Relatório Sobre a Exposição do Tema A Reta de Euler
|
|
|
- Luiza Garrido Faria
- 9 Há anos
- Visualizações:
Transcrição
1 UFMG - UNIVERSIDADE FEDERAL DE MINAS GERAIS INSTITUTO DE CIÊNCIAS EXTAS - ICEX Relatório Sobre a Exposição do Tema A Reta de Euler DISCIPLINA: Fundamentos de Geometria Plana e Desenho Geométrico; PROFESSOR: Jorge Sabattuci; ALUNOS: Júnia Neuenschwander Klaudemir Santiago
2 A RETA DE EULER A Reta de Euler é uma relação entre os chamados pontos notáveis de um triângulo. O Circuncentro, o Baricentro e o Ortocentro de um triângulo qualquer. O Circuncentro ( O ) de um triângulo é o ponto de encontro das mediatrizes de seus lados; O Baricentro ( G ) é o ponto de encontro das medianas. O Ortocentro ( H ) é o ponto de encontro das alturas (ou de suas retas suporte). A reta que passa por esses três pontos é chamada Reta de Euler do triângulo ABC. Esta colinearidade está representada no teorema abaixo que será demonstrado. Teorema: Em um triângulo ABC qualquer, o baricentro, o ortocentro, e o circuncentro são colineares. O baricentro está entre o ortocentro e o circuncentro e sua distância ao ortocentro é o dobro de sua distância ao circuncentro. Prova: A prova deste Teorema vale para um triângulo qualquer. No caso de o triângulo ABC ser eqüilátero (figura 1), medianas, alturas e mediatrizes coincidem, conseqüentemente, os três pontos G, H e O também irão se coincidir. Para se definir uma reta precisamos de dois pontos distintos. Sendo assim, em um triângulo eqüilátero a Reta de Euler não está definida. Figura 1
3 Para triângulos isósceles (figura 2), temos que a mediana, mediatriz e altura relativa à base são coincidentes, logo, o baricentro, o ortocentro e o circuncentro pertencem e um mesmo segmento. Assim, a reta que contêm esse segmento é a Reta de Euler do triângulo. Figura 2 Por simplicidade na demonstração utilizaremos um triângulo acutângulo para garantirmos que os três pontos, citados acima, serão internos ao triângulo. No entanto a prova é análoga para um triangulo obtusângulo, ou mesmo retângulo. - Vamos considerar então um triângulo ABC escaleno (figura3). - Baricentro G (contido na mediana) e o circuncentro O (contido na mediatriz) são pontos distintos, pois a mediana é distinta da mediatriz; - Tomamos então a reta l determinada pelos pontos G e O; - Seja H um ponto pertencente a semi-reta OG tal que GH ' = 2 GO ; - Seja P o ponto médio do lado BC ; - Consideremos a mediana e a mediatriz relativas ao lado BC ; Figura 3
4 - Os triângulos GH A e GOP são semelhantes pelo caso LAL de semelhança: GH ' = 2GO AGH' ˆ = AGˆ O (o.p.v) (por construção) AG = 2 GO (propriedade do baricentro) - Logo, seus ângulos correspondentes, AH'G ˆ e POˆ G são congruentes; - Assim a reta suporte que contêm o segmento AH' é paralela à mediatriz OP ; - Conseqüentemente, H é um ponto pertencente a altura relativa ao lado BC ; - Raciocinando da mesma forma, vamos tomar agora a mediana e a mediatriz relativas ao lado AC (figura4); - Seja P o ponto médio do lado AC; Figura 4 - Os triângulos GH B e GOP são semelhantes pelo caso LAL de semelhança: GH ' = 2GO BGH' ˆ = P'Gˆ O (o.p.v) (por construção) BG = 2 GP' (propriedade do baricentro) - Logo, seus ângulos correspondentes, BH'G ˆ e P'Oˆ G são congruentes; - Assim a reta suporte que contêm o segmento BH' é paralela à mediatriz OP '; - Conseqüentemente, H é um ponto pertencente a altura relativa ao lado AC ;
5 - Como H é a intersecção de duas alturas do triangulo ABC temos que H = H (ortocentro). Concluímos assim que, Circuncentro ( O ), Baricentro ( G ) e Ortocentro ( H ) são colineares e a Reta l é a Reta de Euler do Triângulo ABC. Como o Ortocentro de um triângulo é único, por construção, temos que, o Baricentro estará sempre entre o Ortocentro e o Circuncentro e GH = 2GO.
