2ª Prova de Probabilidade 22/06/2015
|
|
|
- Roberto Amado Jardim
- 8 Há anos
- Visualizações:
Transcrição
1 2ª Prova de Probabilidade 22/06/2015 Nome: N º USP: Atenção: ESTA PROVA CONTÉM 5 QUESTÕES. A prova tem duração de 100 minutos; não haverá tempo adicional. O aluno deve comprovar sua identidade com documento oficial. Alunos só podem sair da sala de prova 60 minutos após o início da prova. Não é permitido o uso de calculadoras. Deixe resultados indicados (e.g. frações,, etc). Não é permitido o uso de telefones celulares ou equipamentos móveis similares. Esses equipamentos deverão ser colocados na frente da sala. É permitido o uso de um formulário ( uma única folha A4) com fórmulas relacionadas à disciplina (não podem ser incluídos exemplos nem exercícios resolvidos). Nessa folha deverá constar nome e número USP do aluno, e a mesma será entregue com a prova. Boa Prova!
2 Questão 1 (valor 1,5) Uma faculdade de administração verificou, com base em sua experiência ao longo dos anos, que 1/3 dos alunos ingressantes concluem o curso. Com base nessa hipótese aprova 450 alunos no vestibular, pois considera que o número ideal de alunos numa turma seja 150 alunos. Calcule a probabilidade de que mais de 160 dos 450 ingressantes conclua o curso. Atenção: você deve necessariamente obter um número como resposta; não serão consideradas apenas expressões de cálculo. 0,1587 (sem correção de continuidade) 0,1469 (com correção de continuidade)
3 Questão 2 (valor 2,0) a) O número de quilômetros que um carro pode rodar sem que a bateria descarregue possui distribuição exponencial com valor esperado km. Suponha que uma viagem de 5.000km será feita. Qual a probabilidade de que seja necessário trocar esta bateria durante a viagem, dado que a bateria foi usada por quilômetros antes do início da viagem? b) Qual seria essa probabilidade se a distribuição de probabilidade fosse uniforme no intervalo [3000;7000]? a) 1 - exp(-1/2) b) 3/4
4 Questão 3 (valor 2,0) Um equipamento tem tempo de vida T com distribuição normal, valor esperado de 40 horas e desvio padrão 10 horas. Considere um conjunto desses equipamentos, e suponha que os tempos de vida dos equipamentos são variáveis independentes. Suponha que um equipamento é instalado e usado até falhar, quando é então substituído por um novo. a) Você compra 5 equipamentos, cada um ao custo de $100,00. Se os dois primeiros equipamentos utilizados durarem menos que 20 horas, o fornecedor lhe devolve o valor total pago ($500,00). Qual é a receita esperada do fornecedor? b) Assumindo que há 25 equipamentos em estoque, qual a probabilidade de se possa obter um tempo de vida total superior a 1100 horas? Nota: nessa questão, arredonde resultados intermediários na quarta casa decimal. a) 500 * (1-0,0228^2) b) 0,0228
5 Questão 4 (valor 3,0) Uma loja de automóveis de luxo tem a seguinte função de probabilidade do número de vendas por semana: x P(X=x) 0,25 0,25 0,25 0,25 Considere um conjunto de N pessoas em que todas compraram automóveis. Para cada uma dessas pessoas que comprou automóvel, considere ainda o evento ``a pessoa comprou blindagem. Suponha que esses N eventos sejam independentes (dado que as N pessoas compraram automóveis). Suponha também que a probabilidade de uma pessoa comprar blindagem, dado que ela pertence ao grupo de pessoas que comprou automóvel, é Seja Y o número de compradores em uma semana que solicitaram blindagens. a) Determine a distribuição conjunta de X e Y b) Determine P(X>Y) c) Determine a função de probabilidade marginal de Y a) P(X=0, Y=0) = 0,25 ; P(X=1, Y=0) = 0,1 ; P(X=2, Y=0) = 0,04 ; P(X=3, Y=0) = 0,016 ; P(X=1, Y=1) = 0,15 ; P(X=2, Y=1) = 0,12 ; P(X=3, Y=1) = 0,072 ; P(X=2, Y=2) = 0,09 ; P(X=3, Y=2) = 0,108 ; P(X=3, Y=3) = 0,054. b) 0,456 c) P(Y=0) = 0,406 ; P(Y=1) = 0,342 ; P(Y=2) = 0,198 ; P(Y=3) = 0,054.
