Polos Olímpicos de Treinamento. Aula 15. Curso de Geometria - Nível 2. Pontos Notáveis 1: Baricentro. Prof. Cícero Thiago

Tamanho: px
Começar a partir da página:

Download "Polos Olímpicos de Treinamento. Aula 15. Curso de Geometria - Nível 2. Pontos Notáveis 1: Baricentro. Prof. Cícero Thiago"

Transcrição

1 olos Olímpicos de Treinamento urso de Geometria - Nível rof. ícero Thiago ula 15 ontos Notáveis 1: aricentro ropriedade 1. s três medianas de um triângulo intersectam - se num mesmo ponto, chamado baricentro, que divide cada uma das medianas em duas partes tais que a parte que contém o vértice é o dobro da outra. G N M Demonstração. D G 1 N E Sejam N e os pontos médios dos lados e, respectivamente, D e E os pontos médios de G 1 e G 1, respectivamente. Então, N e N =

2 OT 01 - Geometria - Nível 3 - ula 15 - rof. ícero Thiago e DE e DE = portanto, DEN é uma paralelogramo. om isso, D = DG 1 = G 1 N, E = EG 1 = G 1, então G 1 = G 1 N e G 1 = G 1. De maneira análoga, as medianas M e N intersectam - se em um ponto G tal que G = G M e G = G N. Encontramos, então, dois pontos distintos G 1 e G, no interior do segmento N que o dividem na mesma razão, o queé uma contradição logo, G 1 = G = G. ortanto, as três medianas intersectam - se em um mesmo ponto G que chamaremos de baricentro. Exercícios Resolvidos 1. (OM) Seja N o ponto do lado do triângulo tal que N = N e M o ponto do lado tal que MN é perpendicular a. Sabendo que = 1 cm e que o baricentro G do triângulo pertence ao segmento MN, determine o comprimento do segmento G. OS: aricentro é o ponto de interseção das medianas do triângulo. Solução. Se é uma mediana do triângulo então = = 6 e N =. omo G é o baricentro do triângulo então G G = 1 e N N = 1, assim, pela recíproca do teorema de Tales, GN é paraleloa e = 90. omootriângulo éretânguloentão = = = 6. om isso, G = 4 e G =. M G N. (ulgária) Seja um triângulo isósceles ( = ) tal que 1, 1 e 1 são os pontos médios de, e, respectivamente. Os pontos e são os simétricos de 1 e 1 com relação ao lado. Seja M a interseção de e 1 1 e seja N a interseção de e 1 1. Seja a interseção de N e M, prove que =. Solução. omo 1 1 e 1 = 1, temos que 1 1 é um paralelogramo. Então, 1 M = 1 M. Mas é também um paralelogramo e, portanto, a in-

3 OT 01 - Geometria - Nível 3 - ula 15 - rof. ícero Thiago terseção M e é 1. Então, está sobre a mediana 1. nalogamente, está sobre a mediana 1. No triângulo isósceles as medianas 1 e 1 possuem o mesmo comprimento. ortanto, = 3 1 = 3 1 =. Exercícios ropostos roblema 1. Uma reta r passa pelo baricentro de um triângulo deixando o vértice em um semiplano e os vértices e no outro semiplano determinado por r. s projeções de, e sobre a reta r são M, N e, respectivamente. rove que M = N +. roblema. (OM) Seja D um quadrilátero convexo, onde N é o ponto médio de D, M é o ponto médio de, e O é a interseção entre as diagonais e D. Mostre que O é o baricentro do triângulo MN se, e somente se, D é um paralelogramo. roblema 3. (ortugal) No triângulo as medianas dos lados e são perpendiculares. Sabendo que = 6 e = 8, determine. roblema 4. (Estônia) s medianas relativas aos vértices e do triângulo são perpendiculares. rove que é o menor lado do triângulo. roblema 5. (OM) Seja um triângulo tal que as medianas M e N, que se cortam em G, são iguais. rove que o triângulo é isósceles. roblema 6. rove que a soma dos quadrados das distâncias de um ponto aos vértices de um triângulo é mínima quando é o baricentro do triângulo. Soluções 1. Seja D um mediana e Q o ponto médio de N. Então, DQ é a base média do trapézio N + N assim DQ N e DQ =. omo G é o baricentro do triângulo então G = GD. É fácil ver que MG GQD, então M M = N +. = DQ. ortanto, 3

4 OT 01 - Geometria - Nível 3 - ula 15 - rof. ícero Thiago N G M Q D. ( ) Suponha que D é um paralelogramo, então O = O e O = D. Se M e N são os pontos médios de e D então MN D e MN = D. É fácil concluir que é o ponto de médio de O então M O, M = O DO, N DO e N =. ortanto, N = M e O = O, ou seja, O é o baricentro de MN. ( ) Suponha que O é o baricentro do triângulo MN então N = M e O = O. Se M e N são os pontos médios de e D então MN D e MN = D. É fácil concluir que é o ponto de médio de O então O =, M O, M = O, N DO e N = DO. Daí, O = O e DO = O, ou seja, D é um paralelogramo. 4

5 OT 01 - Geometria - Nível 3 - ula 15 - rof. ícero Thiago O M D N 3. Sejam M e N os pontos médios de e, respectivamente, e G o ponto de encontro das medianas M e N. plicando o teorema de itágoras GM e NG, temos: e GM +4GN = GM +G = M = 3 = 9 4GM +GN = G +GN = N = 4 = 16. Deste modo, 5GM +5GN = 9+16 = 5, logo NM = 5. ortanto, = 5. N G M 4. Seja M o baricentro do triângulo Seja um ponto sobre a reta M tal que é um paralelogramo. Os pontos e são construídos analogamente. omo então os pontos, 1 e são colineares e 1 é o ponto médio de 5

