GRAVIDADE E GRAVIMETRIA
|
|
|
- Natan Martini Lancastre
- 8 Há anos
- Visualizações:
Transcrição
1 INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA SUL DE MINAS GERAIS Câmpus Inconfidentes GRAVIDADE E Aula 04 GRAVIDADE E POTENCIAL DA GRAVIDADE Supomos que iremos realizar medidas gravitacionais em um determinado local da superfície terrestre (nesse caso podemos desconsiderar a aceleração de Coriolis). Assim, resta somente o termo relacionado a aceleração centrífuga. Uma vez que esta aceleração está sempre presente e, é usualmente adicionada a força de atração gravitacional, resultando no que conhecemos como gravidade. g = a + a c gravidade força de atração gravitacional aceleração centrífuga 1
2 Fonte: vetor da gravidade (SNEEUW, 2006) GRAVIDADE E POTENCIAL DA GRAVIDADE A aceleração centrífuga é conservativa. Portanto, deve existir um potencial centrífugo correspondente a ela. W = V + V c Potencial da gravidade Potencial gravitacional de atração Potencial centrífugo V c = 0,5ω 2 R 2 cos 2 ϕ 2
3 Aceleração centrífuga sobre superfície terrestre considerando um Referencial Topocêntrico Fonte: Sneeuw, 2006 RELAÇÕES TRIGONOMÉTRICAS cosθ= CA/H H CO senθ= CO/H tanθ= CO/CA = senθ/cosθ θ CA 0º ou 0 rad 30º ou π/6 rad 45º ou π/4 rad 60º ou π/3 rad 90º ou π/2 rad cos 1 3/2 2/2 0,5 0 sen 0 0,5 2/2 3/2 1 tan 0 3/3 1 3 NA 3
4 Transformação entre Referencial Terrestre e Referencial Topocêntrico Referencial Topocêntrico Referencial Terrestre EXERCÍCIOS 1 Calcule o potencial centrífugo e o ângulo zenital da aceleração centrífuga de Inconfidentes-MG (ϕ = -22,317820). Qual é o efeito centrífugo sobre a medida da gravidade? 2 As agências espaciais preferem construir plataformas de lançamento no Equador. Calcule a redução de peso de um foguete de 10 toneladas que foi lançado no Equador em relação ao seu lançamento em Inconfidentes-MG. 4
5 ...é a medida da gravidade. Unidades de Medida A gravidade normalmente é medida em unidades de aceleração. No sistema de unidades SI, a medida de aceleração padrão é igual a 1 metro por segundo ao quadrado (m/s 2 ). Outra unidade usual é o Gal (abreviatura de Galileu), que é igual a 1 centímetro por segundo ao quadrado. O miligal (10-3 Gal) é muito utilizado para representar pequenas variações do campo gravitacional. Medida da aceleração da gravidade O instrumento que mede a aceleração da gravidade é conhecido como gravímetro. 5
6 Medida da aceleração da gravidade Em uma de suas formas mais simples, o gravímetro contém uma mola conectada à um objeto pequeno e compacto (massa de prova). A atração gravitacional faz com que o objeto se desloque, esticando ou comprimindo a mola. A mudança de comprimento da mola reflete a atração gravitacional exercida no objeto. Este tipo de gravímetro serve para realizar medidas relativas, ou seja, medidas que refletem a diferença na aceleração de gravidade entre duas posições diferentes. Desta forma, o gravímetro necessita ser calibrado a partir de medidas onde o valores absolutos da aceleração da gravidade são conhecidos. Medida da aceleração da gravidade Os valores de aceleração de gravidade absolutos são determinados por gravímetros absolutos, que utilizam uma massa de prova dentro de um tubo no qual quase todo o ar é retirado, formando um vácuo. A massa de prova, neste caso, sofre queda-livre. Nos gravímetros absolutos modernos, a posição é medida com um interferômetro a laser e o tempo é medido com um relógio atômico ou o maser de hidrogênio. Esses gravímetros fornecem precisão de até 0,002 mgal e costumam ser bem mais caros do que os relativos. 6
7 Gravidade Relativa Na maioria das aplicações, somente a variação da gravidade relativa a uma estação principal é necessária. As Leituras das Medições são gravadas em estações secundárias para que as diferenças relativas sejam conhecidas. O espaçamento das estações varia; 2 a 3 km 2 para pesquisas regionais 8 a 10 por km 2 para pesquisa de hidrocarbonetos 5 a 50 m para trabalhos de precisão, como arqueologia 0,5 m para trabalhos de Microgravidade Medidor de Gravidade baseado em pendulo Christiaan Huygens ( ) desenvolveu uma matemática utilizando o pendulo para manutenção do tempo e a mensuração da gravidade em seu livro Horologium Oscillatorium. Um pendulo matemático é um pendulo fictício composto por um ponto de massa m preso a uma linha de massa desprezível e de comprimento l, que pode oscilar sem atrito em torno do ponto de articulação. O Movimento da massa é restrito a um arco circular entorno do ponto de equilíbrio. 7