6 Questão 5 (valor 1,5) a) O número de bactérias coliformes no rio Santa Genoveva, no estado do Maranhão, é aleatoriamente distribuído com concentração esperada de 1 por 20cc de água e distribuição de Poisson. Retira-se um tubo contendo 10cc de água. Qual a probabilidade de encontrar exatamente duas bactérias coliformes? b) No rio São Severino, em Recife, a concentração esperada é de 6 bactérias por 30 cc de água. Suponha que as concentrações são variáveis independentes. Você retira um tubo de 15 cc de água do rio São Severino e um de 10 cc do rio Santa Genoveva. Qual a probabilidade de haver exatamente 2 bactérias coliformes nos 25 cc de água coletados? a) exp(-1/2) / 8 b) 6,125 * exp(-3,5)
Lista de Exercícios 2 Probabilidades Escola Politécnica, Ciclo Básico
Lista de Exercícios 2 Probabilidades 0303200 Escola Politécnica, Ciclo Básico 1 o semestre 2017 1) O número de quilômetros que um carro pode rodar sem que a bateria descarregue possui distribuição exponencial
Lista de Exercícios 3 Probabilidades Escola Politécnica, Ciclo Básico
Lista de Exercícios 3 Probabilidades 0303200 Escola Politécnica, Ciclo Básico 1 o semestre 2017 1) Um equipamento tem tempo de vida T com distribuição normal, valor esperado de 40 horas e desvio padrão
Lista de Exercícios 3 Probabilidades Escola Politécnica, Ciclo Básico
RESOLUÇÃO NA PÁGINA 06 Lista de Exercícios 3 Probabilidades 0303200 Escola Politécnica, Ciclo Básico 1 o semestre 2017 1) Um equipamento tem tempo de vida T com distribuição normal, valor esperado de 40
MAE0219 Introdução à Probabilidade e Estatística I
Exercício 1 O tempo de vida útil de uma lavadora de roupas automática tem distribuição aproximadamente Normal, com média de 3,1 anos e desvio padrão de 1,2 anos. a Qual deve ser o valor do tempo de garantia
Distribuições conjuntas de probabilidades e complementos
Probabilidades e Estatística 2004/05 Colectânea de Exercícios LEIC, LERCI, LEE Capítulo 5 Distribuições conjuntas de probabilidades e complementos 02 x = 0 065 x = 1 Exercício 51 (a) P(X = x) = 015 x =
MAE0219 Introdução à Probabilidade e Estatística I
Exercício 1 1 o semestre de 201 O tempo de vida útil de uma lavadora de roupas automática tem distribuição aproximadamente Normal, com média de 3,1 anos e desvio padrão de 1,2 anos. a Qual deve ser o valor
LISTA 3 Introdução à Probabilidade (Profa. Cira.) OBS. Apenas os exercícios indicados como adicional não constam no livro.
LISTA 3 Introdução à Probabilidade (Profa. Cira.) OBS. Apenas os exercícios indicados como adicional não constam no livro. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - V. A. C O N T Í N
Exercícios Funções Multivariadas, Exponencial e Outras
Turma 2017 Exercícios Funções Multivariadas, Exponencial e Outras Problema 1 (bivariada) Um bim de cinco transistores possui dois que são defeituosos. Os transistores são testados um a um, até que os defeituosos
4ª LISTA DE EXERCÍCIOS - LOB1012. Variáveis Aleatórias Contínuas, Aproximações e TLC
4ª LISTA DE EXERCÍCIOS - LOB1012 Variáveis Aleatórias Contínuas, Aproximações e TLC Assunto: Função Densidade de Probabilidade Prof. Mariana Pereira de Melo 1. Suponha que f(x) = x/8 para 3
Probabilidades e Estatística TODOS OS CURSOS
Duração: 90 minutos Grupo I Probabilidades e Estatística TODOS OS CURSOS Justifique convenientemente todas as respostas 2 o semestre 206/207 05/07/207 :30 o Teste C 0 valores. Uma peça de certo tipo é
Lista de Exercícios para Segundo Exercício Escolar
Universidade Federal de Pernambuco Centro de Ciências Exatas e da Natureza Departamento de Estatística Contato: Professora Fernanda De Bastiani, [email protected] Lista de Exercícios para Segundo
Estatística e Probabilidade Aula 06 Distribuições de Probabilidades. Prof. Gabriel Bádue
Estatística e Probabilidade Aula 06 Distribuições de Probabilidades Prof. Gabriel Bádue Teoria A distribuição de Poisson é uma distribuição discreta de probabilidade, aplicável a ocorrências de um evento
Probabilidade Aula 11
0303200 Probabilidade Aula 11 Magno T. M. Silva Escola Politécnica da USP Junho de 2017 A maior parte dos exemplos dessa aula foram extraídos de Jay L. Devore, Probabilidade e Estatística para engenharia
Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal
Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:
PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE
PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE 3.1 INTRODUÇÃO Muitas variáveis aleatórias associadas a experimentos aleatórios têm propriedades similares e, portanto, podem ser descritas através de
Distribuição de Probabilidade. Prof. Ademilson
Distribuição de Probabilidade Prof. Ademilson Distribuição de Probabilidade Em Estatística, uma distribuição de probabilidade descreve a chance que uma variável pode assumir ao longo de um espaço de valores.
Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09
Teoria das Filas aplicadas a Sistemas Computacionais Aula 09 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas
1073/B - Introdução à Estatística Econômica
Lista de exercicios 2 Prof. Marcus Guimaraes 1073/B - Introdução à Estatística Econômica Ciências Econômicas 1) Suponha um espaço amostral S constituido de 4 elementos: S={a 1,a2,a3,a4}. Qual das funções
{ C(1 x 2 ), se x ( 1, 1), f(x) = Cxe x/2, se x > 0, x + k, se 0 x 3; 0, c.c. k, se 1 < x 2; kx + 3k, se 2 < x 3;
Universidade de Brasília Departamento de Estatística 4 a Lista de PE 1. Seja X uma variável aleatória com densidade { C(1 x 2 ), se x ( 1, 1), 0, se x / ( 1, 1). a) Qual o valor de C? b) Qual a função
PROBABILIDADE RESUMO E EXERCÍCIOS* P2
PROBABILIDADE RESUMO E EXERCÍCIOS* P2 *Exercícios de provas anteriores escolhidos para você estar preparado para qualquer questão na prova. Resoluções grátis em Variáveis Aleatórias Discretas e Contínuas
ESTATÍSTICA. x(s) W Domínio. Contradomínio
Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.
Modelos de Distribuição PARA COMPUTAÇÃO
Modelos de Distribuição MONITORIA DE ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO Distribuições Discretas Bernoulli Binomial Geométrica Hipergeométrica Poisson ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO
a) o time ganhe 25 jogos ou mais; b) o time ganhe mais jogos contra times da classe A do que da classe B.
Universidade de Brasília Departamento de Estatística 5 a Lista de PE. Um time de basquete irá jogar uma temporada de 44 jogos. desses jogos serão disputados contra times da classe A e os 8 restantes contra
Exercícios propostos:
INF 16 Exercícios propostos: 1. Sabendo-se que Y=X-5 e que E(X)= e V(X)=1, calcule: a)e(y); b)v(y); c)e(x+y); d)e(x + Y ); e)v(x+y); Resp.: 1; 9; 5; 15; 81. Uma urna contém 5 bolas brancas e 7 bolas pretas.
