mais

Raciocínio Lógico

Raciocínio Lógico Raciocínio Lógico 01. João reuniu-se com seus 12 irmãos na ceia de Natal. Das afirmações abaixo, referentes aos membros da mesma família reunidos, a única necessariamente verdadeira é: a) pelo menos uma

Leia mais

Vamos lá, meus queridos?...mãos à obra! AULA 00: Proposições e Conectivos Lógicos

Vamos lá, meus queridos?...mãos à obra! AULA 00: Proposições e Conectivos Lógicos Meu nome é Carlos Eduardo, sou professor de Matemática, Estatística, Raciocínio Lógico e Física nos principais cursos preparatórios do Rio de Janeiro. Também sou autor do livro RACIOCÍNIO LÓGICO PARA CONCURSOS

Leia mais

Álgebra das Proposições. Prof. Guilherme Tomaschewski Netto

Álgebra das Proposições. Prof. Guilherme Tomaschewski Netto Álgebra das Proposições Prof. Guilherme Tomaschewski Netto [email protected] Roteiro! Lógica Matemática clássica! Proposições! alores lógicos! Conectivos! Fórmulas Lógicas! Exemplos de aplicações

Leia mais

Coordenação Prof. Aurimenes Alves. Proposições: 1) Recíproca 2) Contrária 3) Contra positiva

Coordenação Prof. Aurimenes Alves. Proposições: 1) Recíproca 2) Contrária 3) Contra positiva @ LÓGICA - 2 Proposições: 1) Recíproca 2) Contrária 3) Contra positiva 1) Proposição recíproca de p q : q p 2) Proposição contrária de p q: ~ p 3) Proposição contra positiva de p q: ~ p ex. Determinar:

Leia mais

Curso JB Raciocínio Lógico Professor: Aldo Henrique

Curso JB Raciocínio Lógico Professor: Aldo Henrique Curso JB Raciocínio Lógico Professor: Aldo Henrique E-mail: [email protected] Nome Data / / Questão 1 A figura acima apresenta as colunas iniciais de uma tabela-verdade, em que P, Q e R representam proposições

Leia mais

INSTITUTO FEDERAL FARROUPILHA CÂMPUS ALEGRETE

INSTITUTO FEDERAL FARROUPILHA CÂMPUS ALEGRETE 1 1. LÓGICA SETENCIAL E DE PRIMEIRA Conceito de proposição ORDEM Chama-se proposição todo o conjunto de palavras ou símbolos que exprimem um pensamento de sentido completo, seja este verdadeiro ou falso.

Leia mais

FCC (FCC) Se P e Q são números distintos do conjunto. , então o maior valor possível de P Q é: b) 60. Página 2

FCC (FCC) Se P e Q são números distintos do conjunto. , então o maior valor possível de P Q é: b) 60. Página 2 Página 1 FCC 06. (FCC) Em uma grande empresa, 50% dos empregados são assinantes da revista X, 40% são assinantes da revista Y e 60% são assinantes da revista Z. Sabe-se que 20% dos empregados assinam as

Leia mais

Curso de Raciocínio Lógico

Curso de Raciocínio Lógico Curso de Raciocínio Lógico Linguagem Formal: Sentenças, Proposições simples e compostas e linguagem natural. Professor Josimar Padilha LÓGICA SENTENCIAL SENTENÇA : Expressão de um pensamento completo,

Leia mais

RLM Material de Apoio Professor Jhoni Zini

RLM Material de Apoio Professor Jhoni Zini PRINCÍPIOS LÓGICOS 1. Segundo a lógica aristotélica, as proposições têm como uma de suas propriedades básicas poderem ser verdadeiras ou falsas, isto é, terem um valor de verdade. Assim sendo, a oração

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/53 1 - LÓGICA E MÉTODOS DE PROVA 1.1) Lógica Proposicional

Leia mais

RACIOCÍNIO LÓGICO

RACIOCÍNIO LÓGICO RACIOCÍNIO LÓGICO 01. Um pai foi informado que seu filho estava o procurando a fim de pedir dinheiro para passear e ir ao cinema. Aí, o pai pensou e resolveu dar dinheiro ao filho, desde que ele, usando

Leia mais

CEDERJ MÉTODOS DETERMINÍSTICOS 1 - EP4. Prezado Aluno,

CEDERJ MÉTODOS DETERMINÍSTICOS 1 - EP4. Prezado Aluno, CEDERJ MÉTODOS DETERMINÍSTICOS 1 - EP4 Prezado Aluno, Neste EP daremos sequência ao nosso estudo da linguagem da lógica matemática. Aqui veremos o conectivo que causa mais dificuldades para os alunos e

Leia mais

Dante Então, nas férias,

Dante Então, nas férias, 1. Nas férias, Carmem não foi ao cinema. Sabe-se que sempre que q Denis viaja, Denis fica feliz. Sabe-se, também, que nas férias, ou Dante vai à praia ou vai à piscina. Sempre que Dante vai à piscina,