6 EXERCICIO APRESENTADO: Considere o triangulo ABC ao lado. l é a reta que contem H ( Ortocentro ) e K (Circuncentro) do triangulo ABC. AM é mediana relativa a CB. AXY = 45º AX = 4 2 XY = 2 Determine a medida do segmento AM. Solução: Sabemos que os três pontos notáveis (baricentro, ortocentro e circuncentro) de um triângulo estão sobre a Reta de Euler. Como a reta l contém os pontos H e K, então l é a Reta de Euler do triângulo ABC. Logo baricentro G também pertence a l. Como AM é mediana, AM contém G. Temos então: G l G AM G = Y Usando lei dos Cossenos no triângulo AXG podemos determinar AG. Como o Baricentro de um triângulo divide suas medianas em 2 partes sendo a que contém o vértice o dobro da outra, temos que: 1 GM = AG 2 AM = AG + GM
7 BIBLIOGRAFIA: - Revista do professor de matemática ( RPM ), nº 43, p wwwgogeometry.com
Teorema de Ceva AULA. META: O Teorema de Ceva e algumas aplicações. OBJETIVOS: Enunciar e demonstrar o Teorema de Ceva; Aplicar o Teorema de Ceva.
META: O Teorema de Ceva e algumas aplicações. OBJETIVOS: Enunciar e demonstrar o Teorema de Ceva; Aplicar o Teorema de Ceva. PRÉ-REQUISITOS O aluno deverá ter compreendido as aulas anteriores. .1 Introdução
Sobre a Reta de Euler
Sobre a Reta de Euler Bárbara C. Toledo [email protected] Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil Thiago Fontes Santos [email protected] Universidade Federal de Ouro Preto,
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE Professor: João Carmo DEFINIÇÃO Triângulo ou trilátero é um polígono de três lados. Observações: a) O triângulo não possui diagonais;
Triângulos classificação
Triângulos classificação Quanto aos ângulos Acutângulo: possui três ângulos agudos. Quanto aos lados Equilátero: três lados de mesma medida. Obs.: os três ângulos internos têm medidas de 60º. Retângulo:
PONTOS NOTÁVEIS DE UM. Professora Joseane Fernandes TRIÂNGULO
PONTOS NOTÁVEIS DE UM Professora Joseane Fernandes TRIÂNGULO PONTOS NOTÁVEIS DE UM TRIÂNGULO. Baricentro; Incentro; Circuncentro; Ortocentro. BARICENTRO - MEDIANA Mediana segmento de reta que liga o ponto
TRIÂNGULOS. Condição de existência de um triângulo
TRIÂNGULOS Condição de existência de um triângulo Em todo triângulo, a soma das medidas de dois lados sempre tem que ser maior que a medida do terceiro lado. EXERCÍCIO 1º Será que conseguiríamos desenhar
Geometria Plana - Aula 05
Geometria Plana - Aula 05 Elaine Pimentel Universidade Federal de Minas Gerais, Departamento de Matemática Geometria Plana Especialização 2008 - p. 1 Esquema da aula Quadrilátero - definição e. Quadriláteros
Aula 09 (material didático produzido por Paula Rigo)
EMBAP ESCOLA DE MÚSICA E BELAS ARTES DO PARANÁ DISCIPLINA DE DESENHO GEOMÉTRICO E GEOMETRIA DESCRITIVA Profª Eliane Dumke e-mail: [email protected] Aula 09 (material didático produzido por Paula Rigo)
Hewlett-Packard TRIÂNGULOS. AULAS 01 a 04. Prof. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos
Hewlett-Packard TRIÂNGULOS AULAS 01 a 04 Prof. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Sumário TRIÂNGULOS... 1 DEFINIÇÃO E ELEMENTOS... 1 SOMA DAS MEDIDAS DOS ÂNGULOS INTERNOS DE UM TRIÂNGULO...