Lista de Exercícios #2 Assunto: Variáveis Aleatórias Discretas
1. ANPEC 2018 Questão 3 Considere um indivíduo procurando emprego. Para cada entrevista de emprego (X) esse indivíduo tem um custo linear (C) de 10,00 Reais. Suponha que a probabilidade de sucesso em uma
Distribuições de Probabilidade
Distribuições de Probabilidade 1 Aspectos Gerais 2 Variáveis Aleatórias 3 Distribuições de Probabilidade Binomiais 4 Média e Variância da Distribuição Binomial 5 Distribuição de Poisson 1 1 Aspectos Gerais
PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES
PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES Certas distribuições de probabilidades se encaixam em diversas situações práticas As principais são: se v.a. discreta Distribuição de Bernoulli Distribuição binomial
Probabilidade e Modelos Probabilísticos
Probabilidade e Modelos Probabilísticos 2ª Parte: modelos probabilísticos para variáveis aleatórias contínuas, modelo uniforme, modelo exponencial, modelo normal 1 Distribuição de Probabilidades A distribuição
Probabilidades e Estatística LEGM, LEIC-A, LEIC-T, MA, MEMec
Duração: 9 minutos Grupo I Probabilidades e Estatística LEGM, LEIC-A, LEIC-T, MA, MEMec Justifique convenientemente todas as respostas o semestre 7/8 5/5/8 9: o Teste A valores. Uma loja comercializa telemóveis
5- Variáveis aleatórias contínuas
5- Variáveis aleatórias contínuas Para variáveis aleatórias contínuas, atribuímos probabilidades a intervalos de valores. Exemplo 5.1 Seja a variável correspondente ao tempo de vida útil de determinado
Probabilidade Aula 05
0303200 Probabilidade Aula 05 Magno T. M. Silva Escola Politécnica da USP Abril de 2017 A maior parte dos eemplos dessa aula foram etraídos de Jay L. Devore, Probabilidade e Estatística para engenharia
Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008
Variável Aleatória Gilson Barbosa Dourado [email protected] 6 de agosto de 2008 Denição de Variável Aleatória Considere um experimento E e seu espaço amostral Ω = {a 1, a 2,..., a n }. Variável aleatória
AULA 07 Distribuições Discretas de Probabilidade
1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:
Inferência Estatística:
Inferência Estatística: Amostragem Estatística Descritiva Cálculo de Probabilidade Inferência Estatística Estimação Teste de Hipótese Pontual Por Intervalo Conceitos básicos Estimação É um processo que
U N I V E R S I D A D E F E D E R A L D E M I N A S G E R A I S SÓ ABRA QUANDO AUTORIZADO.
U N I V E R S I D A D E F E D E R A L D E M I N A S G E R A I S MATEMÁTICA A 2 a SÓ ABRA QUANDO AUTORIZADO. as instruções que se seguem. 1 - Este Caderno de Prova contém seis questões, que ocupam um total
Distribuições conjuntas de probabilidade e complementos
Probabilidades e Estatística + Probabilidades e Estatística I Colectânea de Exercícios 2002/03 LEFT + LMAC Capítulo 5 Distribuições conjuntas de probabilidade e complementos Exercício 51 Uma loja de electrodomésticos
Variáveis Aleatórias Contínuas
Variáveis Aleatórias Contínuas Bacharelado em Administração - FEA - Noturno 2 o Semestre 2017 MAE0219 (IME-USP) Variáveis Aleatórias Contínuas 2 o Semestre 2017 1 / 35 Objetivos da Aula Sumário 1 Objetivos
Estatística Aplicada I
Estatística Aplicada I ESPERANCA MATEMATICA AULA 1 25/04/17 Prof a Lilian M. Lima Cunha Abril de 2017 EXPERIMENTO RESULTADOS EXPERIMENTAIS VARIÁVEL ALEATÓRIA X = variável aleatória = descrição numérica
ALGUMAS DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE
ALGUMAS DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE 4. 1 INTRODUÇÃO Serão apresentadas aqui algumas distribuições de probabilidade associadas a v.a. s contínuas. A mais importante delas é a distribuição Normal
UNIVERSIDADE FEDERAL DA PARAÍBA. Cálculo das Probabilidades e Estatística I. Terceira Lista de Exercícios
UNIVERSIDADE FEDERAL DA PARAÍBA Cálculo das Probabilidades e Estatística I Professora: Juliana Freitas Pires Terceira Lista de Exercícios Parte I: Variáveis aleatórias, Esperança e Variância Questão 1.
Probabilidade e Estatística
Probabilidade e Estatística Distribuições Discretas de Probabilidade Prof. Narciso Gonçalves da Silva www.pessoal.utfpr.edu.br/ngsilva Introdução Distribuições Discretas de Probabilidade Muitas variáveis
Capítulo 5 Distribuições de Probabilidades. Seção 5-1 Visão Geral. Visão Geral. distribuições de probabilidades discretas
Capítulo 5 Distribuições de Probabilidades 5-1 Visão Geral 5-2 Variáveis Aleatórias 5-3 Distribuição de Probabilidade Binomial 5-4 Média, Variância e Desvio Padrão da Distribuição Binomial 5-5 A Distribuição
Respostas da Série de Exercícios Funções Multivariadas e outras. Lista 3A
Respostas da Série de Exercícios Funções Multivariadas e outras Problema 1 Lista 3A Observar que N1 e N2 são números inteiros de tal forma que N1+N2 5 isto é: N1=1,...4 e N2=1,..5-N1. Cada par de valores
Segunda Lista de Exercícios Cálculo de Probabilidades II Prof. Michel H. Montoril
Exercício 1. Uma urna contém 4 bolas numeradas: {1, 2, 2, 3}. Retira-se dessa urna duas bolas aleatoriamente e sem reposição. Sejam 1 : O número da primeira bola escolhida; 2 : O número da segunda bola
VARIÁVEIS ALEATÓRIAS 1
VARIÁVEIS ALEATÓRIAS 1 Na prática é, muitas vezes, mais interessante associarmos um número a um evento aleatório e calcularmos a probabilidade da ocorrência desse número do que a probabilidade do evento.