6 OT 01 - Geometria - Nível 3 - ula 15 - rof. ícero Thiago. O mesmo é verdade para os pontos, 1 e e, 1 e. Vamos mostrar que =, = e =, o que resolve o problema. ssuma que e está entre e M. Então está entre e M, está entre e M e consequentemente está entre e M, que é uma contradição. 5. s medianas intersectam - se no ponto M e a mediana que parte do vértice intersecta no ponto F. Então, F é o ponto médio da hipotenusa do triângulo retângulo M, ou seja, = FM. omo M divide a mediana F na razão : 1, então = M. O maior ângulo do triângulo M é o ângulo obtuso M, portanto é o maior lado deste triângulo. ssim, > M =. De maneira análoga >. 6. Seja M = N = m. omo G é o baricentro de, temos GM = m 3 = GN e G = m = G. Daí, segue que os triângulos GN e GM são congruentes (pelo caso 3 LL), de modo que N = M. Logo, = N = M =, e o triângulo é isósceles. N M G 7. Seja um triângulo com = a, = b e = c. Seja M o ponto médio de, G o baricentro do triângulo e um ponto qualquer. Usando que, a soma dos quadrados de dois dos lados de um triângulo é igual a duas vezes o quadrado da mediana relativa ao terceiro lado mais a metade do quadrado do terceiro lado (a demonstração desse resultado usa lei dos ossenos e será provado na aula de relações métricas), no triângulo 6

7 OT 01 - Geometria - Nível 3 - ula 15 - rof. ícero Thiago com mediana M temos: + = M + a. (I) O baricentro G é tal que G = GM. Faça GM = m; G = m e tome H em G tal que GH = H = m. ssim, o triângulo HM, com mediana G satisfaz H +M = G + 1 (m) = G +m (II) e o triângulo G com mediana H satisfaz Somando (I) e (III) +G = H + 1 (m) = H +m. (III) + + +G = M + a +H +m = = (M +H )+ a +m = por (II) (G +m )+ a +m = 4G +6m + a. ortanto, + + = 3G +6m + a. (IV) omo o triângulo a e m são constantes, + + é mínimo quando G = 0, ou seja, = G é o baricentro do triângulo. H G M 7

8 OT 01 - Geometria - Nível 3 - ula 15 - rof. ícero Thiago ibliografia 1. Lecture Notes on Mathematical Olympiad ourses For Junior Section, vol. 1 Xu Jiagu. untos Notables - Teoría - Demostraciones - Trazos uxiliares 440 problemas resueltos e propuestos Julio Orihuela astidas Editorial uzcan 3. Geometría Radmila ulajich Manfrino e José ntonio Gómez Ortega uadernos de Olimpiadas de Matemáticas 4. Tópicos de Matemática Elementar, vol. Geometria Euclidiana lana ntonio aminha Muniz Neto SM 5. Episodes in Nineteenth and Twentieth Euclidean Geometry Ross Honsberger M 6. roblems in lane and Solid Geometry, vol. 1 - lane Geometry Viktor rasolov 7. dvanced Euclidean Geometry lfred osamentier 8. Lessons in Geometry I. lane Geometry Jacques Hadamard MS 9. Hadamard s lane Geometry Reader s ompanion Mark Saul MS 10. oleção Elementos da Matemática Geometria lana, vol. Marcelo Rufino de Oliveira e Márcio Rodrigo da Rocha inheiro 8

9 OT 01 - Geometria - Nível 3 - ula 15 - rof. ícero Thiago 11. Olimpíadas earenses de Matemática, Ensino Médio, Emanuel arneiro, Francisco ntônio M. de aiva e Onofre ampos 1. roblemas de las Olimpiadas Matematicas del ono Sur (I a IV) Fauring - Wagner - Wykowski - Gutierrez - edraza - Moreira Red Olímpica 13. Fundamentos de Matemática Elementar, vol. 9 - Geometria lana Osvaldo Dolce e José Nicolau ompeo 14. Olimpiada Matemática Española problemas de diferentes Olimpiadas de Matemática en el mundo 9

Pontos Notáveis II: Baricentro e reta de Euler

Pontos Notáveis II: Baricentro e reta de Euler Polos Olímpicos de Treinamento urso de Geometria - Nível 3 Prof. ícero Thiago ula 5 Pontos Notáveis II: aricentro e reta de Euler Propriedade 1. Num triângulo retângulo, a mediana relativa à hipotenusa

Leia mais

Polos Olímpicos de Treinamento. Aula 6. Curso de Geometria - Nível 2. Quadriláteros Notáveis. Prof. Cícero Thiago

Polos Olímpicos de Treinamento. Aula 6. Curso de Geometria - Nível 2. Quadriláteros Notáveis. Prof. Cícero Thiago Polos Olímpicos de Treinamento urso de Geometria - Nível 2 Prof. ícero Thiago ula 6 Quadriláteros Notáveis 1. Paralelogramo: Um quadrilátero convexo é dito um paralelogramo quando possuir lados opostos

Leia mais

Algumas propriedades importantes de triângulos

Algumas propriedades importantes de triângulos Polos Olímpicos de Treinamento urso de Geometria - Nível Prof. ícero Thiago ula 5 lgumas propriedades importantes de triângulos Propriedade 1. Num triângulo retângulo, a mediana M relativa à hipotenusa

Leia mais

Teorema de Ceva e Teorema de Menelaus. [ ACD] [ CPD] = [ APB] . Assim, BD FB = K C K A

Teorema de Ceva e Teorema de Menelaus. [ ACD] [ CPD] = [ APB] . Assim, BD FB = K C K A Polos Olímpicos de Treinamento urso de Geometria - Nível 2 Prof. ícero Thiago ula 14 Teorema de eva e Teorema de Menelaus. Teorema 1. (eva) Sejam D, E e F pontos sobre os lados, e, respectivamente, do

Leia mais

Polos Olímpicos de Treinamento. Aula 11. Curso de Geometria - Nível 2. Potência de ponto e eixo radical. Prof. Cícero Thiago

Polos Olímpicos de Treinamento. Aula 11. Curso de Geometria - Nível 2. Potência de ponto e eixo radical. Prof. Cícero Thiago olos Olímpicos de Treinamento Curso de Geometria - Nível 2 rof. Cícero Thiago Aula 11 otência de ponto e eixo radical 1. Definição Seja Γ uma circunferência de centro O e raio R. Seja um ponto que está

Leia mais

Polos Olímpicos de Treinamento. Aula 10. Curso de Geometria - Nível 2. Potência de ponto. Prof. Cícero Thiago

Polos Olímpicos de Treinamento. Aula 10. Curso de Geometria - Nível 2. Potência de ponto. Prof. Cícero Thiago olos límpicos de Treinamento Curso de Geometria - Nível 2 rof. Cícero Thiago ula 10 otência de ponto 1. Definição Seja Γ uma circunferência de centro e raio R. Seja um ponto que está a uma distância d

Leia mais

Ponto médio lembra? Outro ponto médio! Dois pontos médios lembram? Base média!

