Polos Olímpicos de Treinamento. Aula 9. Curso de Geometria - Nível 3. Prof. Cícero Thiago

Tamanho: px
Começar a partir da página:

Download "Polos Olímpicos de Treinamento. Aula 9. Curso de Geometria - Nível 3. Prof. Cícero Thiago"

Transcrição

1 Polos Olímpios de Treinamento urso de Geometria - Nível 3 Prof. íero Thiago ula 9 Relações métrias no triângulo. Teorema 1. (Lei dos Senos) Seja um triângulo tal que = a, = b e =. Seja R o raio da irunferênia irunsrita. Então emonstração. a sin = b sin = sin = 2R. b O ˆ a ˆ Seja um diâmetro. É fáil ver que =. ssim, no triângulo, sin = b 2R b = 2R. nalogamente, sin a sin = sin = 2R.

2 POT Geometria - Nível 3 - ula 9 - Prof. íero Thiago Finalmente, a sin = b sin = sin = 2R. Teorema 2. (Lei dos ossenos) Seja um triângulo tal que = a, = b e =. Então, a 2 = b bos, emonstração. b 2 = a aos, 2 = a 2 +b 2 2abos. H b ˆ m a m Vamos fazer o aso em que o triângulo é autângulo. O aso em que o triângulo é obtusângulo fia omo exeríio. pliando o teorema de Pitágoras nos triângulos e, temos: 2 = m 2 +H 2 e b 2 = (a m) 2 +H 2 b 2 = a 2 2am+m 2 +H 2. ssim, b 2 = a am. Por outro lado, os = m b 2 = a aos. nalogamente, m = os. Finalmente, a 2 = b bos e 2 = a 2 +b 2 2abos. Teorema 3. (Stewart) Seja um triângulo tal que = a, = b e =. Seja um ponto sobre o lado tal que = x, = y e = z. Então, 2 y +b 2 x z 2 a = axy. 2

3 POT Geometria - Nível 3 - ula 9 - Prof. íero Thiago emonstração. z b 180 α α x y pliando a lei dos ossenos nos triângulos e, temos 2 = x 2 +z 2 2xzos(180 α) E 2 x = x+ z2 x 2zos(180 α). (1) diionando (1) e (2), enontramos b 2 = y 2 +z 2 2yzosα b 2 y = y + z2 2zosα. (2) y b 2 y + 2 x b 2 y + 2 x = x+y + z2 y + z2 x = a+ z2 y + z2 x 2 y +b 2 x z 2 a = axy. Teorema 4. (eva trigonométrio) Seja um triângulo e sejam, E e F pontos sobre os lados, e, respetivamente. Então,, E e F são onorrentes se, e somente se, sin sin sin E sin E sin F sin F = 1. emonstração. Suponha que, E e F são onorrentes em P. 3

4 POT Geometria - Nível 3 - ula 9 - Prof. íero Thiago F P E pliando lei dos senos nos triângulos P, P e P, respetivamente, temos Portanto, 1) 2) 3) P sin = P sin F = P sin = P sin E sin E sin = P P. P sin E sin F sin E = P P. P sin F sin sin F = P P. P P P P P P = sin E sin sin F sin E sin sin F = 1. Para demonstrar a reíproa, ou seja, se sin sin sin E sin E sin F sin F = 1 então, E e F são onorrentes, usaremos o seguinte Lema: Seja um triângulo e uma eviana qualquer. Então, emonstração. = sin sin. 4

5 POT Geometria - Nível 3 - ula 9 - Prof. íero Thiago pliando a lei dos senos nos triângulos e, respetivamente, temos 1) sin = sin 2) sin = sin. Por outro lado, sin = sin pois + = 180. ssim, = sin sin. e maneira análoga, sejam E e F evianas quaisquer, então E E = sin E sin E, F F = sin F sin F. Multipliando todas as igualdades enontramos E E F F teorema de eva, segue o resultado. = 1. Pela reíproa do Exeríios resolvidos 1. (hina Western) Em um trapézio, //. Sejam E um ponto variando sobre o lado, O 1 e O 2 os irunentros dos triângulos E e E, respetivamente. Prove que o omprimento de O 1 O 2 é fixo. Solução. E O 1 O 2 É fáil ver que EO 1 = 90 E e EO 2 = 90 E. Então, O 1 EO 2 = E + E. 5

6 POT Geometria - Nível 3 - ula 9 - Prof. íero Thiago omo, onstrua uma paralela a, por E. essa forma E = E + E, ou seja, O 1 EO 2 = E. Usando lei dos senos, temos ssim, E O 1 EO 2. Portanto, E E = 2O 1Esin 2O 2 Esin = O 1E O 2 E. O 1 O 2 = O 1E E = Portanto, O 1 O 2 =, que é um valor fixo. 2sin O 1 E 2O 1 Esin = 1 2sin. 2. Seja um quadrilátero insrito em uma irunferênia de diâmetro. Se = = 1 e = 3, ahe o omprimento da orda. Solução. α α Temos que = 3, = = 1. pliando o teorema de Pitágoras no triângulo, temos 2 = = =

7 POT Geometria - Nível 3 - ula 9 - Prof. íero Thiago lém disso, osα = = 2 2. pliando a lei dos ossenos no triângulo, 3 temos 2 = osα 1 2 = = 3 ou 7 3. omo o diâmetro mede 3, então = (Teste de seleção do rasil para a one Sul) Em um triângulo autângulo, = 30, H é seu ortoentro e M é o ponto médio de. Sobre a reta HM tomemos um ponto T H tal que HM = MT. Mostre que T = 2. Solução. H M T HT é um paralelogramo pois M é o ponto médio de e HM = MT. lém disso, e H, assim T, ou seja, T = 90. om isso, T pertene à irunferênia irunferênia irunsrita a e T é diâmetro. Portanto, T = 2R = sin = sin30 = Seja um triângulo om = 40 e = 60. Sejam e E pontos sobre os lados e, respetivamente, tais que = 40 e E = 70 e F a interseção de e E. Prove que F. Solução. 7