U N I V E R S I D A D E F E D E R A L D E M I N A S G E R A I S SÓ ABRA QUANDO AUTORIZADO.
U N I V E R S I D A D E F E D E R A L D E M I N A S G E R A I S MATEMÁTICA B 2 a SÓ ABRA QUANDO AUTORIZADO. as instruções que se seguem. 1 - Este Caderno de Prova contém seis questões, que ocupam um total
rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aleatórias Discretas
ITA - Laboratório rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aula 03: Variáveis Aleatórias Discretas Qual a similaridade na natureza dessas grandezas? Tempo de espera de um ônibus
Cálculo das Probabilidades I - Sexta Lista - Rio, 13/09/2014
Cálculo das Probabilidades I - Sexta Lista - Rio, 13/09/2014 1. O diâmetro X de{ um cabo elétrico é uma variável aleatória com densidade de probabilidade K(2x x dada por 2 ), 0 x 1 0, x < 0 ou x > 1. (a)
Confiabilidade de sistemas. Uma importante aplicação de probabilidade nas engenharias é no estudo da confiabilidade de sistemas.
Confiabilidade de sistemas Uma importante aplicação de probabilidade nas engenharias é no estudo da confiabilidade de sistemas. Uma definição pratica de confiabilidade corresponde à probabilidade de um
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO (NO PERÍODO DE FÉRIAS ESCOLARES) ANO 20 PROFESSOR (a) DISCIPLINA BRUNO REZENDE PEREIRA MATEMÁTICA ALUNO (a) SÉRIE
CAPÍTULO 5: VARIÁVEIS ALEATÓRIAS BIDIMENSIONAIS Todas as coisas aparecem e desaparecem por causa da concorrência de causas e condições. Nada nunca existe inteiramente só, tudo está em relação com todo
INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO
Área Cientifica Curso Matemática Engenharia Electrotécnica Folha Nº5 1. Usando a tabela da normal standard, calcule: a) P(Z1.45), P(Z>-2.15), P(-2.34
Distribuição de Probabilidade Variáveis Aleatórias Discretas. Prof.: Joni Fusinato
Distribuição de Probabilidade Variáveis Aleatórias Discretas Prof.: Joni Fusinato [email protected] [email protected] Distribuição de Probabilidade Descreve a chance que uma variável pode assumir
Ano Lectivo 2006/2007 Ficha nº5
Instituto Superior Politécnico de Viseu Departamento de Matemática da Escola Superior de Tecnologia Estatística Aplicada Engenharia Mecânica e Gestão Industrial Ano Lectivo 2006/2007 Ficha nº5 1. Usando
Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba
Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuições Condicionais 11/13 1 / 19 Em estudo feito em sala perguntamos aos alunos qual
2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.