Ponto médio lembra? Outro ponto médio! Dois pontos médios lembram? Base média! Ponto médio lembra? Outro ponto médio! Dois pontos médios lembram? ase média! ícero Thiago 8 de março de 011 Propriedade 1. Num triângulo retângulo, a mediana M relativa à hipotenusa mede metade da hipotenusa.

Leia mais

Polos Olímpicos de Treinamento. Aula 18. Curso de Geometria - Nível 3. Transformações geométricas II - Simetria e rotação. Prof.

Polos Olímpicos de Treinamento. Aula 18. Curso de Geometria - Nível 3. Transformações geométricas II - Simetria e rotação. Prof. olos límpicos de Treinamento urso de Geometria - Nível 3 rof. ícero Thiago ula 18 Transformações geométricas II - Simetria e rotação. 1. Simetria com relação a um ponto. Dizemos que o ponto é o simétrico

Leia mais

Polos Olímpicos de Treinamento. Aula 15. Curso de Geometria - Nível 3. Quádruplas harmônicas e circunferência de Apolônio. Prof.

Polos Olímpicos de Treinamento. Aula 15. Curso de Geometria - Nível 3. Quádruplas harmônicas e circunferência de Apolônio. Prof. olos Olímpicos de Treinamento urso de Geometria - Nível 3 rof. ícero Thiago ula 15 Quádruplas harmônicas e circunferência de polônio Teorema 1. (issetriz interna) bissetriz interna L do ângulo de um triângulo

Leia mais

Polos Olímpicos de Treinamento. Aula 8. Curso de Geometria - Nível 2. Quadriláteros inscritíveis. Prof. Cícero Thiago

Polos Olímpicos de Treinamento. Aula 8. Curso de Geometria - Nível 2. Quadriláteros inscritíveis. Prof. Cícero Thiago Polos Olímpicos de Treinamento urso de Geometria - Nível 2 Prof. ícero Thiago ula 8 Quadriláteros inscritíveis Teorema 1. Um quadrilátero é inscritível se, e somente se, a soma dos ângulos opostos é 180.

Leia mais

Polos Olímpicos de Treinamento. Aula 12. Curso de Geometria - Nível 2. Prof. Cícero Thiago. Teorema 1. (Fórmula tradicional.) BC AD.

Polos Olímpicos de Treinamento. Aula 12. Curso de Geometria - Nível 2. Prof. Cícero Thiago. Teorema 1. (Fórmula tradicional.) BC AD. Polos Olímpicos de Treinamento urso de Geometria - Nível Prof ícero Thiago ula 1 Relações entre áreas I Teorema 1 (Fórmula tradicional) área do triângulo pode ser calculada por [ ] = Teorema (Área de um

Leia mais

Polos Olímpicos de Treinamento. Aula 9. Curso de Geometria - Nível 2. Teorema de Ptolomeu. Prof. Cícero Thiago

Polos Olímpicos de Treinamento. Aula 9. Curso de Geometria - Nível 2. Teorema de Ptolomeu. Prof. Cícero Thiago Polos Olímpicos de Treinamento urso de Geometria - Nível 2 Prof. ícero Thiago ula 9 Teorema de Ptolomeu Teorema 1. (Ptolomeu) O produto dos comprimentos das diagonais de um quadrilátero inscritível é igual

Leia mais

Paralelismo. MA13 - Unidade 3. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria.

Paralelismo. MA13 - Unidade 3. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Paralelismo M13 - Unidade 3 Resumo elaborado por Eduardo Wagner baseado no texto:. Caminha M. Neto. Geometria. Coleção PROFMT Nomes tradicionais reta t corta as retas r e s. Dizemos que a reta t é uma

Leia mais

Polos Olímpicos de Treinamento. Aula 16. Curso de Geometria - Nível 2. Pontos Notáveis 2: Incentro. Prof. Cícero Thiago

Polos Olímpicos de Treinamento. Aula 16. Curso de Geometria - Nível 2. Pontos Notáveis 2: Incentro. Prof. Cícero Thiago Polos Olímpicos de Treinamento urso de Geometria - Nível Prof. ícero Thiago ula 16 Pontos Notáveis : ncentro Teorema 1. Seja XOY umângulodadoep umpontoemseuinterior. Então, adistância de P a XO é igual

Leia mais

Circunferências ex - inscritas

Circunferências ex - inscritas Polos Olímpicos de Treinamento urso de Geometria - Nível Prof. ícero Thiago ula 18 ircunferências ex - inscritas Teorema 1. Seja XOY umângulodadoep umpontoemseuinterior. ntão, adistância de P a XO é igual

Leia mais

Polos Olímpicos de Treinamento. Aula 17. Curso de Geometria - Nível 2. Pontos Notáveis 3: Circuncentro e Ortocentro. Prof.

Polos Olímpicos de Treinamento. Aula 17. Curso de Geometria - Nível 2. Pontos Notáveis 3: Circuncentro e Ortocentro. Prof. Polos Olímpicos de Treinamento urso de Geometria - Nível 2 Prof. ícero Thiago ula 17 Pontos Notáveis 3: ircuncentro e Ortocentro Teorema 1. Sejam, e P três pontos distintos no plano. Temos que P = P se,

Leia mais

Material Teórico - Módulo Elementos básicos de geometria plana - Parte 3. Quadriláteros. Oitavo ano do Ensino Fundamental

Material Teórico - Módulo Elementos básicos de geometria plana - Parte 3. Quadriláteros. Oitavo ano do Ensino Fundamental Material Teórico - Módulo Elementos básicos de geometria plana - arte 3 Quadriláteros Oitavo ano do Ensino Fundamental utor: rof. Jocelino Sato Revisor: rof. ntonio aminha M. Neto ortal da OME 1 Quadriláteros

Leia mais

Material Teórico - Módulo Elementos Básicos de Geometria Plana Parte 2. A Desigualdade Triangular. Oitavo Ano

Material Teórico - Módulo Elementos Básicos de Geometria Plana Parte 2. A Desigualdade Triangular. Oitavo Ano Material Teórico - Módulo Elementos ásicos de Geometria Plana Parte 2 esigualdade Triangular Oitavo no utor: Prof. Ulisses Lima Parente Revisor: Prof. ntonio aminha M. Neto Portal da OMEP 1 desigualdade

Leia mais

Teorema de Ceva [ ACD] [ CPD] = [ APB] . Assim, BD FB = K C K A

Teorema de Ceva [ ACD] [ CPD] = [ APB] . Assim, BD FB = K C K A Polos Olímpicos de Treinamento urso de Geometria - Nível 3 Prof. ícero Thiago ula 7 Teorema de eva Teorema 1. Sejam D, E e F pontos sobre os lados, e, respectivamente, do triângulo. Os segmentos D, E e

Leia mais

Potência de ponto e eixo radical

Potência de ponto e eixo radical Polos Olímpicos de Treinamento Curso de Geometria - Nível 3 Prof. Cícero Thiago Aula 11 Potência de ponto e eixo radical Chamaremos de Eixo radical o lugar geométrico dos pontos que possuem a mesma potência

Leia mais

Polos Olímpicos de Treinamento. Aula 8. Curso de Geometria - Nível 3. Teorema de Menelaus e problemas de colinearidade. Prof.