8 Medidor de Gravidade baseado em pendulo A gravidade tenta puxar a massa pra baixo. Se a massa não esta em equilíbrio ela irá tangenciar a componente g*sen(φ) dirigida para o ponto de equilíbrio. Basicamente a gravidade é medida utilizando: Onde T é o período de oscilação Medidor de Gravidade baseado em pendulo 8
9 Medidor de Gravidade baseado em mola Se prendermos uma massa na extremidade de uma mola, a força da gravidade irá deformar a mola. Assim, a medida desta deformação irá fornecer a gravidade. Medidor de Gravidade baseado em mola Considere a mola suspensa verticalmente e sem massa, nestas condições o seu comprimento é chamado de l 0. depois de prender uma massa na extremidade da mola o seu comprimento é alterado e será chamado l. De acordo com a lei de Hooke, temos: Onde k é a constante da mola. 9
10 Medidor de Gravidade baseado em mola Este tipo de gravímetro pode ser utilizado como: 1 um gravímetro relativo: 2 determinando o fator k em dois pontos de gravidade conhecida: Medidor de Gravidade baseado em queda-livre O princípio da queda-livre: A equação do movimento da queda de um corpo de prova resulta no valor da gravidade. A equação diferencial integrada duas vezes. Considerando os valores inicia das variáveis v 0 e z 0 igual a 0. 10
11 Medidor de Gravidade baseado em queda-livre O princípio da queda-livre é utilizado por gravímetros absolutos. Neste equipamentos o corpo de prova é um prisma que é submetido a queda-livre num tubo a vácuo e sua altura é medida por um laser interferométrico. A comparação das medidas obtidas define o padrão da queda auxiliado ao tempo obtido entre estes intervalos utilizando um relógio atômico. Estes equipamentos possuem uma precisão relativa abaixo de 10-9 que equivale a um intervalo de 1 a 10 μgal. Medidor de Gravidade baseado em queda-livre 11
12 VELOCIDADE ANGULAR DE ROTAÇÃO De acordo com Gemael (2012), as pequenas oscilações da velocidade de rotação terrestre são negligenciadas, aceitando-se ω como constante, o que permite o cálculo de um valor aproximado apenas dividindo 2π pelo número de segundos médios contidos num dia sideral: ω = 2π/86164,099 = 7, x10-5 rad/s A União Geodésica e Geofísica Internacional recomendou, em dezembro de 1979 na Assembleia de Camberra, a adoção do seguinte valor: ω = 7,292115x10-5 rad/s SUPERFÍCIES EQUIPOTENCIAIS O potencial gravitacional W deverá conter toda a informação sobre o campo gravitacional. A forma mais simples de usar o potencial gravitacional para caracterizar irregularidades do campo gravitacional é utilizar suas Superfícies Equipotenciais e suas linhas de força. A Superfície Equipotencial é a superfície na qual o potencial gravitacional é constante. Obviamente, existe um número infinito de superfícies equipotenciais, uma para cada valor de potencial. Nelas as linhas de força são curvas e o gradiente do potencial é tangente em todos os pontos, essas linhas de força do campo gravitacional da Terra são chamadas de linhas de prumo. 12
13 SUPERFÍCIES EQUIPOTENCIAIS Fonte: CATALÃO (2000). SUPERFÍCIES EQUIPOTENCIAIS Propriedades Nunca se cruzam; São superfícies contínuas; O raio de curvatura varia suavemente de ponto pra ponto (exceto locais onde exista grande variação de massa); São convexas em todos os pontos. 13
14 SUPERFÍCIES EQUIPOTENCIAIS Movendo-se ao longo de uma superfície equipotencial, não há variação no potencial e consequentemente não há trabalho no sentido estático. Contudo, esse movimento não pode ser nem contra ou nem a favor da direção da força de atração gravitacional. A consequência é que as linhas de força devem ser todas perpendiculares às superfícies equipotenciais. Sendo a direção da linha de prumo frequentemente referida pela direção da vertical, as superfícies equipotenciais definem a direção horizontal, assim estas também são chamadas de linhas de nível. REDES GRAVIMÉTRICAS Uma rede gravimétrica é similar a uma rede de nivelamento. Elas possuem um grau de liberdade e necessitam de um ponto com valor de gravidade conhecida. A diferença principal entre uma rede de nivelamento e uma rede gravimétrica está no fato de que os gravímetros relativo exibem o comportamento do desvio. Isto não requer pontos adicionais. Requer apenas que ao menos um dos pontos da rede seja medido duas vezes para se determinar a constante do desvio. 14