8 POT Geometria - Nível 3 - ula 9 - Prof. íero Thiago E F G Seja G o pé da altura relativa ao lado. É fáil ver que G = 30 e, om isso, G = 10. omo = 40, então = 20. lém disso, omo E = 70, então E = 10. pliando o teorema de eva trigonométrio temos sin G sin G sin sin E sin E = sin10 sin20 sin70 sin30 sin40 sin10 = 2 sin20 os20 sin40 = 1. Portanto, G, e E são onorrentes. Exeríios propostos 1. Seja um triângulo tal que = 45 o. Seja o ponto sobre o segmento tal que 2 = e = 15 o. etermine o ângulo. 2. (IME) Seja um triângulo tal que = 13, = 15 e = 14. Seja o ponto do segmento tal que = 6. Seja E o ponto de tal que E > e E =. etermine E. 3. (OM) etermine a área de um hexágono onvexo que está insrito em um írulo e tem três lados onseutivos iguais a 3 m e os outros três om omprimentos iguais a 2 m. 4. (OM) s retas r, s e t são paralelas. reta s está situada entre r e t de tal modo que a distânia de s a r é 3m e a distânia de s a t é 1m. alule a área de um 8

9 POT Geometria - Nível 3 - ula 9 - Prof. íero Thiago triângulo equilátero onde os vérties se enontram sobre ada uma das três retas. 5. Em um triângulo, = 100 o e =. Seja a bissetriz de, om sobre o lado. Prove que + =. 6. Os lados a > b > ( de ) um( triângulo ) estão em P.. de razão k > 0. (i) Prove que tg tg = (ii) Se r é o inraio, prove que r = ( 3 tg ( 2 2k ) tg ( )) Seja P um ponto no interior do triângulo tal que P = 10, P = 20, P = 30 e P = 40. Prove que o triângulo é isóseles. 8. Seja um triângulo, prove que r = 4R sin 2 sin 2 sin Seja umtriângulotalquemax{,} = +30. Proveque éumtriângulo retângulo se, e somente se, R r = (IMO) Seja I o inentro do triângulo. Sejam K, L, M os pontos onde o írulo insrito em toa os lados, e, respetivamente. reta paralela a MK passando por enontra as retas LM e LK em R e S, respetivamente. Mostre que o ângulo RIS é agudo. 11. Um triângulo equilátero tem lado 2 m e Γ é a sua irunferânia insrita. emonstre que para todo ponto de Γ a soma dos quadrados de suas distânias aos vérties, e é igual a (IMO) Em um triângulo a bissetriz do ângulo interseta o írulo irunsrito do triângulo novamente no ponto R, a mediatriz de em P, a mediatriz de em Q. O ponto médio de é K e o ponto médio de é L. Prove que os triângulos RPK e RQL tem a mesma área. 13. IMO Shortlist)Seja 1 o entro de um quadrado insrito em um triângulo autângulo, om dois de seus vérties sobre o lado e os outros dois vérties, estão sobre os lados e. Pontos 1 e 1 são definidos de maneira similar, insrevendo quadrados om dois de seus vérties sobre os lados e, respetivamente. Prove 9

10 POT Geometria - Nível 3 - ula 9 - Prof. íero Thiago que as retas 1, 1 e 1 são onorrentes. 14. (Teste de seleção do rasil para a IMO)Seja Γ uma irunferênia de entro O tangente aos lados e do triângulo nos pontos E e F. reta perpendiular ao lado por O interseta EF no ponto. Mostre que, e M (ponto médio de ) são olineares. ibliografia Trigonometry Problems - From the training of the US IMO team Titu ndreesu 2. Prealulus Rihard Ruszyk 3. Olimpíadas de Matemátia 97 ntonio aminha, Onofre ampos e Paulo Rodrigues 4. Olimpíadas earenses de Matemátia, Ensino Médio, Emanuel arneiro, Franiso ntônio M. de Paiva e Onofre ampos. 10

Polos Olímpicos de Treinamento. Aula 6. Curso de Geometria - Nível 2. Quadriláteros Notáveis. Prof. Cícero Thiago

Polos Olímpicos de Treinamento. Aula 6. Curso de Geometria - Nível 2. Quadriláteros Notáveis. Prof. Cícero Thiago Polos Olímpicos de Treinamento urso de Geometria - Nível 2 Prof. ícero Thiago ula 6 Quadriláteros Notáveis 1. Paralelogramo: Um quadrilátero convexo é dito um paralelogramo quando possuir lados opostos

Leia mais

Polos Olímpicos de Treinamento. Aula 12. Curso de Geometria - Nível 2. Prof. Cícero Thiago. Teorema 1. (Fórmula tradicional.) BC AD.

Polos Olímpicos de Treinamento. Aula 12. Curso de Geometria - Nível 2. Prof. Cícero Thiago. Teorema 1. (Fórmula tradicional.) BC AD. Polos Olímpicos de Treinamento urso de Geometria - Nível Prof ícero Thiago ula 1 Relações entre áreas I Teorema 1 (Fórmula tradicional) área do triângulo pode ser calculada por [ ] = Teorema (Área de um

Leia mais

Polos Olímpicos de Treinamento. Aula 9. Curso de Geometria - Nível 2. Teorema de Ptolomeu. Prof. Cícero Thiago

Polos Olímpicos de Treinamento. Aula 9. Curso de Geometria - Nível 2. Teorema de Ptolomeu. Prof. Cícero Thiago Polos Olímpicos de Treinamento urso de Geometria - Nível 2 Prof. ícero Thiago ula 9 Teorema de Ptolomeu Teorema 1. (Ptolomeu) O produto dos comprimentos das diagonais de um quadrilátero inscritível é igual

Leia mais

Polos Olímpicos de Treinamento. Aula 8. Curso de Geometria - Nível 2. Quadriláteros inscritíveis. Prof. Cícero Thiago

Polos Olímpicos de Treinamento. Aula 8. Curso de Geometria - Nível 2. Quadriláteros inscritíveis. Prof. Cícero Thiago Polos Olímpicos de Treinamento urso de Geometria - Nível 2 Prof. ícero Thiago ula 8 Quadriláteros inscritíveis Teorema 1. Um quadrilátero é inscritível se, e somente se, a soma dos ângulos opostos é 180.

Leia mais

Ortocentro, Reta de Euler e a Circunferência dos 9 pontos

Ortocentro, Reta de Euler e a Circunferência dos 9 pontos Prof. ícero Thiago - cicerothmg@gmail.com rtocentro, Reta de uler e a ircunferência dos 9 pontos Propriedade 1. Seja o centro da circunferência circunscrita ao triângulo acutângulo e seja a projeção de

Leia mais

Polos Olímpicos de Treinamento. Aula 17. Curso de Geometria - Nível 2. Pontos Notáveis 3: Circuncentro e Ortocentro. Prof.