GEOMETRIA PLANA. Prof. Fabiano
GEOMETRIA PLANA Prof. Fabiano POLÍGONOS REGULARES R.. a. O O O a R a R R = Raio - raio da circunf. circunscrita - distância do centro a um vértice a = Apótema - Raio da circunferência inscrita - distância
Hewlett-Packard TRIÂNGULOS. AULAS 01 a 04. Prof. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos
Hewlett-Packard TRIÂNGULOS AULAS 01 a 04 Prof. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Sumário TRIÂNGULOS... 1 DEFINIÇÃO E ELEMENTOS... 1 SOMA DAS MEDIDAS DOS ÂNGULOS INTERNOS DE UM TRIÂNGULO...
Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo
Índice Geometria plana Polígonos Triângulos Congruência de triângulos Semelhança de triângulos Relações métricas no triângulo retângulo Quadriláteros Teorema de Tales Esquadros de madeira www.ser.com.br
Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo
Índice Geometria plana Polígonos Triângulos Congruência de triângulos Semelhança de triângulos Relações métricas no triângulo retângulo Quadriláteros Teorema de Tales Esquadros de madeira www.ser.com.br
Mediana, Altura, Bissetriz e Mediatriz de um Triângulo
Mediana, Altura, Bissetriz e Mediatriz de um Triângulo Mediana Definição: Denomina-se mediana de um triângulo o segmento que liga um vértice ao ponto médio do lado oposto a este vértice. AM A é mediana
MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON
MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON [email protected] DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são
Matemática. Nesta aula iremos aprender as. 1 Ponto, reta e plano. 2 Posições relativas de duas retas
Matemática Aula 5 Geometria Plana Alexandre Alborghetti Londero Nesta aula iremos aprender as noções básicas de Geometria Plana. 1 Ponto, reta e plano Estes elementos primitivos da geometria euclidiana
Mat. Mat. 2. Luanna Ramos. Monitor: Roberta Teixeira
Mat. Professor: Alex Amaral Luanna Ramos Monitor: Roberta Teixeira Triângulos: Cevianas e pontos notáveis 07/09 mar RESUMO Ceviana é qualquer segmento que parte de um vértice de um triângulo e corta o
Equilátero Isósceles Escaleno
TRIÂNGULOS Triângulo são polígonos formados por três lados. Os polígonos, por sua vez, são figuras geométricas formadas por segmentos de reta que, dois a dois, tocam-se em seus pontos extremos, mas que
Propriedades do ortocentro
Programa límpico de Treinamento Curso de Geometria - Nível 3 Prof. Rodrigo ula 4 Propriedades do ortocentro ortocentro é o ponto de encontro das três alturas de um triângulo arbitrário. Se o triângulo
Geometria Plana. Exterior do ângulo Ô:
Geometria Plana Ângulo é a união de duas semiretas de mesma origem, não sendo colineares. Interior do ângulo Ô: Exterior do ângulo Ô: Dois ângulos são consecutivos se, e somente se, apresentarem um lado
17 TRIÂNGULOS 17.1 PONTOS NOTÁVEIS DE UM TRIÂNGULO. Definição: O encontro das mediatrizes dos lados de um triângulo é único e chama-se circuncentro.
97 17 TRIÂNGULOS 17.1 PONTOS NOTÁVEIS DE UM TRIÂNGULO Definição: O encontro das mediatrizes dos lados de um triângulo é único e chama-se circuncentro. Propriedades: 1) O circuncentro é o centro da circunferência
ANÁLISE GRÁFICA E ANALÍTICA DA RETA DE EULER E TRÊS PONTOS NOTÁVEIS, EM TRIÂNGULOS NO ESPAÇO R 2
ANÁLISE GRÁFICA E ANALÍTICA DA RETA DE EULER E TRÊS PONTOS NOTÁVEIS, EM TRIÂNGULOS NO ESPAÇO R 2 P.C. SZENDRODI, J. ABRANTES, R.M. GRANADO, D. D. SOBRAL FILHA Resumo Este artigo faz análises gráfica e
MATEMÁTICA. Capítulo 2 LIVRO 1. Triângulos. Páginas: 157 à169
MATEMÁTICA LIVRO 1 Capítulo 2 Triângulos Páginas: 157 à169 I. Soma dos Ângulos Internos Teorema demonstração: a soma das medidas dos ângulos internos de qualquer triângulo vale 180 x B β y r // AC A γ
PERÍMETRO O perímetro de um triângulo é igual à soma das medidas dos seus lados. Perímetro ABC = AB + AC + BC TRIÂNGULOS
TRIÂNGULOS Conceito: Triângulo é um polígono de três lados. PERÍMETRO O perímetro de um triângulo é igual à soma das medidas dos seus lados. Perímetro ABC = AB + AC + BC CLASSIFICAÇÃO DOS TRIÂNGULOS Quanto
EXERCÍCIOS DE FIXAÇÃO DE RECUPERAÇÃO DE GEOMETRIA 2ª ETAPA
8º ANOA( ) B( )Data: / 05 / 2017. Professor(a): JUNIOR Etapa : 1ª( ) 2ª ( X ) 3ª ( ) Aluno (a): EXERCÍCIOS DE FIXAÇÃO DE RECUPERAÇÃO DE GEOMETRIA 2ª ETAPA 1. O segmento da perpendicular traçada de um vértice
Polos Olímpicos de Treinamento. Aula 17. Curso de Geometria - Nível 2. Pontos Notáveis 3: Circuncentro e Ortocentro. Prof.