15 REDES GRAVIMÉTRICAS Perfil/Seção Transversal Passo-a-Passo Estrela QUESTÕES 1. Qual a forma e dimensão da Terra? 2. Defina força da gravidade. 3. Como se estuda o campo gravitacional? 4. Qual a maneira de se obter as altitudes Ortométricas? 5. Represente numa figura a altura geométrica, altura geoidal e a altitude ortométrica. 6. O que se entende por Geóide e Superfície Equipotencial? 15
16 OBSERVAÇÃO DA GRAVIDADE Basicamente 3 procedimentos são utilizados no estabelecimento de uma rede gravimétrica: 1. O método da Seção Transversal cada ponto é observado 2 vezes (exceto o ponto final). Deve existir uma variação de tempo entre as medidas realizadas no mesmo ponto. 2. O método do Passo-a-Passo cada ponto é observado 3 vezes (exceto o ponto final). A revisita são em intervalos de tempo curto. Este aspecto é vantajoso no caso do desvio não ser linear. 3. O método Estrela as medidas do ponto central são utilizadas para a determinação do desvio. Todos os outros pontos são pontas soltas na rede. Erros grosseiros não podem ser determinados. OBSERVAÇÃO DA GRAVIDADE De todos os métodos mencionados o Passo-a-Passo é o mais utilizado por ser mais preciso na realização da rede. Na realidade uma mistura desses métodos pode ser utilizada. 16
17 GRAVIDADE RELATIVA Vamos denotar como y n (t k ) como a observação da gravidade em um ponto n em função do tempo k. Porque vamos assumir que estamos trabalhando com determinações da gravidade relativas ao ponto n (g n ) de gravidade conhecida, mas com viés b desconhecido. E também assumir que o desvio é linear ao longo do tempo dt k e com ε, como os possíveis ruídos associados a medida, temos a seguinte equação: GRAVIDADE RELATIVA O viés é eliminado pela subtração do medida obtida no primeiro ponto em relação ao ponto de gravidade conhecida n (g n ). Resultando na seguinte equação: 17
18 EXERCÍCIOS 1. Dada um pequena rede gravimétrica e, supondo que os pontos são medidos na ordem , conforme ilustra a figura abaixo: Escreva o modelo de observação linear y = Ax. Lembre-se que y1(t1) não deve aparecer como uma medida isolada, uma vez que ela é subtraída de todas as outras medidas existentes. EXERCÍCIOS (Solução) 1. Dada um pequena rede gravimétrica e, supondo que os pontos são medidos na ordem , conforme ilustra a figura abaixo: 18
19 EXERCÍCIOS 1. Dada um pequena rede gravimétrica e, supondo que os pontos são medidos na ordem , conforme ilustra a figura abaixo: Escreva o modelo de observação linear y = Ax. Lembre-se que y3(t1) não deve aparecer como uma medida isolada, uma vez que ela é subtraída de todas as outras medidas existentes. DÚVIDAS? [email protected] Fonte: BOLSTAD P.,
EAC-082: Geodésia Física. Aula 3: Introdução à Teoria do Potencial Gravidade e Gravimetria
EAC-082: Geodésia Física Prof. Paulo Augusto Ferreira Borges Aula 3: Introdução à Teoria do Potencial Gravidade e Gravimetria 1 https://intranet.ifs.ifsuldeminas.edu.br/~paulo.borges/ 1/31 Força da Gravidade
TERRA NORMAL. Segundo ARANA (2009) a denominação de Terra Normal é dada à figura geométrica, elipsóide de revolução; o qual possui:
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA SUL DE MINAS GERAIS Câmpus Inconfidentes O CAMPO NORMAL Aula 08 TERRA NORMAL Segundo ARANA (2009) a denominação de Terra Normal é dada à figura geométrica,
Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula
Aula 3 010 Movimento Harmônico Simples: Exemplos O protótipo físico do movimento harmônico simples (MHS) visto nas aulas passadas um corpo de massa m preso a uma mola executando vibrações de pequenas amplitudes
Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 3. de maneira que o sistema se comporta como um oscilador harmônico simples.
591036 Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 3 O Pêndulo Simples O protótipo físico do movimento harmônico simples (MHS) visto nas aulas passadas um corpo de massa m preso a uma mola
GRAVITAÇÃO O QUE É A GRAVIDADE? 09/08/16
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA SUL DE MINAS GERAIS Câmpus Inconfidentes GRAVITAÇÃO Aula 02 O QUE É A GRAVIDADE? Embora os estudos empíricos sobre o movimento de queda livre tenham
Theory Portugues BR (Brazil) Por favor, leia as instruções gerais contidas no envelope separado antes de iniciar este problema.