Polos Olímpicos de Treinamento. Aula 17. Curso de Geometria - Nível 2. Pontos Notáveis 3: Circuncentro e Ortocentro. Prof. Polos Olímpicos de Treinamento urso de Geometria - Nível 2 Prof. ícero Thiago ula 17 Pontos Notáveis 3: ircuncentro e Ortocentro Teorema 1. Sejam, e P três pontos distintos no plano. Temos que P = P se,

Leia mais

Algumas propriedades importantes de triângulos

Algumas propriedades importantes de triângulos Polos Olímpicos de Treinamento urso de Geometria - Nível Prof. ícero Thiago ula 5 lgumas propriedades importantes de triângulos Propriedade 1. Num triângulo retângulo, a mediana M relativa à hipotenusa

Leia mais

Teorema de Ceva e Teorema de Menelaus. [ ACD] [ CPD] = [ APB] . Assim, BD FB = K C K A

Teorema de Ceva e Teorema de Menelaus. [ ACD] [ CPD] = [ APB] . Assim, BD FB = K C K A Polos Olímpicos de Treinamento urso de Geometria - Nível 2 Prof. ícero Thiago ula 14 Teorema de eva e Teorema de Menelaus. Teorema 1. (eva) Sejam D, E e F pontos sobre os lados, e, respectivamente, do

Leia mais

Circunferências ex - inscritas

Circunferências ex - inscritas Polos Olímpicos de Treinamento urso de Geometria - Nível Prof. ícero Thiago ula 18 ircunferências ex - inscritas Teorema 1. Seja XOY umângulodadoep umpontoemseuinterior. ntão, adistância de P a XO é igual

Leia mais

Pontos Notáveis II: Baricentro e reta de Euler

Pontos Notáveis II: Baricentro e reta de Euler Polos Olímpicos de Treinamento urso de Geometria - Nível 3 Prof. ícero Thiago ula 5 Pontos Notáveis II: aricentro e reta de Euler Propriedade 1. Num triângulo retângulo, a mediana relativa à hipotenusa

Leia mais

Capítulo I Geometria no Plano e no Espaço

Capítulo I Geometria no Plano e no Espaço Resumo Té CaPítulo ICddf º ANO MATEMÁTICA RESUMO TEÓRICO Capítulo I Geometria no Plano e no Espaço (A) REVISÕES TEOREMA DE PITÁGORAS a e b são atetos é a hipotenusa Num triângulo retângulo verifia-se sempre

Leia mais

Polos Olímpicos de Treinamento. Aula 18. Curso de Geometria - Nível 3. Transformações geométricas II - Simetria e rotação. Prof.

Polos Olímpicos de Treinamento. Aula 18. Curso de Geometria - Nível 3. Transformações geométricas II - Simetria e rotação. Prof. olos límpicos de Treinamento urso de Geometria - Nível 3 rof. ícero Thiago ula 18 Transformações geométricas II - Simetria e rotação. 1. Simetria com relação a um ponto. Dizemos que o ponto é o simétrico

Leia mais

Polos Olímpicos de Treinamento. Aula 16. Curso de Geometria - Nível 2. Pontos Notáveis 2: Incentro. Prof. Cícero Thiago

Polos Olímpicos de Treinamento. Aula 16. Curso de Geometria - Nível 2. Pontos Notáveis 2: Incentro. Prof. Cícero Thiago Polos Olímpicos de Treinamento urso de Geometria - Nível Prof. ícero Thiago ula 16 Pontos Notáveis : ncentro Teorema 1. Seja XOY umângulodadoep umpontoemseuinterior. Então, adistância de P a XO é igual

Leia mais

Aula 9 Triângulos Semelhantes

Aula 9 Triângulos Semelhantes MUL 1 - UL 9 ula 9 Triângulos Semelhantes efinição: ois triângulos são semelhantes se os três ângulos são ordenadamente congruentes e se os lados homólogos são proporcionais. figura mostra dois triângulos

Leia mais

Polos Olímpicos de Treinamento. Aula 10. Curso de Geometria - Nível 2. Potência de ponto. Prof. Cícero Thiago

Polos Olímpicos de Treinamento. Aula 10. Curso de Geometria - Nível 2. Potência de ponto. Prof. Cícero Thiago olos límpicos de Treinamento Curso de Geometria - Nível 2 rof. Cícero Thiago ula 10 otência de ponto 1. Definição Seja Γ uma circunferência de centro e raio R. Seja um ponto que está a uma distância d

Leia mais

CENTRO DE MASSA E APLICAÇÕES À GEOMETRIA Emanuel Carneiro & Frederico Girão UFC

CENTRO DE MASSA E APLICAÇÕES À GEOMETRIA Emanuel Carneiro & Frederico Girão UFC CENTRO DE MASSA E APLICAÇÕES À EOMETRIA Emanuel Carneiro & Frederio irão UFC Nível Avançado 1. INTRODUÇÃO Chamaremos de sistema de massas um onjunto de n pontos P1, P2,..., Pn no plano, sendo que ao ponto

Leia mais

Módulo de Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. 9 o ano E.F.

Módulo de Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. 9 o ano E.F. Módulo de Triângulo Retângulo, Lei dos Senos e ossenos, Poĺıgonos Regulares. Relações Métricas em Poĺıgonos Regulares 9 o ano.. Triângulo Retângulo, Lei dos Senos e ossenos, Polígonos Regulares. Relações

Leia mais

Geometria Básica. Bruno Holanda. 12 de novembro de 2011

Geometria Básica. Bruno Holanda. 12 de novembro de 2011 eometria ásica runo Holanda 12 de novembro de 2011 Resumo ste trabalho representa um conjunto de notas de aulas de um curso inicial em eometria uclidiana Plana para alunos do ensino fundamental. principal

Leia mais

Polos Olímpicos de Treinamento. Aula 13. Curso de Geometria - Nível 3. Prof. Cícero Thiago

Polos Olímpicos de Treinamento. Aula 13. Curso de Geometria - Nível 3. Prof. Cícero Thiago Polos Olímpicos de Treinamento urso de Geometria - Nível 3 Prof. ícero Thiago ula 13 Revisão I Problema 1. Em um triângulo, = 100 e =. Seja D a bissetriz de, com D sobre o lado. Prove que D +D =. É fácil