Polos Olímpicos de Treinamento urso de Geometria - Nível 2 Prof. ícero Thiago ula 17 Pontos Notáveis 3: ircuncentro e Ortocentro Teorema 1. Sejam, e P três pontos distintos no plano. Temos que P = P se,
EXERCÍCIOS RESOLVIDOS TRIÂNGULOS
1 EXERCÍCIOS RESOLVIDOS TRIÂNGULOS 1. CONSTRUIR UM TRIÂNGULO ESCALENO DE BASE 10 CM E ÂNGULOS ADJASCENTES À BASE DE 75 E 45. Sejam dados a base AB e os ângulos adjacentes à base. Primeiro transporte o
Desenho e Projeto de Tubulação Industrial Nível II
Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 04 TRIÂNGULOS Triângulo é um polígono de três lados. É o polígono que possui o menor número de lados. Talvez seja o polígono mais importante
Turma preparatória para Olimpíadas.
p: João Alvaro w: www.matemaniacos.com.br e: [email protected] Turma preparatória para Olimpíadas. TRIÂNGULOS - V01 DEFINIÇÃO Sejam três pontos não colineares A, B e C, o triângulo ABC é uma figura
» Teorema (CROSSBAR) Seja ABC um triângulo e seja X um ponto em seu interior. Então todo raio AX corta o lado BC.
» Teorema (CROSSBAR) Seja ABC um triângulo e seja X um ponto em seu interior. Então todo raio AX corta o lado BC. Iniciamos, nesta seção, o estudo sistemático da geometria dos quadriláteros. Dentre os
CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE
CURSO DE MATEMÁTICA BÁSICA Trigonometria Aula 0: Matrizes e Determinantes Trigonometria Deduzindo da própria palavra, trigonometria é a parte da geometria que estabelece relações métricas e angulares entre
MATEMÁTICA III. Pág 404. Prof. Eloy Machado 2015 EFMN
MATEMÁTICA III Pág 404 2015 EFMN Prof. Eloy Machado ESTRUTURAS NÃO TRIANGULARES ESTRUTURAS NÃO TRIANGULARES ESTRUTURAS NÃO TRIANGULARES TRIÂNGULOS ESTRUTURAS TRIANGULARES O QUE SÃO TRIÂNGULOS CONGRUENTES?