Q1-1 Dois problemas de Mecânica (10 pontos) Por favor, leia as instruções gerais contidas no envelope separado antes de iniciar este problema. Parte A. O disco escondido (3.5 pontos) Considere um cilindro
INTRODUÇÃO A GEODÉSIA FÍSICA
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA SUL DE MINAS GERAIS Câmpus Inconfidentes INTRODUÇÃO A GEODÉSIA FÍSICA Aula 01 GEODÉSIA FÍSICA A Geodésia pode ser designada por: Geodésia Geométrica;
A EQUAÇÃO FUNDAMENTAL DA GEODÉSIA FÍSICA
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA SUL DE MINAS GERAIS Câmpus Inconfidentes A Aula 09 POTENCIAL PERTURBADOR A diferença, num mesmo ponto, entre o potencial da Terra real (geopotencial
DIFICULDADES NA DEFINIÇÃO DE ALTITUDE
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA SUL DE MINAS GERAIS Câmpus Inconfidentes ALTITUDES Aula 12 Segundo MORITZ(2007) apud GEMAEL (2012) é altura medida a partir do geoide sobre uma linha
MOVIMENTO OSCILATÓRIO
MOVIMENTO OSCILATÓRIO 1.0 Noções da Teoria da Elasticidade A tensão é o quociente da força sobre a área aplicada (N/m²): As tensões normais são tensões cuja força é perpendicular à área. São as tensões
UNIVERSIDADE CATÓLICA DE GOIÁS. Departamento de Matemática e Física Coordenador da Área de Física
UNIVERSIDADE CATÓLICA DE GOIÁS Departamento de Matemática e Física Coordenador da Área de Física Disciplina: Física Geral e Experimental II (MAF 2202) L I S T A I Capítulo 16 Oscilações 1. Um oscilador
Aula do cap. 16 MHS e Oscilações
Aula do cap. 16 MHS e Oscilações Movimento harmônico simples (MHS). Equações do MHS soluções, x(t), v(t) e a(t). Relações entre MHS e movimento circular uniforme. Considerações de energia mecânica no movimento
CINEMÁTICA E DINÂMICA
PETROBRAS TECNICO(A) DE OPERAÇÃO JÚNIOR CINEMÁTICA E DINÂMICA QUESTÕES RESOLVIDAS PASSO A PASSO PRODUZIDO POR EXATAS CONCURSOS www.exatas.com.br v3 RESUMÃO GRANDEZAS E UNIDADES (S.I.) s: Espaço (distância)
QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4)
[0000]-p1/7 QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) ando necessário, use π = 3, 14, g=10 m/s. (1) [1,0] Um móvel executa MHS e obedece à função horária x=cos(0,5πt+π), no SI. O tempo necessário para que este
Física 1. 3 a prova 08/07/2017. Atenção: Leia as recomendações antes de fazer a prova.
Física 1 3 a prova 08/07/2017 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua
VESTIBULAR UFPE UFRPE / ª ETAPA NOME DO ALUNO: ESCOLA: SÉRIE: TURMA:
VESTIBULAR UFPE UFRPE / 1998 2ª ETAPA NOME DO ALUNO: ESCOLA: SÉRIE: TURMA: FÍSICA 3 VALORES DE ALGUMAS GRANDEZAS FÍSICAS Aceleração da gravidade : 1 m/s 2 Carga do elétron : 1,6 x 1-19 C Massa do elétron
Aula 1: Conceitos Introdutórios. EAC-066: Geodésia Espacial
EAC-066: Geodésia Espacial Prof. Paulo Augusto Ferreira Borges https://intranet.ifs.ifsuldeminas.edu.br/~paulo.borges/ 1 1/35 A Geodésia é a ciência que tem por objeto determinar a forma e as dimensões
28/Fev/2018 Aula Aplicações das leis de Newton do movimento 4.1 Força de atrito 4.2 Força de arrastamento Exemplos.
28/Fev/2018 Aula 4 4. Aplicações das leis de Newton do movimento 4.1 Força de atrito 4.2 Força de arrastamento Exemplos 5/Mar/2018 Aula 5 5.1 Movimento circular 5.1.1 Movimento circular uniforme 5.1.2
As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um
As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um alto-falante, ou de um instrumento de percussão. Um terremoto
LISTA DE EXERCÍCIOS 1
LISTA DE EXERCÍCIOS Esta lista trata de vários conceitos associados ao movimento harmônico simples (MHS). Tais conceitos são abordados no capítulo 3 do livro-texto: Moysés Nussenzveig, Curso de Física
Theory Portuguese (Portugal) Antes de iniciar este problema, leia cuidadosamente as Instruções Gerais que pode encontrar noutro envelope.
Q1-1 Dois Problemas de Mecânica Antes de iniciar este problema, leia cuidadosamente as Instruções Gerais que pode encontrar noutro envelope. Parte A. O Disco Escondido (3,5 pontos) Considere um cilindro
Física 1 VS 15/07/2017. Atenção: Leia as recomendações antes de fazer a prova.
Física 1 VS 15/07/2017 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua resposta.
GRAVIMETRÍA. 1. Noções elementares A gravimetría Atração gravitacional terrestre. 2. Medidas de gravidade. 2.1.