Polos Olímpicos de Treinamento. Aula 8. Curso de Geometria - Nível 3. Teorema de Menelaus e problemas de colinearidade. Prof. Polos Olímpicos de Treinamento urso de Geometria - Nível 3 Prof. ícero Thiago Aula 8 Teorema de Menelaus e problemas de colinearidade Teorema 1. Se uma reta intersecta as retas, A e A de um triângulo A

Leia mais

Áreas de Figuras Planas: Exercícios da OBMEP. Nono Ano. Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M. Neto

Áreas de Figuras Planas: Exercícios da OBMEP. Nono Ano. Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M. Neto Material Teórico - Módulo Áreas de Figuras lanas Áreas de Figuras lanas: Exercícios da OME Nono no utor: rof. Ulisses Lima arente Revisor: rof. ntonio aminha M. Neto de dezembro de 018 1 roblemas da OME

Leia mais

Polos Olímpicos de Treinamento. Aula 13. Curso de Geometria - Nível 3. Prof. Cícero Thiago

Polos Olímpicos de Treinamento. Aula 13. Curso de Geometria - Nível 3. Prof. Cícero Thiago Polos Olímpicos de Treinamento urso de Geometria - Nível 3 Prof. ícero Thiago ula 13 Revisão I Problema 1. Em um triângulo, = 100 e =. Seja D a bissetriz de, com D sobre o lado. Prove que D +D =. É fácil

Leia mais

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 3. Paralelogramos Especiais. Oitavo ano do Ensino Fundamental

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 3. Paralelogramos Especiais. Oitavo ano do Ensino Fundamental aterial Teórico - ódulo Elementos ásicos de Geometria Plana - Parte 3 Paralelogramos Especiais Oitavo ano do Ensino Fundamental utor: Prof. Jocelino Sato Revisor: Prof. ntonio aminha. Neto Portal da OEP

Leia mais

Geometria Plana - Aula 05

Geometria Plana - Aula 05 Geometria Plana - Aula 05 Elaine Pimentel Universidade Federal de Minas Gerais, Departamento de Matemática Geometria Plana Especialização 2008 - p. 1 Esquema da aula Quadrilátero - definição e. Quadriláteros

Leia mais

Propriedades do ortocentro

Propriedades do ortocentro Programa límpico de Treinamento Curso de Geometria - Nível 3 Prof. Rodrigo ula 4 Propriedades do ortocentro ortocentro é o ponto de encontro das três alturas de um triângulo arbitrário. Se o triângulo

Leia mais

Polos Olímpicos de Treinamento. Aula 7. Curso de Geometria - Nível 2. Ângulos na circunferência. Prof. Cícero Thiago

Polos Olímpicos de Treinamento. Aula 7. Curso de Geometria - Nível 2. Ângulos na circunferência. Prof. Cícero Thiago Polos límpicos de Treinamento urso de Geometria - Nível 2 Prof. ícero Thiago ula 7 Ângulos na circunferência efinição 1: ânguloinscrito relativo aumacircunferência éumânguloquetem ovértice na circunferência

Leia mais

Ortocentro, Reta de Euler e a Circunferência dos 9 pontos

Ortocentro, Reta de Euler e a Circunferência dos 9 pontos Prof. ícero Thiago - cicerothmg@gmail.com rtocentro, Reta de uler e a ircunferência dos 9 pontos Propriedade 1. Seja o centro da circunferência circunscrita ao triângulo acutângulo e seja a projeção de

Leia mais

Questões da 1ª avaliação de MA 13 Geometria, 2016

Questões da 1ª avaliação de MA 13 Geometria, 2016 uestões da 1ª avaliação de M 13 Geometria, 26 1. região na figura abaixo representa um lago. Descreva um processo pelo qual será possível medir a distância entre os pontos e (só medição fora do lago é

Leia mais

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 3. Círculos: elementos, arcos e ângulos inscritos

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 3. Círculos: elementos, arcos e ângulos inscritos Material eórico - Módulo Elementos ásicos de Geometria lana - arte 3 írculos: elementos, arcos e ângulos inscritos itavo ano do Ensino Fundamental utor: rof. Jocelino Sato Revisor: rof. ntonio aminha M.

Leia mais

Polos Olímpicos de Treinamento. Aula 9. Curso de Geometria - Nível 3. Prof. Cícero Thiago

Polos Olímpicos de Treinamento. Aula 9. Curso de Geometria - Nível 3. Prof. Cícero Thiago Polos Olímpios de Treinamento urso de Geometria - Nível 3 Prof. íero Thiago ula 9 Relações métrias no triângulo. Teorema 1. (Lei dos Senos) Seja um triângulo tal que = a, = b e =. Seja R o raio da irunferênia

Leia mais

MA13 Geometria AV1 2014

MA13 Geometria AV1 2014 MA13 Geometria AV1 2014 Questão 1 [ 2,0 pt ] Considere um paralelogramo ABCD e sejam M o centro da circunferência definida pelos vértices A, B e C N o centro da circunferência definida pelos vértices B,

Leia mais

Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales. Teorema de Tales - Parte II. Nono Ano do Ensino Fundamental

Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales. Teorema de Tales - Parte II. Nono Ano do Ensino Fundamental Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales Teorema de Tales - Parte II Nono no do Ensino Fundamental Prof. Marcelo Mendes de Oliveira Prof. ntonio aminha Muniz Neto Portal

Leia mais

Aula 6 Polígonos. Objetivos. Introduzir o conceito de polígono. Estabelecer alguns resultados sobre paralelogramos.