NOME: ANO: 3º Nº: PROFESSOR(A):
NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições Triângulos: REVISÃO Lista 06 Triângulos e Quadriláteros Classificação quanto aos lados: Escaleno (todos os lados diferentes), Isósceles
Mat. Monitor: Rodrigo Molinari
Mat. Professor: Luanna Ramos Monitor: Rodrigo Molinari Triângulos: Cevianas e pontos notáveis 07 jul RESUMO Ceviana é qualquer segmento que parte de um vértice de um triângulo e corta o lado oposto a esse
Ângulos, Triângulos e Quadriláteros. Prof Carlos
Ângulos, Triângulos e Quadriláteros. Prof Carlos RECORDANDO... Ângulos formados por duas retas paralelas cortadas por uma transversal 2 1 3 4 6 5 7 8 Correspondentes: 1 e 5, 2 e 6, 3 e 7, 4 e 8. Alternos
RETAS PARALELAS INTERCEPTADAS POR UMA TRANSVERSAL
GEOMETRIA PLANA MEDIDAS DE ÂNGULOS: Raso, se é igual a 180º; Nulo, se, é igual a 0º; Reto:é igual a 90 ; Agudo: é maior que 0 e menor que 90 ; Obtuso: é maior que 90 e menor que 180. IMPORTANTE: se a soma
1ª Aula. Introdução à Geometria Plana GEOMETRIA. 3- Ângulos Consecutivos: 1- Conceitos Primitivos: a) Ponto A. b) Reta c) Semi-reta
1ª Aula 3- Ângulos Consecutivos: Introdução à Geometria Plana 1- Conceitos Primitivos: a) Ponto A Na figura, os ângulos AÔB e BÔC são consecutivos, portanto AÔC=AÔB+AÔC b) Reta c) Semi-reta d) Segmento
Relações Métricas Especiais
Relações Métricas Especiais 7//04. (Fuvest 0-Adaptada) Define-se geometricamente a razão áurea do seguinte modo: O ponto C da figura abaixo divide o segmento AB na razão áurea quando os valores AC/AB e
MATEMÁTICA FRENTE IV. Capítulo 2 LIVRO 1. Triângulos
MATEMÁTICA FRENTE IV LIVRO 1 Capítulo 2 Triângulos I. Soma dos Ângulos Internos Teorema demonstração: a soma das medidas dos ângulos internos de qualquer triângulo vale 180 x B β y r // AC A α γ C Deseja-se
DETERMINAÇÃO GEOMÉTRICA E ECONÔMICA DA POSIÇÃO DE ARMAZÉNS DE ESTOCAGEM ENTRE CIDADES DO OESTE PAULISTA
DETERMINAÇÃO GEOMÉTRICA E ECONÔMICA DA POSIÇÃO DE ARMAZÉNS DE ESTOCAGEM ENTRE CIDADES DO OESTE PAULISTA Camila Pires Cremasco GABRIEL Luís Roberto Almeida GABRIEL FILHO Silvia Franciele BIFE Simone Leite
Geometria Euclidiana Plana Parte I
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2017.1 Geometria Euclidiana Plana Parte I Eleilton Junior - Engenharia Civil O que veremos na aula de hoje? Ângulos opostos pelo vértice Propriedades dos
UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS DEPARTAMENTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA EM REDE NACIONAL
UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS DEPARTAMENTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA EM REDE NACIONAL ANTONIO SINVAL BEZERRA JÚNIOR PONTOS NOTÁVEIS DE UM TRIÂNGULO: UMA ABORDAGEM
MA13 Geometria AV1 2014
MA13 Geometria AV1 2014 Questão 1 [ 2,0 pt ] Considere um paralelogramo ABCD e sejam M o centro da circunferência definida pelos vértices A, B e C N o centro da circunferência definida pelos vértices B,
Departamento de Matemática Universidade Federal do Paraná
PROFMAT Departamento de Matemática Universidade Federal do Paraná 81531-990, Curitiba, PR Brazil UMA ABORDAGEM DE CONCEITOS GEOMÉTRICOS COM ÊNFASE ÀS RELAÇÕES MÉTRICAS EM UM TRIÂNGULO QUALQUER E SUAS APLICAÇÕES
(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4
TEOREMA DE TALES 1. Na figura abaixo as retas r, s e t são (A) 0 (B) 6 (C) 00 (E) 0. Três retas paralelas são cortadas por duas Se AB = cm; BC = 6 cm e XY = 10 cm a medida, em cm, de XZ é: (A) 0 (B) 10
CURSO DE CAPACITAÇÃO O USO DE FERRAMENTAS TECNOLÓGICAS E AS POSSIBILIDADES PEDAGÓGICAS NA FORMAÇÃO DOS DOCENTES NA REDE MUNICIPAL DE GURUPI TO
CURSO DE CAPACITAÇÃO O USO DE FERRAMENTAS TECNOLÓGICAS E AS POSSIBILIDADES PEDAGÓGICAS NA FORMAÇÃO DOS DOCENTES NA REDE MUNICIPAL DE GURUPI TO A UTILIZAÇÃO DO SOFTWARE GEOGEBRA COMO FERRAMENTA DE ENSINO
1. Considere os pontos notáveis de um triângulo, sendo: B Baricentro C Circuncentro I Incentro O Ortocentro
Lista de Exercícios Geometria Plana - loco I - Pontos notáveis do triângulo 1. Considere os pontos notáveis de um triângulo, sendo: aricentro C Circuncentro I Incentro rtocentro Preencha os parênteses:
DESENHO GEOMÉTRICO Matemática - Unioeste Definição 1. Poligonal é uma figura formada por uma sequência de pontos (vértices)
DESENHO GEOMÉTRICO Matemática - Unioeste - 2010 1 Polígonos Definição 1. Poligonal é uma figura formada por uma sequência de pontos (vértices) A 1, A 2,..., A n e pelos segmentos (lados) A 1 A 2, A 2 A
1º Banco de Questões do 4º Bimestre de Matemática (REVISÃO)
Aluno(a): Professora: Deise Ilha Turno: Matutino. Componente Curricular: Matemática Data: / / 2016.. 1º Banco de Questões do 4º Bimestre de Matemática (REVISÃO) QUESTÃO 01 Tipo A (Julgar Certo ou Errado)
ENSINO PRÉ-UNIVERSITÁRIO PROFESSOR(A) TURNO. 01. Determine a distância entre dois pontos A e B do plano cartesiano.