GRAVIMETRÍA 1. Noções elementares 1.1. A gravimetría 1.2. Atração gravitacional terrestre 2. Medidas de gravidade 2.1. Instrumental 2.2. Correções de dados de gravidade 2.2.1. Correção de instrumento (drift)
O pêndulo simples é constituído por uma partícula de massa
AULA 42 APLICAÇÕES DO MOVIMENTO HARMÔNICO SIMPLES OBJETIVOS: APLICAR A TEORIA DO MOVIMENTO HARMÔNICO SIMPLES A PÊNDULOS 42.1 PÊNDULO SIMPLES: O pêndulo simples é constituído por uma partícula de massa
Lista Básica Aulas 22 e 23 Frente 3
TEXTO PARA A PRÓXIMA QUESTÃO: Considere os dados abaixo para resolver a(s) questão(ões), quando for necessário. Constantes físicas Aceleração da gravidade próximo à superfície da Terra: Aceleração da gravidade
PROCESSO SELETIVO TURMA DE 2016 FASE 1 PROVA DE FÍSICA E SEU ENSINO
PROCESSO SELETIVO TURMA DE 2016 FASE 1 PROVA DE FÍSICA E SEU ENSINO Caro professor, cara professora, esta prova tem 2 partes; a primeira parte é objetiva, constituída por 14 questões de múltipla escolha,
EXEMPLOS FORÇA CENTRÍFUGA AULA 23. Prof a Nair Stem Instituto de Física da USP
EXEMPLOS FORÇA CENTRÍFUGA AULA 3 Prof a Nair Stem Instituto de Física da USP FORÇA CENTRÍFUGA Forças que aparecem em um referencial S em rotação uniforme em relação a um referencial S. Como por exemplo
2008 3ª. Fase Prova para alunos do 3º. ano LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO:
2008 3ª. Fase Prova para alunos do 3º. ano LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO: 01) Essa prova destina-se exclusivamente a alunos do 3º. ano do Ensino Médio e contém oito (8) questões. 02) Os alunos
O Sistema Massa-Mola
O Sistema Massa-Mola 1 O sistema massa mola, como vimos, é um exemplo de sistema oscilante que descreve um MHS. Como sabemos (aplicando a Segunda Lei de Newton) temos que F = ma Como sabemos, no caso massa-mola
Física I VS 18/07/2015
Física I VS 18/07/2015 NOME MATRÍCULA TURMA PROF. Lembrete: 20 questões de múltipla escolha. Cada questão vale 0,5 ponto Utilize: g = 9,80 m/s 2, exceto se houver alguma indicação em contrário. Nota 1.
Exemplo. T 1 2g = -2a T 2 g = a. τ = I.α. T 1 T 2 g = - 3a a g = - 3a 4a = g a = g/4. τ = (T 1 T 2 )R. T 1 T 2 = Ma/2 T 1 T 2 = a.
Exercícios Petrobras 2008 eng. de petróleo Dois corpos de massa m 1 = 2 kg e m 2 = 1 kg estão fixados às pontas de uma corda com massa e elasticidade desprezíveis, a qual passa por uma polia presa ao
LISTA 05 FUNDAMENTOS DE MECÂNICA
LISTA 05 FUNDAMENTOS DE MECÂNICA 01) Em 72s um móvel cuja velocidade escalar é 20km/h descreve uma trajetória circular de raio 0,10km. Determine o ângulo descrito pelo móvel nesse intervalo. R: Δ φ= 4,0rad
Dinâ micâ de Mâ quinâs e Vibrâçõ es II
Dinâ micâ de Mâ quinâs e Vibrâçõ es II Aula 1 Revisão e princípios básicos: O objetivo desta aula é recapitular conceitos básicos utilizados em Dinâmica e Vibrações. MCU Movimento circular uniforme 1.
1) O vetor posição de uma partícula que se move no plano XZ e dado por: r = (2t 3 + t 2 )i + 3t 2 k
1) O vetor posição de uma partícula que se move no plano XZ e dado por: r = (2t + t 2 )i + t 2 k onde r é dado em metros e t em segundos. Determine: (a) (1,0) o vetor velocidade instantânea da partícula,
GA112 FUNDAMENTOS EM GEODÉSIA. Capítulo O fenômeno das marés terrestres
GA112 FUNDAMENTOS EM GEODÉSIA Capítulo 5 5.4.3 O fenômeno das marés terrestres Regiane Dalazoana REVISÃO Além da gravimetria terrestre que restringe-se a parte continental do globo, existem outras formas
Lista 14: Oscilações. Questões
Lista 14: Oscilações NOME: Importante: i. Ler os enunciados com atenção. ii. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. iii. Siga a estratégia para resolução
Soma das Corretas: Soma das Corretas:
1. (UFRGS - 2012) Um determinado pêndulo oscila com pequena amplitude em um dado local da superfície terrestre, e seu período de oscilação é de 8 s. Reduzindo-se o comprimento desse pêndulo para 1/4 do
EAC-082: Geodésia Física. Aula 6: Altitudes e o Geopotencial
EAC-082: Geodésia Física Prof. Paulo Augusto Ferreira Borges Aula 6: Altitudes e o Geopotencial 1 https://intranet.ifs.ifsuldeminas.edu.br/~paulo.borges/ 1/33 Potencial Gravitacional Vimos anteriormente
Física 2 - EMB5039. Prof. Diego Duarte Oscilações (lista 4) 19 de abril de 2017