Aula 6 Polígonos. Objetivos. Introduzir o conceito de polígono. Estabelecer alguns resultados sobre paralelogramos. MÓULO 1 - UL 6 ula 6 Polígonos Objetivos Introduzir o conceito de polígono. Estabelecer alguns resultados sobre paralelogramos. Introdução efinição 14 hamamos de polígono uma figura plana formada por um

Leia mais

Geometria Básica. Bruno Holanda. 12 de novembro de 2011

Geometria Básica. Bruno Holanda. 12 de novembro de 2011 eometria ásica runo Holanda 12 de novembro de 2011 Resumo ste trabalho representa um conjunto de notas de aulas de um curso inicial em eometria uclidiana Plana para alunos do ensino fundamental. principal

Leia mais

Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales. Semelhança entre triângulos. Nono ano do Ensino Fundamental

Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales. Semelhança entre triângulos. Nono ano do Ensino Fundamental Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales Semelhança entre triângulos Nono ano do Ensino Fundamental utor: Prof. Jocelino Sato Revisor: Prof. ntonio aminha M. Neto 1 Figuras

Leia mais

Resoluções das atividades

Resoluções das atividades tividades uplementares íngua Geometria ortuguesa esoluções das atividades apítulo 6 erpendicularidade apítulo 7 Quadriláteros I 1 a + 15º b omo é bissetriz, + 15º = 5º = 0º = 0º 1 + ( º) + (6 º) + ( +

Leia mais

LISTA DE EXERCÍCIOS MAT GEOMETRIA E DESENHO GEOMÉTRICO I

LISTA DE EXERCÍCIOS MAT GEOMETRIA E DESENHO GEOMÉTRICO I LISTA DE EXERCÍCIOS MAT 230 - GEOMETRIA E DESENHO GEOMÉTRICO I 1. Numa geometria de incidência, o plano tem 5 pontos. Quantas retas tem este plano? A resposta é única? 2. Exibir um plano de incidência

Leia mais

Lugares geométricos básicos I

Lugares geométricos básicos I Lugares geométricos básicos I M13 - Unidade 5 Resumo elaborado por Eduardo Wagner baseado no texto:. Caminha M. Neto. Geometria. Coleção PROFMT Definição Lugar Geométrico da propriedade P é o conjunto

Leia mais

Aula 10 Semelhança de triângulos

Aula 10 Semelhança de triângulos MÓULO 1 - UL 10 ula 10 Semelhança de triângulos Objetivos Introduzir a noção de semelhança de triângulos eterminar as condições mínimas que permitem dizer que dois triângulos são semelhantes. Introdução

Leia mais

Módulo de Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. 9 o ano E.F.

Módulo de Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. 9 o ano E.F. Módulo de Triângulo Retângulo, Lei dos Senos e ossenos, Poĺıgonos Regulares. Relações Métricas em Poĺıgonos Regulares 9 o ano.. Triângulo Retângulo, Lei dos Senos e ossenos, Polígonos Regulares. Relações

Leia mais

NÍVEL 3. x + 2. x + 1

NÍVEL 3. x + 2. x + 1 009 www.cursoanglo.com.br Treinamento para Olimpíadas de Matemática NÍVL esoluções ULS 6 9 m lasse. Seja H = h a altura relativa a e =, comprimento do lado. esde que os comprimentos dos lados, e, nessa

Leia mais

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução MTEMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. omo a reta T P é tangente à circunferência no ponto T é perpendicular ao

Leia mais

Congruência de triângulos II

Congruência de triângulos II ongruência de triângulos II M13 - Unidade 2 Resumo elaborado por Eduardo Wagner baseado no texto:. aminha M. Neto. Geometria. oleção PROFMT Triângulo isósceles Os ângulos da base de um triângulo isósceles

Leia mais

Material Teórico - Módulo Elementos básicos de geometria plana - Parte 3. Quadriláteros Inscritíveis e Circunscritíveis

Material Teórico - Módulo Elementos básicos de geometria plana - Parte 3. Quadriláteros Inscritíveis e Circunscritíveis Material Teórico - Módulo lementos básicos de geometria plana - Parte 3 Quadriláteros Inscritíveis e ircunscritíveis itavo ano do nsino Fundamental utor: Prof. Jocelino Sato evisor: Prof. ntonio aminha

Leia mais

Pontos notáveis de um triângulo

Pontos notáveis de um triângulo MÓULO 1 - UL 9 ula 9 ontos notáveis de um triângulo Objetivos presentar os pontos notáveis de um triângulo. stabelecer alguns resultados envolvendo esses elementos. ontos notáveis de um triângulo Nesta

Leia mais

MA13 Geometria I Avaliação

MA13 Geometria I Avaliação 13 Geometria I valiação 1 2012 SOLUÇÕS Questão 1. (pontuação: 2) O ponto pertence ao lado do triângulo. Sabe-se que = = e que o ângulo mede 21 o. etermine a medida do ângulo. 21 o omo =, seja = =. O ângulo

Leia mais

Triângulos classificação

Triângulos classificação Triângulos classificação Quanto aos ângulos Acutângulo: possui três ângulos agudos. Quanto aos lados Equilátero: três lados de mesma medida. Obs.: os três ângulos internos têm medidas de 60º. Retângulo:

Leia mais

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução MTEMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. omo a base do prisma é um quadrado, os lados adjacentes são perpendiculares,

Leia mais

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução MTEMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. omo o triângulo [] é um triângulo retângulo em, (porque [EF GH] é paralelepípedo

Leia mais

Quadriláteros Inscritíveis II. Nesta aula, trataremos de três teoremas muito utilizados em problemas de quadriláteros inscritíveis.

Quadriláteros Inscritíveis II. Nesta aula, trataremos de três teoremas muito utilizados em problemas de quadriláteros inscritíveis. Programa Olímpico de Treinamento urso de Geometria - Nível 3 Prof. Rodrigo ula 2 Quadriláteros Inscritíveis II Nesta aula, trataremos de três teoremas muito utilizados em problemas de quadriláteros inscritíveis.