Leia mais

Polos Olímpicos de Treinamento. Aula 15. Curso de Geometria - Nível 2. Pontos Notáveis 1: Baricentro. Prof. Cícero Thiago

Polos Olímpicos de Treinamento. Aula 15. Curso de Geometria - Nível 2. Pontos Notáveis 1: Baricentro. Prof. Cícero Thiago olos Olímpicos de Treinamento urso de Geometria - Nível rof. ícero Thiago ula 15 ontos Notáveis 1: aricentro ropriedade 1. s três medianas de um triângulo intersectam - se num mesmo ponto, chamado baricentro,

Leia mais

POTÊNCIA DE PONTO, EIXO RADICAL, CENTRO RADICAL E APLICAÇÕES Yuri Gomes Lima, Fortaleza - CE

POTÊNCIA DE PONTO, EIXO RADICAL, CENTRO RADICAL E APLICAÇÕES Yuri Gomes Lima, Fortaleza - CE PTÊNI PNT, IX RIL, NTR RIL PLIÇÕS Yuri Gomes Lima, Fortaleza - Nível INTRUÇÃ Muitas vezes na Geometria Plana nos deparamos com problemas em que não temos muitas informações a respeito de ângulos e comprimentos,

Leia mais

Polos Olímpicos de Treinamento. Aula 6. Curso de Geometria - Nível 3. Prof. Cícero Thiago. Teorema 1. (Fórmula tradicional.) BC AD.

Polos Olímpicos de Treinamento. Aula 6. Curso de Geometria - Nível 3. Prof. Cícero Thiago. Teorema 1. (Fórmula tradicional.) BC AD. Polos Olímpicos de Treinamento urso de Geometria - Nível 3 Prof. ícero Thiago ula 6 Relações entre áreas Teorema 1. (Fórmula tradicional.) área do triângulo pode ser calculada por [ ] =. Teorema. (Área

Leia mais

Polos Olímpicos de Treinamento. Aula 15. Curso de Geometria - Nível 3. Quádruplas harmônicas e circunferência de Apolônio. Prof.

Polos Olímpicos de Treinamento. Aula 15. Curso de Geometria - Nível 3. Quádruplas harmônicas e circunferência de Apolônio. Prof. olos Olímpicos de Treinamento urso de Geometria - Nível 3 rof. ícero Thiago ula 15 Quádruplas harmônicas e circunferência de polônio Teorema 1. (issetriz interna) bissetriz interna L do ângulo de um triângulo

Leia mais

Aula 10 Semelhança de triângulos

Aula 10 Semelhança de triângulos MÓULO 1 - UL 10 ula 10 Semelhança de triângulos Objetivos Introduzir a noção de semelhança de triângulos eterminar as condições mínimas que permitem dizer que dois triângulos são semelhantes. Introdução

Leia mais

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 0 a Fase Profa. Maria Antônia Gouveia. QUESTÃO 0. Uma geladeira é vendida em n parelas iguais, sem juros. Caso se queira adquirir o produto, pagando-se ou parelas

Leia mais

Teorema de Ceva [ ACD] [ CPD] = [ APB] . Assim, BD FB = K C K A

Teorema de Ceva [ ACD] [ CPD] = [ APB] . Assim, BD FB = K C K A Polos Olímpicos de Treinamento urso de Geometria - Nível 3 Prof. ícero Thiago ula 7 Teorema de eva Teorema 1. Sejam D, E e F pontos sobre os lados, e, respectivamente, do triângulo. Os segmentos D, E e

Leia mais

Propriedades do ortocentro

Propriedades do ortocentro Programa límpico de Treinamento Curso de Geometria - Nível 3 Prof. Rodrigo ula 4 Propriedades do ortocentro ortocentro é o ponto de encontro das três alturas de um triângulo arbitrário. Se o triângulo

Leia mais

Quadriláteros Circunscritíveis

Quadriláteros Circunscritíveis Programa Olímpico de Treinamento urso de Geometria - Nível 3 Prof. Rodrigo ula 3 Quadriláteros ircunscritíveis Um quadrilátero é dito circunscritível se, e somente se, existe uma circunferência que tangencia

Leia mais

Distâncias inacessíveis

Distâncias inacessíveis U UL L esse: http://fuvestibular.om.br/ Distânias inaessíveis Introdução Na ula 20 aprendemos a alular distânias que não podiam ser medidas diretamente. Nessa aula, os oneitos utilizados foram a semelhança

Leia mais

Resolução das atividades adicionais

Resolução das atividades adicionais PÍTULO 9 Resolução das atividades adicionais 65. Note que 7 + 4 5. Temos, portanto, que o triângulo é retângulo (Teorema de Pitágoras). Logo sua área é dada por 84. Então podemos dizer que a razão entre

Leia mais

Bissetrizes e suas propriedades.

Bissetrizes e suas propriedades. Semana Olímpica 013 - Prof. ícero Thiago - olégio ETP/SP issetrizes e suas propriedades. Teorema 1. Seja XOY umângulodadoep umpontoemseuinterior. Então, adistância de P a XO é igual à distância de P a

Leia mais

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo Índice Geometria plana Polígonos Triângulos Congruência de triângulos Semelhança de triângulos Relações métricas no triângulo retângulo Quadriláteros Teorema de Tales Esquadros de madeira www.ser.com.br

Leia mais

MATEMÁTICA BÁSICA II TRIGONOMETRIA Aula 03

MATEMÁTICA BÁSICA II TRIGONOMETRIA Aula 03 UNIVERSIDDE ESTDUL VLE DO CRÚ CENTRO DE CIÊNCIS EXTS E TECNOLOGI CURSO DE LICENCITUR EM MTEMÁTIC MTEMÁTIC ÁSIC II TRIGONOMETRI ula 03 Prof. Márcio Nascimento marcio@matematicauva.org 204. Razões Trigonométricas

Leia mais

Bateria de Exercícios Matemática II. 1 Determine os valores de x e y, sabendo que os triângulos ABC e DEF são semelhantes:

Bateria de Exercícios Matemática II. 1 Determine os valores de x e y, sabendo que os triângulos ABC e DEF são semelhantes: Colégio: Nome: nº Sem limite pr reser Professor(): Série: 1ª EM Turm: Dt: / /2013 Desonto Ortográfio: Not: Bteri de Exeríios Mtemáti II 1 Determine os vlores de x e y, sendo que os triângulos ABC e DEF

Leia mais

CIRCUNFERÊNCIA E CÍRCULO

CIRCUNFERÊNCIA E CÍRCULO IRUNFRÊNI ÍRUL 01 ( FUVST) medida do ângulo ˆ inscrito na circunferência de centro é, em graus, ) 100 ) 110 ) 10 ) 15 35º 0 0 ( U ) bserve a figura. la mostra dois círculos de mesmo raio com centros em

Leia mais

RETAS E CIRCUNFERÊNCIAS

RETAS E CIRCUNFERÊNCIAS RETAS E CIRCUNFERÊNCIAS Diâmetro Corda que passa pelo centro da circunferência [EF] e [GH] Raio Segmento de reta que une o centro a um ponto da circunferência [OD] [AB], [IJ], [GH], são cordas - segmentos

Leia mais

BANCO DE QUESTÕES - GEOMETRIA - 8º ANO - ENSINO FUNDAMENTAL

BANCO DE QUESTÕES - GEOMETRIA - 8º ANO - ENSINO FUNDAMENTAL PROFESSOR: EQUIPE E TEÁTI O E QUESTÕES - GEOETRI - 8º O - ESIO FUETL ============================================================================ 01- Um polígono de 4 lados chama-se: () quadrado. () paralelogramo.

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação . Proposta de teste de avaliação Matemática 0. N E ESLRIE uração: 90 minutos ata: Grupo I Na resposta aos itens deste grupo, selecione a opção correta. Escreva, na folha de respostas, o número do item

Leia mais

Polos Olímpicos de Treinamento. Aula 11. Curso de Geometria - Nível 2. Potência de ponto e eixo radical. Prof. Cícero Thiago

Polos Olímpicos de Treinamento. Aula 11. Curso de Geometria - Nível 2. Potência de ponto e eixo radical. Prof. Cícero Thiago olos Olímpicos de Treinamento Curso de Geometria - Nível 2 rof. Cícero Thiago Aula 11 otência de ponto e eixo radical 1. Definição Seja Γ uma circunferência de centro O e raio R. Seja um ponto que está

Leia mais

Aula 11 Conseqüências da semelhança de

Aula 11 Conseqüências da semelhança de onseqüências da semelhança de triângulos MÓULO 1 - UL 11 ula 11 onseqüências da semelhança de triângulos Objetivos presentar o Teorema de Pitágoras presentar o teorema da bissetriz interna. O Teorema de

Leia mais

C A r. GABARITO MA13 Geometria I - Avaliação /2. A área de um triângulo ABC será denotada por (ABC).

C A r. GABARITO MA13 Geometria I - Avaliação /2. A área de um triângulo ABC será denotada por (ABC). GRITO 13 Geometria I - valiação 3-01/ área de um triângulo será denotada por (). Questão 1. (pontuação: ) figura abaio mostra as semirretas perpendiculares r e s, três circunferências pequenas cada uma

Leia mais

Desenho Geométrico - 9ano

Desenho Geométrico - 9ano esenho Geométrico - 9ano lunos dos 9º anos espero que todos estejam bem e com muita disposição para volta às aulas baixo estão as instruções para que vocês possam retornar às aulas mais interados com a

Leia mais

GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede

GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede GEOMETRI PLN 1) (UFRGS) Na figura abaixo, o vértice do retângulo O está a 6 cm do vértice. O raio do círculo mede O (a) 5 cm (b) 6 cm (c) 8 cm (d) 9 cm (e) 10 cm ) (UFRGS) Na figura abaixo, é o centro

Leia mais

MA13 Geometria I Avaliação

MA13 Geometria I Avaliação 13 Geometria I valiação 1 2012 SOLUÇÕS Questão 1. (pontuação: 2) O ponto pertence ao lado do triângulo. Sabe-se que = = e que o ângulo mede 21 o. etermine a medida do ângulo. 21 o omo =, seja = =. O ângulo

Leia mais

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução MTEMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. omo o triângulo [] é um triângulo retângulo em, (porque [EF GH] é paralelepípedo

Leia mais

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 3. Paralelogramos Especiais. Oitavo ano do Ensino Fundamental

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 3. Paralelogramos Especiais. Oitavo ano do Ensino Fundamental aterial Teórico - ódulo Elementos ásicos de Geometria Plana - Parte 3 Paralelogramos Especiais Oitavo ano do Ensino Fundamental utor: Prof. Jocelino Sato Revisor: Prof. ntonio aminha. Neto Portal da OEP

Leia mais

Questões da 1ª avaliação de MA 13 Geometria, 2016

Questões da 1ª avaliação de MA 13 Geometria, 2016 uestões da 1ª avaliação de M 13 Geometria, 26 1. região na figura abaixo representa um lago. Descreva um processo pelo qual será possível medir a distância entre os pontos e (só medição fora do lago é

Leia mais

Ponto médio lembra? Outro ponto médio! Dois pontos médios lembram? Base média!

Ponto médio lembra? Outro ponto médio! Dois pontos médios lembram? Base média! Ponto médio lembra? Outro ponto médio! Dois pontos médios lembram? ase média! ícero Thiago 8 de março de 011 Propriedade 1. Num triângulo retângulo, a mediana M relativa à hipotenusa mede metade da hipotenusa.

Leia mais

Treino Matemático. 1. Em qual das figuras podes observar um polígono inscrito numa circunferência? (A) (B) (C) (D)

Treino Matemático. 1. Em qual das figuras podes observar um polígono inscrito numa circunferência? (A) (B) (C) (D) Treino Matemático ssunto: ircunferência e círculo. 6º ano Ficha de trabalho 1. Em qual das figuras podes observar um polígono inscrito numa circunferência? () () () (). Na figura sabe-se a reta é tangente

Leia mais

Potência de ponto e eixo radical

Potência de ponto e eixo radical Polos Olímpicos de Treinamento Curso de Geometria - Nível 3 Prof. Cícero Thiago Aula 11 Potência de ponto e eixo radical Chamaremos de Eixo radical o lugar geométrico dos pontos que possuem a mesma potência

Leia mais

O Quadrilátero de Saccheri

O Quadrilátero de Saccheri O Quadrilátero de Saccheri 1 efinição (Quadrilátero de Saccheri) Na figura abaixo se tem um quadrilátero com ângulos retos em e, os segmentos e denominados hastes são congruentes isto é, e os segmentos

Leia mais

A_Prova PROVA FINAL MODELO 4. É permitido o uso da calculadora

A_Prova PROVA FINAL MODELO 4. É permitido o uso da calculadora PROV FINL MODELO É permitido o uso da aluladora Num sao estão ino artões indistinguíveis ao tato. Em ada um deles, tal omo mostra a figura seguinte, está impressa uma das letras, E, F, G e D. E F G D..