2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y :
Distribuição de Probabilidade. Prof.: Joni Fusinato
Distribuição de Probabilidade Prof.: Joni Fusinato [email protected] [email protected] Modelos de Probabilidade Utilizados para descrever fenômenos ou situações que encontramos na natureza, ou
Processos Estocásticos
Processos Estocásticos Luiz Affonso Guedes Sumário Modelos Probabilísticos Discretos Uniforme Bernoulli Binomial Hipergeométrico Geométrico Poisson Contínuos Uniforme Normal Tempo de Vida Exponencial Gama
Probabilidades e Estatística LEAN, LEGM, LEIC-A, LEIC-T, MA, MEMec
Duração: 90 minutos Grupo I Probabilidades e Estatística LEAN, LEGM, LEIC-A, LEIC-T, MA, MEMec Justifique convenientemente todas as respostas 2 o semestre 2016/2017 06/05/2017 09:00 1 o teste A 10 valores
Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08
Teoria das Filas aplicadas a Sistemas Computacionais Aula 08 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas
Caderno de Exercícios Aula 2 (Variáveis, Tipos e Comandos Básicos)
Centro de Educação Superior a Distância do Estado do Rio de Janeiro CEDERJ Curso de Tecnologia em Sistemas de Computação TSC EAD-05.009 Fundamentos de Programação Caderno de Exercícios Aula 2 (Variáveis,
ESCOLA SECUNDÁRIA DE CASQUILHOS
ESCOLA SECUNDÁRIA DE CASQUILHOS 12º Ano Turma B - C.C.H. de Ciências e Tecnologias - 1ª Teste de Avaliação de Matemática A V1 Duração: 90 min 04 Nov. 09 Prof.: Na folha de respostas, indicar de forma legível
Variáveis Aleatórias Discretas e Distribuição de Probabilidade
Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte III 08 de Abril de 2014 Distribuição Binomial Negativa Objetivos Ao final deste capítulo você deve ser capaz de: Ententer suposições
Escola Politécnica da USP Engenharia de Petróleo e Gás OUTRAS DISTRIBUIÇÕES CONTÍNUAS. Aula 14 - Prof. Regina Meyer Branski
Escola Politécnica da USP Engenharia de Petróleo e Gás OUTRAS DISTRIBUIÇÕES CONTÍNUAS Aula 14 - Prof. Regina Meyer Branski Distribuições Contínuas Distribuição Normal Outras Distribuições Contínuas Exponencial
Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE
Funções Geradoras de Variáveis Aleatórias 1 Funções Geradoras de Variáveis Aleatórias Nos programas de simulação existe um GNA e inúmeras outras funções matemáticas descritas como Funções Geradoras de
Variáveis Aleatórias Contínuas e Distribuição de Probabilidad
Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte III 23 de Abril de 2012 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Calcular probabilidades aproximadas
b) Variáveis Aleatórias Contínuas
Disciplina: 221171 b) Variáveis Aleatórias Contínuas Prof. a Dr. a Simone Daniela Sartorio de Medeiros DTAiSeR-Ar 1 Uma variável aleatória é contínua (v.a.c.) se seu conjunto de valores é qualquer intervalo
Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Esperança e Variância 06/14 1 / 19
Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Esperança e Variância 06/14 1 / 19 Nos modelos matemáticos aleatórios parâmetros podem ser
Aula 6 - Variáveis aleatórias contínuas
Aula 6 - Variáveis aleatórias contínuas PhD. Wagner Hugo Bonat Laboratório de Estatística e Geoinformação-LEG Universidade Federal do Paraná 1/2017 Bonat, W. H. (LEG/UFPR) 1/2017 1 / 18 Variáveis aleatórias
PROVA DE ESTATÍSTICA SELEÇÃO MESTRADO/UFMG 2006
Instruções para a prova: PROVA DE ESTATÍSTICA SELEÇÃO MESTRADO/UFMG 006 a) Cada questão respondida corretamente vale um ponto. b) Questões deixadas em branco valem zero pontos (neste caso marque todas
DISTRIBUIÇÕES POISSON E MULTINOMIAL
DISTRIBUIÇÕES POISSON E MULTINOMIAL Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 03 de julho de junho de 2017 Distribuição Poisson A
LISTA DE EXERCÍCIOS 2 VARIÁVEIS ALEATÓRIAS
Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Matemática MTM 5 Estatística Turma 22 Professor: Rodrigo Luiz Pereira Lara LISTA DE EXERCÍCIOS 2 VARIÁVEIS ALEATÓRIAS
Bioestatística e Computação I
Bioestatística e Computação I Distribuições Teóricas de Probabilidade Maria Virginia P Dutra Eloane G Ramos Vania Matos Fonseca Pós Graduação em Saúde da Mulher e da Criança IFF FIOCRUZ Baseado nas aulas
PRO 2271 ESTATÍSTICA I. 3. Distribuições de Probabilidades
PRO71 ESTATÍSTICA 3.1 PRO 71 ESTATÍSTICA I 3. Distribuições de Probabilidades Variáveis Aleatórias Variáveis Aleatórias são valores numéricos que são atribuídos aos resultados de um eperimento aleatório.