Física 2 - EMB5039 Prof. Diego Duarte Oscilações (lista 4) 19 de abril de 2017 1. Mostre que a equação que descreve o sistema massa-mola vertical da figura 1 é dada por: d 2 y dt 2 + ω2 y = 0 (1) em que
MHS Movimento Harmônico Simples
2010 ESCOLA ALUNO MHS Movimento Harmônico Simples 1. (Mackenzie) Uma partícula descreve um movimento harmônico simples segundo a equação X = 0,3. cos (π /3 + 2.t), no S.I.. O módulo da máxima velocidade
Tópico 8. Aula Prática: Pêndulo Simples
Tópico 8. Aula Prática: Pêndulo Simples 1. INTRODUÇÃO Um pêndulo é um sistema composto por uma massa acoplada a um pivô que permite sua movimentação livremente. A massa fica sujeita à força restauradora
Cartografia. Profa. Ligia Flávia Antunes Batista
Cartografia Profa. Ligia Flávia Antunes Batista Forma do planeta Esférica (PITÁGORAS, 528 A.C.) Achatada 2 Forma do planeta Matemático alemão Carl Friedrich Gauss (1777-1855): conceito de geóide 3 Percepções
Experiência 3 - Pêndulo
Roteiro de Física Experimental II 13 Experiência 3 - Pêndulo 1 - OBJEIVO O objetivo desta aula é discutir o movimento harmônico de um pêndulo físico e realizar um experimento sobre o mesmo Através de medidas
LABORATÓRIO DE GEOPROCESSAMENTO DIDÁTIC
LABORATÓRIO DE GEOPROCESSAMENTO DIDÁTICO Professora: Selma Regina Aranha Ribeiro Estagiários: Ricardo Kwiatkowski Silva / Carlos André Batista de Mello Forma da Terra Superfície Topográfica Forma verdadeira
EXERCÍCIOS PARA PROVA ESPECÍFICA E TESTÃO 1 ANO 4 BIMESTRE
1. (Unesp 89) Um cubo de aço e outro de cobre, ambos de massas iguais a 20 g estão sobre um disco de aço horizontal, que pode girar em torno de seu centro. Os coeficientes de atrito estático para aço-aço
Exercícios desafiadores de Dinâmica da Partícula
Exercícios desafiadores de Dinâmica da Partícula Stevinus setembro 2009 2 Dinâmica da Partícula 2.1 Sejam Espertos! Como tratar de um problema de dinâmica de um número finito de partículas? Separar as
Parte 2 - P2 de Física I Nota Q Nota Q2 Nota Q3 NOME: DRE Teste 1
Parte - P de Física I - 017- Nota Q1 88888 Nota Q Nota Q3 NOME: DRE Teste 1 Assinatura: AS RESPOSTAS DAS QUESTÕES DISCURSIVAS DEVEM SER APRESENTADAS APENAS NAS FOLHAS GRAMPEA- DAS DE FORMA CLARA E ORGANIZADA.
FEP Física para Engenharia II
FEP196 - Física para Engenharia II Prova P1-18/09/008 Nome:........................................... N o USP:...................... Assinatura:................................ Turma/Professor:.................
Universidade Federal do Rio de Janeiro Instituto de Física Lista de Revisão Física 1. prof. Daniel Kroff e Daniela Szilard 17 de abril de 2015
Universidade Federal do Rio de Janeiro Instituto de Física Lista de Revisão Física 1 prof. Daniel Kroff e Daniela Szilard 17 de abril de 2015 1. Uma partícula move-se em linha reta, partindo do repouso
LISTA DE EXERCÍCIOS - MOVIMENTO HARMÔNICO SIMPLES (MHS) (versão 2014/2)
LISTA DE EXERCÍCIOS - MOVIMENTO HARMÔNICO SIMPLES (MHS) (versão 2014/2) A CINEMÁTICA NO MHS 1.1.- (HALLIDAY, 4ª EDIÇÃO, CAP. 14, 1E) Um objeto sujeito a um movimento harmônico simples leva 0,25 s para
4.1 INTRODUÇÃO Geodésia Celeste - Objetivo científico e operacional Métodos geométricos e dinâmicos
4 MECÂNICA CELESTE E GEODÉSIA 4. INTRODUÇÃO 4.. Geodésia Celeste - Objetivo científico e operacional 4.. Métodos geométricos e dinâmicos 4. MOVIMENTO ORBITAL 4.. Forças centrais. O problema dos dois corpos
Bacharelado Engenharia Civil
Bacharelado Engenharia Civil Física Geral e Experimental I Prof.a: Érica Muniz 1 Período Lançamentos Movimento Circular Uniforme Movimento de Projéteis Vamos considerar a seguir, um caso especial de movimento
Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785
Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 [email protected] www.ief.ita.br/~rrpela Onde estamos? Nosso roteiro ao longo deste capítulo A equação do movimento Equação do movimento
FEP Física Geral e Experimental para Engenharia I
FEP2195 - Física Geral e Experimental para Engenharia I Prova P1-10/04/2008 - Gabarito 1. A luz amarela de um sinal de transito em um cruzamento fica ligada durante 3 segundos. A largura do cruzamento
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ. 1. Use o gráfico de y = f(x) na figura em anexo para estimar o valor de f ( 2), f (1) e f (2).