Leia mais

Módulo de Leis dos Senos e dos Cossenos. Razões Trigonométricas no Triângulo Retângulo. 1 a série E.M.

Módulo de Leis dos Senos e dos Cossenos. Razões Trigonométricas no Triângulo Retângulo. 1 a série E.M. Módulo de Leis dos Senos e dos ossenos Razões Trigonométricas no Triângulo Retângulo. a série E.M. Leis dos Senos e dos ossenos Razões trigonométricas no triângulo retângulo. Eercícios Introdutórios Eercício.

Leia mais

Soluções dos Problemas do Capítulo 4

Soluções dos Problemas do Capítulo 4 Soluções do apítulo 4 155 Soluções dos Problemas do apítulo 4 Problema 1 h 10 14 Figura 57 x Seja h a altura do Pão de çúcar em relação ao plano horizontal de medição e seja x a distância de ao pé da altura

Leia mais

Módulo de Leis dos Senos e dos Cossenos. Razões Trigonométricas no Triângulo Retângulo. 1 a série E.M.

Módulo de Leis dos Senos e dos Cossenos. Razões Trigonométricas no Triângulo Retângulo. 1 a série E.M. Módulo de Leis dos Senos e dos ossenos Razões Trigonométricas no Triângulo Retângulo. a série E.M. Leis dos Senos e dos ossenos Razões trigonométricas no triângulo retângulo. Eercícios Introdutórios Eercício.

Leia mais

Relações Trigonométricas nos Triângulos

Relações Trigonométricas nos Triângulos Relações Trigonométricas nos Triângulos Introdução - Triângulos Um triângulo é uma figura geométric a plana, constituída por três lados e três ângulos internos. Esses ângulos, tradicionalmente, são medidos

Leia mais

Triângulos classificação

Triângulos classificação Triângulos classificação Quanto aos ângulos Acutângulo: possui três ângulos agudos. Quanto aos lados Equilátero: três lados de mesma medida. Obs.: os três ângulos internos têm medidas de 60º. Retângulo:

Leia mais

Quadriláteros Inscritíveis II. Nesta aula, trataremos de três teoremas muito utilizados em problemas de quadriláteros inscritíveis.

Quadriláteros Inscritíveis II. Nesta aula, trataremos de três teoremas muito utilizados em problemas de quadriláteros inscritíveis. Programa Olímpico de Treinamento urso de Geometria - Nível 3 Prof. Rodrigo ula 2 Quadriláteros Inscritíveis II Nesta aula, trataremos de três teoremas muito utilizados em problemas de quadriláteros inscritíveis.

Leia mais

Muitos problemas de geometria podem ser resolvidos com o auxílio da trigonometria. As fórmulas que você deve saber são basicamente essas quatro:

Muitos problemas de geometria podem ser resolvidos com o auxílio da trigonometria. As fórmulas que você deve saber são basicamente essas quatro: Geometria com ontas Às vezes precisamos de mais elementos para resolver problemas de geometria. Pode-se traçar novos elementos na figura que possam ajudar ou fazer algumas contas. Mostraremos algumas técnicas

Leia mais

Áreas de Figuras Planas: Exercícios da OBMEP. Nono Ano. Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M. Neto

Áreas de Figuras Planas: Exercícios da OBMEP. Nono Ano. Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M. Neto Material Teórico - Módulo Áreas de Figuras lanas Áreas de Figuras lanas: Exercícios da OME Nono no utor: rof. Ulisses Lima arente Revisor: rof. ntonio aminha M. Neto de dezembro de 018 1 roblemas da OME

Leia mais

Geometria I Aula 13.1

Geometria I Aula 13.1 Geometria I ula 13.1 urso Turno isciplina arga Horária Licenciatura lena em Noturno Geometria I 90h Matemática ula eríodo ata lanejamento 13.1. 0 15/1/006 6ª. feira ndréa Tempo Estratégia escrição (rte)

Leia mais

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução MTEMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. omo a base do prisma é um quadrado, os lados adjacentes são perpendiculares,

Leia mais

Matemática. Nesta aula iremos aprender as. 1 Ponto, reta e plano. 2 Posições relativas de duas retas

Matemática. Nesta aula iremos aprender as. 1 Ponto, reta e plano. 2 Posições relativas de duas retas Matemática Aula 5 Geometria Plana Alexandre Alborghetti Londero Nesta aula iremos aprender as noções básicas de Geometria Plana. 1 Ponto, reta e plano Estes elementos primitivos da geometria euclidiana

Leia mais

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução MTEMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. omo a reta T P é tangente à circunferência no ponto T é perpendicular ao

Leia mais

Matemática D Semi-Extensivo V. 2

Matemática D Semi-Extensivo V. 2 Matemática D Semi-Etensivo V. Eercícios 0) 0) D 60 60 P y z y y z D 6 P é semelante a DP. 6 z ssim: D + z tg 60º z 6 0) P E 0) D y 0 y + y 00 y 9y + y 00 6 9y + 6y 00 6 y 00 6 y 6 y 8 6 Perímetro: 6 +

Leia mais

Pontos notáveis de um triângulo

Pontos notáveis de um triângulo Pontos notáveis de um triângulo Sadao Massago Maio de 2010 Sumário 1 onceitos preliminares................................. 1 2 Incentro......................................... 2 3 ircuncentro.......................................