Leia mais

O quadrado e outros quadriláteros

O quadrado e outros quadriláteros Acesse: http://fuvestibular.com.br/ A UUL AL A O quadrado e outros quadriláteros Para pensar No mosaico acima, podemos identificar duas figuras bastante conhecidas: o quadrado, de dois tamanhos diferentes,

Leia mais

Aula 9 Triângulos Semelhantes

Aula 9 Triângulos Semelhantes MUL 1 - UL 9 ula 9 Triângulos Semelhantes efinição: ois triângulos são semelhantes se os três ângulos são ordenadamente congruentes e se os lados homólogos são proporcionais. figura mostra dois triângulos

Leia mais

NOME: ANO: 3º Nº: PROFESSOR(A):

NOME: ANO: 3º Nº: PROFESSOR(A): NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições Triângulos: REVISÃO Lista 06 Triângulos e Quadriláteros Classificação quanto aos lados: Escaleno (todos os lados diferentes), Isósceles

Leia mais

GAD = 180º 75º 60º = 45º

GAD = 180º 75º 60º = 45º 009 www.cursoanglo.com.br Treinamento para Olimpíadas de Matemática NÍVL 3 Resoluções ULS 4 a 6 m lasse. omo e são triângulos eqüiláteros, cada um de seus ângulos internos mede 60º. No triângulo G temos

Leia mais

Agrupamento de Escolas Diogo Cão, Vila Real

Agrupamento de Escolas Diogo Cão, Vila Real grupamento de Escolas iogo Cão, Vila Real MTEMÁTIC - 9º FICH E TRLHO 4 2º PERÍOO FEVEREIRO - 2016 Nome: Nº Turma: ata: 1 Quais das seguintes equações são do 2º grau completas? 1.1 x 2 + 12 = 0 1.2 x 2

Leia mais

Aula 21 - Baiano GEOMETRIA PLANA

Aula 21 - Baiano GEOMETRIA PLANA Aula 21 - Baiano GEOMETRIA PLANA Definição: Polígono de quatro lados formado por quatro vértices não colineares dois a dois. A D S i = 180º (n 2)= 180º (4 2)= 360º S e = 360º B C d = n. (n - 3) 2 = 4.

Leia mais

Datas das Avaliações. Média Final: (P1 + P2) /2

Datas das Avaliações. Média Final: (P1 + P2) /2 Professora: Lhaylla Crissaff E-mail para contato: Período Início: 20/03/2017 Término: 20/07/2017 Turma M2 terças e quintas de 9:00 às 11:00 Sala: IMG-205 Datas das Avaliações P1: 09/05/2017 P2: 29/06/2017

Leia mais

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 2. Congruência de Triângulos e Aplicações - Parte 1.

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 2. Congruência de Triângulos e Aplicações - Parte 1. aterial Teórico - ódulo Elementos ásicos de Geometria lana - arte 2 ongruência de Triângulos e plicações - arte 1 Oitavo no utor: rof. Ulisses Lima arente Revisor: rof. ntonio aminha. Neto ortal da OE

Leia mais

» Teorema (CROSSBAR) Seja ABC um triângulo e seja X um ponto em seu interior. Então todo raio AX corta o lado BC.

» Teorema (CROSSBAR) Seja ABC um triângulo e seja X um ponto em seu interior. Então todo raio AX corta o lado BC. » Teorema (CROSSBAR) Seja ABC um triângulo e seja X um ponto em seu interior. Então todo raio AX corta o lado BC. Iniciamos, nesta seção, o estudo sistemático da geometria dos quadriláteros. Dentre os

Leia mais

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE Professor: João Carmo DEFINIÇÃO Triângulo ou trilátero é um polígono de três lados. Observações: a) O triângulo não possui diagonais;

Leia mais

POTÊNCIA DE PONTO, EIXO RADICAL, CENTRO RADICAL E APLICAÇÕES Yuri Gomes Lima, Fortaleza - CE

POTÊNCIA DE PONTO, EIXO RADICAL, CENTRO RADICAL E APLICAÇÕES Yuri Gomes Lima, Fortaleza - CE PTÊNI PNT, IX RIL, NTR RIL PLIÇÕS Yuri Gomes Lima, Fortaleza - Nível INTRUÇÃ Muitas vezes na Geometria Plana nos deparamos com problemas em que não temos muitas informações a respeito de ângulos e comprimentos,

Leia mais

Lista 3. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante.

Lista 3. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante. MA13 Exercícios das Unidades 4 e 5 2014 Lista 3 Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante. 1) Seja ABCD um quadrilátero qualquer. Prove que os pontos médios

Leia mais

GEOMETRIA PLANA. Segmentos congruentes: Dois segmentos ou ângulos são congruentes quando têm as mesmas medidas.

GEOMETRIA PLANA. Segmentos congruentes: Dois segmentos ou ângulos são congruentes quando têm as mesmas medidas. PARTE 01 GEOMETRIA PLANA Introdução A Geometria está apoiada sobre alguns postulados, axiomas, definições e teoremas, sendo que essas definições e postulados são usados para demonstrar a validade de cada

Leia mais

III.2 Se os segmentos A B e A B são congruentes ao segmento AB então os segmentos A B e A B também são congruentes.

III.2 Se os segmentos A B e A B são congruentes ao segmento AB então os segmentos A B e A B também são congruentes. 1 Grupo III xiomas de ongruência onsidere o conjunto SEG de todos segmentos e o conjunto NG de todos os ângulos. Vamos admitir a existência de duas relações binárias, uma em SEG (e portanto, entre segmentos)

Leia mais

MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira. MÓDULO 5 Quadriláteros

MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira. MÓDULO 5 Quadriláteros MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira MÓDULO 5 Quadriláteros Os dois dias mais importantes da sua vida são o dia em que você nasceu e o dia em que você descobre o porquê. (Mark Twain) SUMÁRIO

Leia mais

C A r. GABARITO MA13 Geometria I - Avaliação /2. A área de um triângulo ABC será denotada por (ABC).

C A r. GABARITO MA13 Geometria I - Avaliação /2. A área de um triângulo ABC será denotada por (ABC). GRITO 13 Geometria I - valiação 3-01/ área de um triângulo será denotada por (). Questão 1. (pontuação: ) figura abaio mostra as semirretas perpendiculares r e s, três circunferências pequenas cada uma

Leia mais

ENSINO PRÉ-UNIVERSITÁRIO PROFESSOR(A) TURNO. 01. Determine a distância entre dois pontos A e B do plano cartesiano.