Leia mais

Douglas Léo RACIOCÍNIO LÓGICO

Douglas Léo RACIOCÍNIO LÓGICO Douglas Léo RACIOCÍNIO LÓGICO 1 - (CESPE - UNB - BB - ESCRITURÁRIO ) Na lista de frases apresentadas a seguir, há exatamente três proposições. A frase dentro destas aspas é uma mentira. A expressão X +

Leia mais

RACIOCÍNIO LÓGICO. Verdades e Mentiras. Prof. Renato Oliveira

RACIOCÍNIO LÓGICO. Verdades e Mentiras. Prof. Renato Oliveira RACIOCÍNIO LÓGICO Verdades e Mentiras. Prof. Renato Oliveira 1) Três amigas, Tania, Janete e Angélica, estão sentadas lado a lado em um teatro. Tania sempre fala a verdade; Janete as vezes fala a verdade;

Leia mais

Matemática Discreta - 01

Matemática Discreta - 01 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 01 Prof. Jorge Cavalcanti [email protected] www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

CAPÍTULO I. Lógica Proposicional

CAPÍTULO I. Lógica Proposicional Lógica Proposicional CAPÍTULO I Lógica Proposicional Sumário: 1. Lógica proposicional 2. Proposição 2.1. Negação da proposição 2.2. Dupla negação 2.3. Proposição simples e composta 3. Princípios 4. Classificação

Leia mais

Proposições são sentenças que podem ser julgadas como verdadeiras - V - ou falsas - F -, mas não como ambas, simultaneamente. As proposições são

Proposições são sentenças que podem ser julgadas como verdadeiras - V - ou falsas - F -, mas não como ambas, simultaneamente. As proposições são Proposições são sentenças que podem ser julgadas como verdadeiras - V - ou falsas - F -, mas não como ambas, simultaneamente. As proposições são freqüentemente representadas por letras maiúsculas e, a

Leia mais

Prof. Jorge Cavalcanti

Prof. Jorge Cavalcanti Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 01 Prof. Jorge Cavalcanti [email protected] www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

Raciocínio Lógico

Raciocínio Lógico Raciocínio Lógico 01- Considere as seguintes acusações: José Francisco mente. Diz Francisco José. Maria José mente. Diz José Francisco. Francisco José e José Francisco mente. Diz Maria José. Mas, então,

Leia mais

Questões de Concursos Aula 03 CEF RACIOCÍNIO LÓGICO. Prof. Fabrício Biazotto

Questões de Concursos Aula 03 CEF RACIOCÍNIO LÓGICO. Prof. Fabrício Biazotto Questões de Concursos Aula 03 CEF RACIOCÍNIO LÓGICO Prof. Fabrício Biazotto Raciocínio Lógico 1. Sabendo que os valores lógicos das proposições simples p e q são, respectivamente, a verdade e a falsidade,

Leia mais

Introdução à Logica Computacional. Aula: Lógica Proposicional - Sintaxe e Representação

Introdução à Logica Computacional. Aula: Lógica Proposicional - Sintaxe e Representação Introdução à Logica Computacional Aula: Lógica Proposicional - Sintaxe e Representação Agenda Resolução de exercício da aula 1 Definições Proposição simples Conectivos Proposição composta Sintaxe Exercício

Leia mais

LÓGICA - 2. ~ q. Argumentos Regras de inferência. Proposições: 1) Recíproca 2) Contrária 3) Contra positiva. 1) Proposição recíproca de p q :

LÓGICA - 2. ~ q. Argumentos Regras de inferência. Proposições: 1) Recíproca 2) Contrária 3) Contra positiva. 1) Proposição recíproca de p q : LÓGICA - 2 Proposições: 1) Recíproca 2) Contrária 3) Contra positiva 1) Proposição recíproca de p q : q p 2) Proposição contrária de p q : ~ p 3) Proposição contra positiva de p q : ~ p ex. Determinar:

Leia mais

RACIOCÍNIO LÓGICO

RACIOCÍNIO LÓGICO RACIOCÍNIO LÓGICO 01. Três crianças Astolfo, Belarmino e Cleosvaldo brincavam, cada qual com um único tipo de brinquedo. Considere ainda as seguintes informações: - Os brinquedos são: Falcon, Playmobil

Leia mais

1 TEORIA DOS CONJUNTOS

1 TEORIA DOS CONJUNTOS 1 TEORIA DOS CONJUNTOS Definição de Conjunto: um conjunto é uma coleção de zero ou mais objetos distintos, chamados elementos do conjunto, os quais não possuem qualquer ordem associada. Em outras palavras,

Leia mais

Introdução à Logica Computacional. Aula: Lógica Proposicional -Sintaxe e Representação