Leia mais

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON PROFJWPS@GMAIL.COM DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são

Leia mais

Preparar o Exame Matemática A

Preparar o Exame Matemática A 07. { {. 07. Como o polinómio tem coeficientes reais e é uma das suas raízes, então também é raiz de. Recorrendo à regra de Ruffini vem,. Utilizando a fórmula resolvente na equação, vem: ssim, as restantes

Leia mais

Congruência de triângulos II

Congruência de triângulos II ongruência de triângulos II M13 - Unidade 2 Resumo elaborado por Eduardo Wagner baseado no texto:. aminha M. Neto. Geometria. oleção PROFMT Triângulo isósceles Os ângulos da base de um triângulo isósceles

Leia mais

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo Índice Geometria plana Polígonos Triângulos Congruência de triângulos Semelhança de triângulos Relações métricas no triângulo retângulo Quadriláteros Teorema de Tales Esquadros de madeira www.ser.com.br

Leia mais

O E. Se Q distasse 3,2 km de O, quais

O E. Se Q distasse 3,2 km de O, quais Esola Seunária om 3º ilo D. Dinis º Ano e Matemátia A Tema I Geometria no Plano e no Espaço II Tarefa nº 4 O Círulo Trigonométrio. Num eran e raar o raio OP faz 5 om O E e a istânia e P à origem representa,8

Leia mais

Estudo Dirigido de Matemática 2 o Trimestre

Estudo Dirigido de Matemática 2 o Trimestre Nome: Nº Colégio Nossa Senhora das Dores 1º ano EM Prof. Manuel Data: / /009 Estudo Dirigido de Matemátia o Trimestre Prezado(a) aluno(a), Devido à interrupção das aulas durante o período ompreendido entre

Leia mais

MATEMÁTICA. OS MELHORES GABARITOS DA INTERNET: (19) O ELITE RESOLVE IME 2011 MATEMÁTICA - DISCURSIVAS

MATEMÁTICA. OS MELHORES GABARITOS DA INTERNET:  (19) O ELITE RESOLVE IME 2011 MATEMÁTICA - DISCURSIVAS OS MELHORES GAARITOS DA INTERNET: www.eliteampinas.om.r (9) 5-0 O ELITE RESOLVE IME 0 MATEMÁTICA - DISCURSIVAS MATEMÁTICA QUESTÃO 0 A ase de um prisma reto ACA C é um triângulo om o lado A igual ao lado

Leia mais

Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir:

Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir: GEOMETRIA PLANA TEOREMA DE TALES O Teorema de Tales pode ser determinado pela seguinte lei de correspondência: Se duas retas transversais são cortadas por um feixe de retas paralelas, então a razão entre

Leia mais

Agrupamento de Escolas de Diogo Cão, Vila Real

Agrupamento de Escolas de Diogo Cão, Vila Real grupamento de scolas de iogo ão, Vila Real 2015/2016 MTMÁTI FIH TRLHO Nº 8 º PRÍOO MIO Nome: Nº Turma: 7º ata: 1 Observa o polígono da figura 2. fig. 2 1. 1) Indica o número de ângulos internos. 1. 2)

Leia mais

NOME: ANO: 3º Nº: PROFESSOR(A):

NOME: ANO: 3º Nº: PROFESSOR(A): NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições Triângulos: REVISÃO Lista 06 Triângulos e Quadriláteros Classificação quanto aos lados: Escaleno (todos os lados diferentes), Isósceles

Leia mais

Resoluções das atividades

Resoluções das atividades tividades uplementares íngua Geometria ortuguesa esoluções das atividades apítulo 6 erpendicularidade apítulo 7 Quadriláteros I 1 a + 15º b omo é bissetriz, + 15º = 5º = 0º = 0º 1 + ( º) + (6 º) + ( +

Leia mais

GEOMETRIA PLANA. Prof. Fabiano

GEOMETRIA PLANA. Prof. Fabiano GEOMETRIA PLANA Prof. Fabiano POLÍGONOS REGULARES R.. a. O O O a R a R R = Raio - raio da circunf. circunscrita - distância do centro a um vértice a = Apótema - Raio da circunferência inscrita - distância

Leia mais

Paralelismo. MA13 - Unidade 3. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria.

Paralelismo. MA13 - Unidade 3. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Paralelismo M13 - Unidade 3 Resumo elaborado por Eduardo Wagner baseado no texto:. Caminha M. Neto. Geometria. Coleção PROFMT Nomes tradicionais reta t corta as retas r e s. Dizemos que a reta t é uma

Leia mais

Quadriláteros Inscritíveis. Um quadrilátero é dito inscritível se, e somente se, existe uma circunferência que passa pelos seus quatro vértices.

Quadriláteros Inscritíveis. Um quadrilátero é dito inscritível se, e somente se, existe uma circunferência que passa pelos seus quatro vértices. Programa Olímpico de Treinamento urso de Geometria - Nível 3 Prof. Rodrigo ula 1 Quadriláteros Inscritíveis Um quadrilátero é dito inscritível se, e somente se, existe uma circunferência que passa pelos

Leia mais

ASSUNTO: ÂNGULOS e TRIÂNGULOS. 2) A soma de dois ângulos é 140º e um deles vale 1/3 do suplemento do outro. Determine esses ângulos.

ASSUNTO: ÂNGULOS e TRIÂNGULOS. 2) A soma de dois ângulos é 140º e um deles vale 1/3 do suplemento do outro. Determine esses ângulos. ASSUNTO: ÂNGULOS e TRIÂNGULOS 1) Determine: a) O complemento de 47º Resp: 43º b) O suplemento de 12º Resp: 168º c) O replemento de 3º Resp: 357º 2) A soma de dois ângulos é 140º e um deles vale 1/3 do

Leia mais

Geometria Plana. Exterior do ângulo Ô:

Geometria Plana. Exterior do ângulo Ô: Geometria Plana Ângulo é a união de duas semiretas de mesma origem, não sendo colineares. Interior do ângulo Ô: Exterior do ângulo Ô: Dois ângulos são consecutivos se, e somente se, apresentarem um lado

Leia mais

(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4

(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4 TEOREMA DE TALES 1. Na figura abaixo as retas r, s e t são (A) 0 (B) 6 (C) 00 (E) 0. Três retas paralelas são cortadas por duas Se AB = cm; BC = 6 cm e XY = 10 cm a medida, em cm, de XZ é: (A) 0 (B) 10

Leia mais

GEOMETRIA PLANA. Segmentos congruentes: Dois segmentos ou ângulos são congruentes quando têm as mesmas medidas.