ENSINO PRÉ-UNIVERSITÁRIO PROFESSOR(A) TURNO. 01. Determine a distância entre dois pontos A e B do plano cartesiano. SÉRIE ITA/IME ENSINO PRÉ-UNIVERSITÁRIO PROFESSOR(A) ALUNO(A) TURMA MARCELO MENDES TURNO SEDE DATA Nº / / TC MATEMÁTICA Geometria Analítica Exercícios de Fixação Conteúdo: A reta Parte I Exercícios Tópicos

Leia mais

Material Teórico - Módulo de Geometria Espacial 1 - Fundamentos. Pontos, Retas e Planos - Parte 2. Terceiro Ano - Médio

Material Teórico - Módulo de Geometria Espacial 1 - Fundamentos. Pontos, Retas e Planos - Parte 2. Terceiro Ano - Médio Material Teórico - Módulo de Geometria Espacial 1 - Fundamentos Pontos, Retas e Planos - Parte 2 Terceiro no - Médio utor: Prof. ngelo Papa Neto Revisor: Prof. ntonio Caminha 1 Ângulo entre retas no espaço.

Leia mais

Material Teórico - Módulo: Vetores em R 2 e R 3. Módulo e Produto Escalar - Parte 2. Terceiro Ano - Médio

Material Teórico - Módulo: Vetores em R 2 e R 3. Módulo e Produto Escalar - Parte 2. Terceiro Ano - Médio Material Teórico - Módulo: Vetores em R 2 e R 3 Módulo e Produto Escalar - Parte 2 Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto Nesta segunda parte, veremos

Leia mais

Axiomas de Incidência Axiomas de Ordem Axiomas de Congruência Axioma das paralelas Axiomas de Continuidade

Axiomas de Incidência Axiomas de Ordem Axiomas de Congruência Axioma das paralelas Axiomas de Continuidade 1 GEOMETRIA PLANA Atualizado em 04/08/2008 www.mat.ufmg.br/~jorge Bibliografia 1. Pogorélov, A.V. Geometria Elemental Editora Mir. 2. Dolce, Osvaldo e Nicolau, Pompeu Geometria Plana Volume 9 da Coleção

Leia mais

TRIÂNGULOS. Condição de existência de um triângulo

TRIÂNGULOS. Condição de existência de um triângulo TRIÂNGULOS Condição de existência de um triângulo Em todo triângulo, a soma das medidas de dois lados sempre tem que ser maior que a medida do terceiro lado. EXERCÍCIO 1º Será que conseguiríamos desenhar

Leia mais

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 1. Ângulos - Parte 1. Oitavo Ano

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 1. Ângulos - Parte 1. Oitavo Ano Material Teórico - Módulo Elementos ásicos de Geometria Plana - Parte 1 Ângulos - Parte 1 itavo no utor: Prof. Ulisses Lima Parente Revisor: Prof. ntonio aminha 1 Ângulos Uma região R do plano é convexa

Leia mais

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 2. Congruência de Triângulos e Aplicações - Parte 2.

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 2. Congruência de Triângulos e Aplicações - Parte 2. Material Teórico - Módulo lementos ásicos de Geometria Plana - Parte 2 ongruência de Triângulos e plicações - Parte 2 Oitavo no utor: Prof. Ulisses Lima Parente Revisor: Prof. ntonio aminha M. Neto Portal

Leia mais

PONTO MÉDIO LEMBRA? OUTRO PONTO MÉDIO! DOIS PONTOS MÉDIOS LEMBRAM? BASE MÉDIA! Cícero Thiago Magalhães

PONTO MÉDIO LEMBRA? OUTRO PONTO MÉDIO! DOIS PONTOS MÉDIOS LEMBRAM? BASE MÉDIA! Cícero Thiago Magalhães PONTO MÉDIO LEMBRA? OUTRO PONTO MÉDIO! DOIS PONTOS MÉDIOS LEMBRAM? BASE MÉDIA! Cícero Thiago Magalhães Nível Iniciante Propriedade 1 Num triângulo retângulo ABC, a mediana BM relativa à hipotenusa mede

Leia mais

2. Cada 3 pontos determinam um plano. Logo, há um total de. = 4 planos (que correspondem às faces do tetraedro cujos vértices são estes 4 pontos).

2. Cada 3 pontos determinam um plano. Logo, há um total de. = 4 planos (que correspondem às faces do tetraedro cujos vértices são estes 4 pontos). Soluções do apítulo 7 (Volume ) 1. Supondo que, neste trecho, tanto a ponte quanto a via férrea estejam em planos horizontais (sem rampa), temos as seguintes relações: α e β são paralelos; r está contida

Leia mais

O Quadrilátero de Saccheri

O Quadrilátero de Saccheri O Quadrilátero de Saccheri 1 efinição (Quadrilátero de Saccheri) Na figura abaixo se tem um quadrilátero com ângulos retos em e, os segmentos e denominados hastes são congruentes isto é, e os segmentos

Leia mais

Polígonos PROFESSOR RANILDO LOPES 11.1

Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos Polígono é uma figura geométrica plana e fechada formada apenas por segmentos de reta que não se cruzam no mesmo plano. Exemplos 11.1 Elementos de um polígono

Leia mais

Circunferências tangentes entre si e o Lema da estrela da morte

Circunferências tangentes entre si e o Lema da estrela da morte Circunferências tangentes entre si e o Lema da estrela da morte emana Olímpica/2018 - Nível 2 rof. rmando Barbosa Maceió, 25 de janeiro de 2018 m algumas questões de olimpíada de matemática, aparecem questões

Leia mais

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 1. Ângulos - Parte 1. Oitavo Ano

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 1. Ângulos - Parte 1. Oitavo Ano Material Teórico - Módulo Elementos ásicos de Geometria Plana - Parte 1 Ângulos - Parte 1 itavo no utor: Prof. Ulisses Lima Parente Revisor: Prof. ntonio aminha Portal da MEP 1 Ângulos Uma região R do

Leia mais

Axiomas e Proposições

Axiomas e Proposições Axiomas e Proposições Axiomas: I Incidência I.1 Existem infinitos pontos no plano. I.2 Por dois pontos distintos (ou seja, diferentes) passa uma única reta. I.3 Dada uma reta, existem infinitos pontos

Leia mais

Expressões Algébricas

Expressões Algébricas META: Resolver geometricamente problemas algébricos. AULA 11 OBJETIVOS: Introduzir a 4 a proporcional. Construir segmentos que resolvem uma equação algébrica. PRÉ-REQUISITOS O aluno deverá ter compreendido