Introdução à Logica Computacional. Aula: Lógica Proposicional -Sintaxe e Representação Introdução à Logica Computacional Aula: Lógica Proposicional -Sintaxe e Representação Agenda Resolução de exercício da aula 1 Definições Proposição simples Conectivos Proposição composta Sintaxe Exercício

Leia mais

Prof. João Giardulli. Unidade I LÓGICA

Prof. João Giardulli. Unidade I LÓGICA Prof. João Giardulli Unidade I LÓGICA Introdução A primeira qualidade do estilo é a clareza. Aristóteles Introdução Aristóteles é considerado o precursor da lógica. Aristóteles (384-322 a.c.) Introdução

Leia mais

Raciocínio lógico matemático: proposições, conectivos, equivalência e implicação lógica, argumentos válidos. PART 01

Raciocínio lógico matemático: proposições, conectivos, equivalência e implicação lógica, argumentos válidos. PART 01 Raciocínio lógico matemático: proposições, conectivos, equivalência e implicação lógica, argumentos válidos. PART 01 PROPOSIÇÕES Denomina-se proposição a toda frase declarativa, expressa em palavras ou

Leia mais

RACIOCÍNIO LÓGICO. Quantas dessas proposições compostas são FALSAS? a) Nenhuma. b) Apenas uma. c) Apenas duas. d) Apenas três. e) Quatro.

RACIOCÍNIO LÓGICO. Quantas dessas proposições compostas são FALSAS? a) Nenhuma. b) Apenas uma. c) Apenas duas. d) Apenas três. e) Quatro. RACIOCÍNIO LÓGICO 01. Uma proposição é uma sentença fechada que possui sentido completo e à qual se pode atribuir um valor lógico verdadeiro ou falso. Qual das sentenças apresentadas abaixo se trata de

Leia mais

FICHA DE TRABALHO N.º 1 MATEMÁTICA A - 10.º ANO INTRODUÇÃO À LÓGICA BIVALENTE

FICHA DE TRABALHO N.º 1 MATEMÁTICA A - 10.º ANO INTRODUÇÃO À LÓGICA BIVALENTE FICHA DE TRABALHO N.º 1 MATEMÁTICA A - 10.º ANO INTRODUÇÃO À LÓGICA BIVALENTE Conhece a Matemática e dominarás o Mundo. Galileu Galilei GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Sejam p e q duas proposições

Leia mais

Descrevendo um conjunto

Descrevendo um conjunto Conjuntos Veja os seguintes exemplos: Jogadores de um time Lista de compras Números Inteiros Alfabeto Se você está familiarizado com estes exemplos, é claro que você tem a ideia do que é um conjunto, podemos

Leia mais

Fundamentos da Lógica I

Fundamentos da Lógica I Fundamentos da Lógica I O conceito mais elementar no estudo da lógica primeiro a ser visto é o de Proposição. Trata-se, tão somente, de uma sentença algo que será declarado por meio de palavras ou de símbolos

Leia mais

Raciocínio lógico matemático

Raciocínio lógico matemático Raciocínio lógico matemático Unidade 2: Introdução à lógica Seção 2.1: O que é a lógica? 1 Lógica Parte da filosofia que trata das formas do pensamento em geral e das operações intelectuais que visam determinar

Leia mais

Raciocínio Lógico Matemático do ZERO Professor: Daniel Almeida. Aula 01 Estruturas Lógicas: Proposições

Raciocínio Lógico Matemático do ZERO Professor: Daniel Almeida. Aula 01 Estruturas Lógicas: Proposições Raciocínio Lógico Matemático do ZERO Professor: Daniel Almeida Aula 01 Estruturas Lógicas: Proposições ESTRUTURAS LÓGICAS Proposição é toda frase declarativa, expressa em palavras ou símbolos, que exprima

Leia mais

DOUGLAS LÉO RACIOCÍNIO LÓGICO E QUANTITATIVO

DOUGLAS LÉO RACIOCÍNIO LÓGICO E QUANTITATIVO DOUGLAS LÉO RACIOCÍNIO LÓGICO E QUANTITATIVO 1 (UNB CESPE SEAD -SE AUX. NECROPSIA- 2009) Considerando o triângulo retângulo de vértices R, S e T no qual o ângulo reto está em R, o cateto RS mede 3 cm e

Leia mais

Expandindo o Vocabulário. Tópicos Adicionais. Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antônio Caminha Muniz Neto. 12 de junho de 2019

Expandindo o Vocabulário. Tópicos Adicionais. Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antônio Caminha Muniz Neto. 12 de junho de 2019 Material Teórico - Módulo de INTRODUÇÃO À LÓGICA MATEMÁTICA Expandindo o Vocabulário Tópicos Adicionais Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antônio Caminha Muniz Neto 12 de junho de 2019

Leia mais