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ 3 a Lista de Exercícios de Cálculo Diferencial e Integral I: Derivada Prof. Wellington D. Previero 1. Use o gráfico de y = f(x) na figura em anexo para estimar
Parte 2 - P3 de Física I NOME: DRE Gabarito Teste 1. Assinatura:
Parte - P3 de Física I - 018-1 NOME: DRE Gabarito Teste 1 Assinatura: Questão 1 - [,7 pontos] Uma barra de comprimento L e massa M pode girar livremente, sob a ação da gravidade, em torno de um eixo que
FIS-14 Lista-01 Novembro/2017
FIS-14 Lista-01 Novembro/2017 1. A rotação do braço robótico ocorre em virtude do movimento linear dos cilindros hidráulicos A e B. Se esse movimento faz com que a engrenagem em D gire no sentido horário
Professor: Leonard Niero da Silveira
UNIVERSIDADE FEDERAL DO PAMPA CURSO DE ENGENHARIA DE AGRIMENSURA Professor: Leonard Niero da Silveira [email protected] Com o tempo multiplicaram-se as triangulações geodésicas, em que foram
Olimpíada Brasileira de Física ª Fase
Olimpíada Brasileira de Física 2001 3ª Fase 3º Ano Leia com atenção todas as instruções seguintes. Este exame é destinado exclusivamente aos alunos do 3º ano, sendo constituído por 8 questões. Todas as
Física I Prova 2 25/10/2014
Nota Física I Prova 5/10/014 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 6 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 8 questões
Notas de Aula de Física
Versão preliminar 9 de setembro de 00 Notas de Aula de ísica. EQUIÍBRIO... CONDIÇÕES ARA O EQUIÍBRIO... SOUÇÃO DE AGUNS ROBEMAS... 0... 5... 9... 4 5... 5 7... 6 4... 7 5... 8 9... 8 rof. Romero Tavares
Física 1. Resumo e Exercícios P1
Física 1 Resumo e Exercícios P1 Fórmulas e Resumo Teórico Parte 1 Derivada de polinômios - Considerando um polinômio P x = ax %, temos: d P x = anx%() dx Integral de polinômios - Considerando um polinômio
CARTOGRAFIA. Formas e representações da terra. Prof. Luiz Henrique S. Rotta
CARTOGRAFIA Formas e representações da terra Prof. Luiz Henrique S. Rotta CARTOGRAFIA O simples deslocamento de um ponto a outro na superfície de nosso planeta, já justifica a necessidade de se visualizar
FÍSICA. Constantes físicas necessárias para a solução dos problemas: Aceleração da gravidade: 10 m/s 2. Constante de Planck: 6,6 x J.s.
FÍSIC Constantes físicas necessárias para a solução dos problemas: celeração da gravidade: 10 m/s Constante de lanck: 6,6 x 10-34 J.s 01. Um barco de comprimento L = 80 m, navegando no sentido da correnteza
Considerando a variação temporal do momento angular de um corpo rígido que gira ao redor de um eixo fixo, temos:
Segunda Lei de Newton para Rotações Considerando a variação temporal do momento angular de um corpo rígido que gira ao redor de um eixo fixo, temos: L t = I ω t e como L/ t = τ EXT e ω/ t = α, em que α
Universidade de São Paulo. Instituto de Física. FEP112 - FÍSICA II para o Instituto Oceanográfico 1º Semestre de 2009
Universidade de São Paulo Instituto de Física FEP11 - FÍSICA II para o Instituto Oceanográfico 1º Semestre de 9 Primeira Lista de Exercícios Oscilações 1) Duas molas idênticas, cada uma de constante, estão
Física Geral e Experimental III
Física Geral e Experimental III Oscilações Nosso mundo está repleto de oscilações, nas quais os objetos se movem repetidamente de um lado para outro. Eis alguns exemplos: - quando um taco rebate uma bola
Questões Conceituais
Questões em Sala de Aula Módulo 3 Parte B Questões Conceituais QC.1) Num oscilador harmônico simples, massa-mola, a velocidade do bloco oscilante depende (a) da constante elástica k da mola e da amplitude;
Universidade Federal do Rio de Janeiro Instituto de Física Lista de Revisão Física 1. prof. Daniel Kroff e Daniela Szilard 20 de junho de 2015
Universidade Federal do Rio de Janeiro Instituto de Física Lista de Revisão Física 1 prof. Daniel Kroff e Daniela Szilard 20 de junho de 2015 OBS: Quando necessário, considere como dados a aceleração da
Física I Prova 3 7/06/2014
Nota Física I Prova 3 7/06/2014 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 2 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 12
Física I Prova 2 25/10/2014
Nota Física I Prova 5/10/014 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 6 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 8 questões
MATEMÁTICA 1ª QUESTÃO. O domínio da função real = 2ª QUESTÃO. O valor de lim +3 1 é C) 2/3 D) 1 E) 4/3 3ª QUESTÃO B) 3 4ª QUESTÃO
MATEMÁTICA 1ª QUESTÃO O domínio da função real = 9 é A) R B) R 3
Forma e Dimensões da Terra Prof. Rodolfo Moreira de Castro Junior
Topografia e Geomática Fundamentos Teóricos e Práticos AULA 02 Forma e Dimensões da Terra Prof. Rodolfo Moreira de Castro Junior Características Gerais da Terra A Terra gira em torno de seu eixo vertical
Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785
Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 [email protected] www.ief.ita.br/~rrpela Onde estamos? Nosso roteiro ao longo deste capítulo A equação do movimento Equação do movimento
Física MHS. Questão 01 - (FUVEST SP/2016)
Questão 01 - (FUVEST SP/2016) Um pêndulo simples, constituído por um fio de comprimento L e uma pequena esfera, é colocado em oscilação. Uma haste horizontal rígida é inserida perpendicularmente ao plano
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof.