Leia mais

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase 36ª Olimpíada rasileira de Matemática GRITO Segunda Fase Soluções Nível 3 Segunda Fase Parte RITÉRIO E ORREÇÃO: PRTE Na parte serão atribuídos pontos para cada resposta correta e a pontuação máxima para

Leia mais

Resoluções NÍVEL 3. Classe

Resoluções NÍVEL 3. Classe 00 www.cursoanglo.com.br Treinamento para Olimpíadas de atemática NÍVL 3 Resoluções ULS 4 6 m lasse. as paralelas traçadas aos bastões pelos pontos,,, e (ver figura) e da propriedade dos ângulos alternos

Leia mais

Matemática. Nesta aula iremos aprender as. 1 Ponto, reta e plano. 2 Posições relativas de duas retas

Matemática. Nesta aula iremos aprender as. 1 Ponto, reta e plano. 2 Posições relativas de duas retas Matemática Aula 5 Geometria Plana Alexandre Alborghetti Londero Nesta aula iremos aprender as noções básicas de Geometria Plana. 1 Ponto, reta e plano Estes elementos primitivos da geometria euclidiana

Leia mais

Bissetrizes e suas propriedades.

Bissetrizes e suas propriedades. Semana Olímpica 013 - Prof. ícero Thiago - olégio ETP/SP issetrizes e suas propriedades. Teorema 1. Seja XOY umângulodadoep umpontoemseuinterior. Então, adistância de P a XO é igual à distância de P a

Leia mais

Objetivos. em termos de produtos internos de vetores.

Objetivos. em termos de produtos internos de vetores. Aula 5 Produto interno - Aplicações MÓDULO 1 - AULA 5 Objetivos Calcular áreas de paralelogramos e triângulos. Calcular a distância de um ponto a uma reta e entre duas retas. Determinar as bissetrizes

Leia mais

TEOREMA DE CEVA E MENELAUS. Teorema 1 (Teorema de Ceva). Sejam AD, BE e CF três cevianas do triângulo ABC, conforme a figura abaixo.

TEOREMA DE CEVA E MENELAUS. Teorema 1 (Teorema de Ceva). Sejam AD, BE e CF três cevianas do triângulo ABC, conforme a figura abaixo. TEOREMA DE CEVA E MENELAUS Definição 1. A ceviana de um triângulo é qualquer segmento de reta que une um dos vértices do triângulo a um ponto pertencente à reta suporte do lado oposto a este vértice. Teorema

Leia mais

Pontos notáveis de um triângulo

Pontos notáveis de um triângulo Pontos notáveis de um triângulo Sadao Massago Maio de 2010 Sumário 1 onceitos preliminares................................. 1 2 Incentro......................................... 2 3 ircuncentro.......................................

Leia mais

Teorema de Ceva AULA. META: O Teorema de Ceva e algumas aplicações. OBJETIVOS: Enunciar e demonstrar o Teorema de Ceva; Aplicar o Teorema de Ceva.

Teorema de Ceva AULA. META: O Teorema de Ceva e algumas aplicações. OBJETIVOS: Enunciar e demonstrar o Teorema de Ceva; Aplicar o Teorema de Ceva. META: O Teorema de Ceva e algumas aplicações. OBJETIVOS: Enunciar e demonstrar o Teorema de Ceva; Aplicar o Teorema de Ceva. PRÉ-REQUISITOS O aluno deverá ter compreendido as aulas anteriores. .1 Introdução

Leia mais

Material Teórico - Módulo Elementos básicos de geometria plana - Parte 3. Mais Pontos Notáveis de um Triângulo. Oitavo ano do Ensino Fundamental

Material Teórico - Módulo Elementos básicos de geometria plana - Parte 3. Mais Pontos Notáveis de um Triângulo. Oitavo ano do Ensino Fundamental Material Teórico - Módulo Elementos básicos de geometria plana - Parte 3 Mais Pontos Notáveis de um Triângulo itavo ano do Ensino Fundamental utor: Prof. Jocelino Sato Revisor: Prof. ntonio aminha M. Neto

Leia mais

Aula 11 Conseqüências da semelhança de

Aula 11 Conseqüências da semelhança de onseqüências da semelhança de triângulos MÓULO 1 - UL 11 ula 11 onseqüências da semelhança de triângulos Objetivos presentar o Teorema de Pitágoras presentar o teorema da bissetriz interna. O Teorema de

Leia mais

Coordenadas Cartesianas

Coordenadas Cartesianas 1 Coordenadas Cartesianas 1.1 O produto cartesiano Para compreender algumas notações utilizadas ao longo deste texto, é necessário entender o conceito de produto cartesiano, um produto entre conjuntos

Leia mais

GGM /11/2010 Dirce Uesu Pesco Geometria Espacial

GGM /11/2010 Dirce Uesu Pesco Geometria Espacial GGM00161-06/11/2010 Turma M2 Dirce Uesu Pesco Geometria Espacial Postulados : - Por dois pontos distintos passa uma e somente uma reta - Três pontos não colineares determinam um único plano. - Qualquer

Leia mais

Geometria Plana 1 (UEM-2013) Em um dia, em uma determinada região plana, o Sol nasce às 7 horas e se põe às 19 horas. Um observador, nessa região, deseja comparar a altura de determinados objetos com o

Leia mais

Conceitos básicos de Geometria:

Conceitos básicos de Geometria: Conceitos básicos de Geometria: Os conceitos de ponto, reta e plano não são definidos. Compreendemos estes conceitos a partir de um entendimento comum utilizado cotidianamente dentro e fora do ambiente

Leia mais

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo Índice Geometria plana Polígonos Triângulos Congruência de triângulos Semelhança de triângulos Relações métricas no triângulo retângulo Quadriláteros Teorema de Tales Esquadros de madeira www.ser.com.br

Leia mais

MATEMÁTICA A - 11o Ano Geometria -Trigonometria Propostas de resolução

MATEMÁTICA A - 11o Ano Geometria -Trigonometria Propostas de resolução MTEMÁTI - o no Geometria -Trigonometria ropostas de resolução Eercícios de eames e testes intermédios. bservando que os ângulos e RQ têm a mesma amplitude porque são ângulos de lados paralelos), relativamente

Leia mais

Sobre a Reta de Euler

Sobre a Reta de Euler Sobre a Reta de Euler Bárbara C. Toledo limabarbarac@gmail.com Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil Thiago Fontes Santos santostf@iceb.ufop.br Universidade Federal de Ouro Preto,

Leia mais