DISTRIBUIÇÕES BERNOULLI, BINOMIAL E POISSON
DISTRIBUIÇÕES BERNOULLI, BINOMIAL E POISSON http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 05 de julho de 2017 Distribuição Bernoulli Exemplo Nos experimentos de Bernoulli, o espaço
Lista de exercícios sobre Distribuições Binomial, Poisson e Normal UFPR /2. Monitor Adi Maciel de A. Jr Prof. Jomar.
Lista de exercícios sobre Distribuições Binomial, Poisson e Normal UFPR - 2014/2 Monitor Adi Maciel de A. Jr Prof. Jomar. ----------------//----------------//---------------- Distribuição Binomial N =
Distribuições Contínuas de Probabilidade
Distribuições Contínuas de Probabilidade Uma variável aleatória contínua é uma função definida sobre o espaço amostral, que associa valores em um intervalo de números reais. Exemplos: Espessura de um item
Aula de Exercícios - Variáveis Aleatórias Contínuas (II) Aula de Exercícios - Variáveis Aleatórias Contínuas (II)
Aula de Exercícios - Variáveis Aleatórias Contínuas (II) Organização: Rafael Tovar Digitação: Guilherme Ludwig Exemplo VIII Distribuição contínua Seja X a v. a. contínua cuja densidade de probabilidade
b) Variáveis Aleatórias Contínuas
Disciplina: 1171 b) Variáveis Aleatórias Contínuas Prof. a Dr. a Simone Daniela Sartorio de Medeiros DTAiSeR-Ar 1 Uma variável aleatória é contínua (v.a.c.) se seu conjunto de valores é qualquer intervalo
2º LISTA DE EXERCÍCIO
DISCIPLINA: CÁLCULO DAS PROBABILIDADES E ESTATÍSTICA I Prof. Luiz Medeiros PERÍODO: 2013.2 2º LISTA DE EXERCÍCIO 1) Em uma empresa de cerâmica sabe-se que existe em média 0,1 defeito por m 2. Um comprador
Estatística e Probabilidade, D3, Escolha a alternativa correta e indique no gabarito de respostas
Estatística e Probabilidade, D3, 2019 Escolha a alternativa correta e indique no gabarito de respostas 1. controle de qualidade de uma fábrica acusa 1% de peças defeituosas no seu processo de fabricação
PROVA TESTE ANPAD - RQ EDIÇÃO FEVEREIRO Para que a matriz tenha inversa, é necessário que:
PROVA TESTE ANPAD - RQ EDIÇÃO FEVEREIRO 2008 21. Para que a matriz tenha inversa, é necessário que: A) K= 8. B) K= -8. C) K 8. D) K -8. E) K 8 e K -8. 22. Um título de valor nominal de R$ 5.300,00 foi
Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº3: Introdução às Probabilidades
Ano lectivo: 2006/2007 Universidade da Beira Interior Departamento de Matemática ESTATÍSTICA Ficha de exercícios nº3: Introdução às Probabilidades Curso: Ciências do Desporto 1. Considere a experiência
Introdução à Estatística e Probabilidade Turma B 5 a lista de exercícios (16/11/2015)
) Seja uma v.a. X.d.p. (x) = x se 0 x k. a) Encontre k para que (x) seja uma.d.p. b) Encontre sua.d.a. F(x). c) Calcule a média e a variância de X. Introdução à Estatística e Probabilidade Turma B 5 a
EAC PRECIFICAÇÃO DE DERIVATIVOS E OUTROS PRODUTOS FINANCEIROS
P01-03/04/2017 Nome: NUSP OBSERVAÇÃO: Não serão aceitas somente as respostas dos exercícios. É essencial que o aluno demonstre o raciocínio matemático empregado. Q1. Seu pai comprou uma debênture para
Teorema do Limite Central
Teorema do Limite Central Bacharelado em Economia - FEA - Noturno 1 o Semestre 2014 MAE0219 (IME-USP) Teorema do Limite Central 1 o Semestre 2014 1 / 47 Objetivos da Aula Sumário 1 Objetivos da Aula 2
Aula de Estatística 13/10 à 19/10. Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades
Aula de Estatística 13/10 à 19/10 Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades 4.1 Distribuições de probabilidades Variáveis Aleatórias Geralmente, o resultado de um experimento de probabilidades
Universidade da Beira Interior Departamento de Matemática
Universidade da Beira Interior Departamento de Matemática ESTATÍSTICA Ano lectivo: 2007/2008 Curso: Ciências do Desporto Folha de exercícios nº4: Distribuições de probabilidade. Introdução à Inferência