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS Prof. Bruno Farias Arquivo em anexo Conteúdo Programático Bibliografia
EAC-082: Geodésia Física. Aula 09 Equação Fundamental da Geodésia Física
EAC-082: Geodésia Física Prof. Paulo Augusto Ferreira Borges Aula 09 Equação Fundamental da Geodésia Física 1 https://intranet.ifs.ifsuldeminas.edu.br/~paulo.borges/ 1/14 Potencial Anômalo 1. Definição
MATEMÁTICA 1ª QUESTÃO. O valor do número real que satisfaz a equação =5 é. A) ln5. B) 3 ln5. C) 3+ln5. D) ln5 3. E) ln5 2ª QUESTÃO
MATEMÁTICA 1ª QUESTÃO O valor do número real que satisfaz a equação =5 é A) ln5 B) 3 ln5 C) 3+ln5 D) ln5 3 E) ln5 ª QUESTÃO O domínio da função real = 64 é o intervalo A) [,] B) [, C), D), E), 3ª QUESTÃO
Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto.
Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Exemplos: pêndulos, ponte ao ser submetida à passagem de um veículo, asas de um avião ao sofrer turbulência
LISTA DE EXERCÍCIOS Nº 10. 2) O que ocorre com o ioiô inicialmente estacionário da Figura 2 se este é excitado por uma força (a) F 2, (b)
LISTA DE EXERCÍCIOS Nº 10 Questões 1) Na Figura 1, 3 forças de mesma magnitude são aplicadas em uma partícula que encontra-se na origem do sistema de referência. Ordene as forças de acordo com as magnitudes
Física. Física Módulo 1 Velocidade Relativa, Movimento de Projéteis, Movimento Circular
Física Módulo 1 Velocidade Relativa, Movimento de Projéteis, Movimento Circular Velocidade Relativa Um Gedankenexperiment Imagine-se agora em um avião, a 350 km/h. O destino (a direção) é por conta de
Fís. Leonardo Gomes (Guilherme Brigagão)
Semana 11 Leonardo Gomes (Guilherme Brigagão) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA
Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção.
Lista 14: Oscilações NOME: Turma: Prof. : Matrícula: Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder a questão
QUESTÕES DISCURSIVAS
QUESTÕES DISCURSIVAS Questão 1. (3 pontos) Numa mesa horizontal sem atrito, dois corpos, de massas 2m e m, ambos com a mesma rapidez v, colidem no ponto O conforme a figura. A rapidez final do corpo de
Aula 1: Conceitos Introdutórios. EAC-082: Geodésia Física
Aula 1: Conceitos Introdutórios EAC-082: Geodésia Física Prof. Paulo Augusto Ferreira Borges 1 https://intranet.ifs.ifsuldeminas.edu.br/~paulo.borges/ 1/35 Aula 1: Conceitos Introdutórios A Geodésia é
Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Física II Professora: Subênia Medeiros
Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Física II Professora: Subênia Medeiros Movimento Periódico O movimento é um dos fenômenos mais fundamentais
Física I Prova 1 04/06/2016a
Física I Prova 1 04/06/016a NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 0 questões de múltipla escolha valendo 0,5 ponto cada. Utilize: g = 9,80 m/s, exceto se houver alguma indicação em contrário.
Parte 2 - P2 de Física I NOME: DRE Teste 0. Assinatura:
Parte 2 - P2 de Física I - 2018-1 NOME: DRE Teste 0 Assinatura: Questão 1 - [3,0 pontos] Um sistema formado por dois blocos de mesma massa m, presos por uma mola de constante elástica k e massa desprezível,
1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo:
Atividades Complementares 1. Com o auxílio de régua graduada e transferidor, calcular sen 4, cos 4 e tg 4. Traçamos uma perpendicular a um dos lados desse ângulo: Medimos, com auxílio da régua, os lados
Física 1. 1 a prova 22/09/2018. Atenção: Leia as recomendações antes de fazer a prova.
Física 1 1 a prova 22/09/2018 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua
Cada questão objetiva vale 0,7 ponto
Instituto de Física Segunda Prova de Física I 2017/1 Nas questões em que for necessário, considere que: todos os fios e molas são ideais; os fios permanecem esticados durante todo o tempo; a resistência
EN 2010 (A)0,8 (B) 1,0 (C) 2,0 (D) 3,0 (E) 4,0
EN 010 1. Uma pequena esfera de massa m está presa a um fio ideal de comprimento L = 0,4m, que tem sua outra extremidade presa ao teto, conforme indica a figura. No instante t = 0, quando o fio faz um
PROCESSO SELETIVO TURMA DE 2009 FASE 1 PROVA DE CONHECIMENTOS DE FÍSICA
SELEÇÃO 9 PROCESSO SELETIVO TURMA DE 9 FASE PROVA DE CONHECIMENTOS DE FÍSICA Caro professor, esta prova tem questões de caráter objetivo (múltipla escolha) sobre física básica. A duração da prova é de