GEOMETRIA PLANA. Segmentos congruentes: Dois segmentos ou ângulos são congruentes quando têm as mesmas medidas. PARTE 01 GEOMETRIA PLANA Introdução A Geometria está apoiada sobre alguns postulados, axiomas, definições e teoremas, sendo que essas definições e postulados são usados para demonstrar a validade de cada

Leia mais

Módulo de Trigonometria. Razões Trigonométricas no Triângulo Retângulo. 1 a série E.M.

Módulo de Trigonometria. Razões Trigonométricas no Triângulo Retângulo. 1 a série E.M. Módulo de Trigonometria Razões Trigonométricas no Triângulo Retângulo. a série E.M. Trigonometria Razões trigonométricas no triângulo retângulo. Eercícios Introdutórios Eercício. Recíproca do Teorema de

Leia mais

Axiomas e Proposições

Axiomas e Proposições Axiomas e Proposições Axiomas: I Incidência I.1 Existem infinitos pontos no plano. I.2 Por dois pontos distintos (ou seja, diferentes) passa uma única reta. I.3 Dada uma reta, existem infinitos pontos

Leia mais

Aula 12 Introdução ao conceito de área

Aula 12 Introdução ao conceito de área MÓULO 1 - UL 1 ula 1 Introdução ao conceito de área Objetivos Introduzir o conceito de área de uma figura plana presentar as fórmulas para o cálculo da área de algumas figuras planas Introdução entre as

Leia mais

Aula 6 Polígonos. Objetivos. Introduzir o conceito de polígono. Estabelecer alguns resultados sobre paralelogramos.

Aula 6 Polígonos. Objetivos. Introduzir o conceito de polígono. Estabelecer alguns resultados sobre paralelogramos. MÓULO 1 - UL 6 ula 6 Polígonos Objetivos Introduzir o conceito de polígono. Estabelecer alguns resultados sobre paralelogramos. Introdução efinição 14 hamamos de polígono uma figura plana formada por um

Leia mais

GAD = 180º 75º 60º = 45º

GAD = 180º 75º 60º = 45º 009 www.cursoanglo.com.br Treinamento para Olimpíadas de Matemática NÍVL 3 Resoluções ULS 4 a 6 m lasse. omo e são triângulos eqüiláteros, cada um de seus ângulos internos mede 60º. No triângulo G temos

Leia mais

NÍVEL 3. x + 2. x + 1

NÍVEL 3. x + 2. x + 1 009 www.cursoanglo.com.br Treinamento para Olimpíadas de Matemática NÍVL esoluções ULS 6 9 m lasse. Seja H = h a altura relativa a e =, comprimento do lado. esde que os comprimentos dos lados, e, nessa

Leia mais

Pontos notáveis de um triângulo

Pontos notáveis de um triângulo MÓULO 1 - UL 9 ula 9 ontos notáveis de um triângulo Objetivos presentar os pontos notáveis de um triângulo. stabelecer alguns resultados envolvendo esses elementos. ontos notáveis de um triângulo Nesta

Leia mais

(b) { (ρ, θ);1 ρ 2 e π θ } 3π. 5. Representar graficamente

(b) { (ρ, θ);1 ρ 2 e π θ } 3π. 5. Representar graficamente Universidade Federal de Uberlândia Faculdade de Matemática isciplina : Geometria nalítica (GM003) ssunto: sistemas de coordenadas; vetores: operações com vetores, produto escalar, produto vetorial, produto

Leia mais

Comece apresentando as partes do triângulo retângulo usadas na trigonometria.

Comece apresentando as partes do triângulo retângulo usadas na trigonometria. ós na ala de Aula - Matemátia 6º ao 9º ano - unidade 7 As atividades propostas nas aulas a seguir têm omo objetivo proporionar ao aluno ondições de ompreender, de forma prátia, as razões trigonométrias

Leia mais

Agrupamento de Escolas Diogo Cão, Vila Real

Agrupamento de Escolas Diogo Cão, Vila Real grupamento de Escolas iogo Cão, Vila Real MTEMÁTIC - 9º FICH E TRLHO 4 2º PERÍOO FEVEREIRO - 2016 Nome: Nº Turma: ata: 1 Quais das seguintes equações são do 2º grau completas? 1.1 x 2 + 12 = 0 1.2 x 2

Leia mais

Conceitos básicos de Geometria:

Conceitos básicos de Geometria: Conceitos básicos de Geometria: Os conceitos de ponto, reta e plano não são definidos. Compreendemos estes conceitos a partir de um entendimento comum utilizado cotidianamente dentro e fora do ambiente

Leia mais

Trigonometria. Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre 2015

Trigonometria. Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre 2015 Trigonometria Reforço de Matemática ásica - Professor: Marcio Sabino - 1 Semestre 015 1. Trigonometria O nome Trigonometria vem do grego trigo-non triângulo + metron medida. Esta é um ramo da matemática

Leia mais

Aula 21 - Baiano GEOMETRIA PLANA

Aula 21 - Baiano GEOMETRIA PLANA Aula 21 - Baiano GEOMETRIA PLANA Definição: Polígono de quatro lados formado por quatro vértices não colineares dois a dois. A D S i = 180º (n 2)= 180º (4 2)= 360º S e = 360º B C d = n. (n - 3) 2 = 4.

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Proposta de teste de avaliação Matemática. N DE ESLRIDDE Duração: 90 minutos Data: Grupo I Na resposta aos itens deste grupo, selecione a opção correta. Escreva, na folha de respostas, o número do item

Leia mais

Polígonos Regulares. UFPEL-DME Geometria Plana Prof Lisandra Sauer

Polígonos Regulares. UFPEL-DME Geometria Plana Prof Lisandra Sauer Polígonos Regulares UFPEL-DME Geometria Plana Prof Lisandra Sauer Hora da Piadinha Por que um polígono regular foi ao psicólogo? Porque ele é Iso-lado . Polígonos regulares Um polígono é chamado de regular

Leia mais

Prof. Weber Campos 2012 Copyri'ght. Curso Agora eu Passo - Todos os direitos reservados ao autor.

Prof. Weber Campos 2012 Copyri'ght. Curso Agora eu Passo - Todos os direitos reservados ao autor. DNIT Raciocínio Lógico - GEOMETRI ÁSI - TRIGONOMETRI webercampos@gmail.com 01 opyri'ght. urso gora eu Passo - Todos os direitos reservados ao autor. ÍNDIE Resumo de Geometria 0 Eercícios Resolvidos de

Leia mais