SÉRIE ITA/IME ENSINO PRÉ-UNIVERSITÁRIO PROFESSOR(A) ALUNO(A) TURMA MARCELO MENDES TURNO SEDE DATA Nº / / TC MATEMÁTICA Geometria Analítica Exercícios de Fixação Conteúdo: A reta Parte I Exercícios Tópicos
Axiomas de Incidência Axiomas de Ordem Axiomas de Congruência Axioma das paralelas Axiomas de Continuidade
1 GEOMETRIA PLANA Atualizado em 04/08/2008 www.mat.ufmg.br/~jorge Bibliografia 1. Pogorélov, A.V. Geometria Elemental Editora Mir. 2. Dolce, Osvaldo e Nicolau, Pompeu Geometria Plana Volume 9 da Coleção
Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3
01 Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b a) a = 3, b, b R b) a = 3 e b = 1 c) a = 3 e b 1 d) a 3 1 0 y = 3x + 1 m = 3 A equação que apresenta uma reta com o mesmo coeficiente angular
Plano de Recuperação Final EF2
Professores: Pupo/Cintia Turma: 8º ano Objetivos: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados em Desenho geométrico nos quais ele apresentou defasagens que sejam pré-requisitos
1. Operações com vetores no espaço
Capítulo 10 1. Operações com vetores no espaço Vamos definir agora as operações de adição de vetores no espaço e multiplicação de um vetor espacial por um número real. O processo é análogo ao efetuado
MAT-230 Diurno 1ª Folha de Exercícios
MAT-230 Diurno 1ª Folha de Exercícios Prof. Paulo F. Leite agosto de 2009 1 Problemas de Geometria 1. Num triângulo isósceles a mediana, a bissetriz e a altura relativas à base coincidem. 2. Sejam A e
Geometria Analítica I - MAT Lista 2 Profa. Lhaylla Crissaff
1. Encontre as equações paramétricas das retas que passam por P e Q nos casos a seguir: (a) P = (1, 3) e Q = (2, 1). (b) P = (5, 4) e Q = (0, 3). 2. Dados o ponto P = (2, 1) e a reta r : y = 3x 5, encontre
I - INTRODUÇÃO II LUGARES GEOMÉTRICOS, ÂNGULOS E SEGMENTOS 1. POSTULADOS DO DESENHO GEOMÉTRICO
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA Professores: Deise Maria Bertholdi Costa, Luzia Vidal de Souza, Paulo Henrique Siqueira,
n. 15 ÁREA DE UM TRIÂNGULO Logo, a área do triângulo é obtida calculando-se a metade da área do S = 1 2
n. 15 ÁREA DE UM TRIÂNGULO Do cálculo da área do paralelogramo temos: S ABCD = u x v Logo, a área do triângulo é obtida calculando-se a metade da área do paralelogramo, portanto S ABC = 1 u x v Assim,
TEOREMA DE CEVA E MENELAUS. Teorema 1 (Teorema de Ceva). Sejam AD, BE e CF três cevianas do triângulo ABC, conforme a figura abaixo.
TEOREMA DE CEVA E MENELAUS Definição 1. A ceviana de um triângulo é qualquer segmento de reta que une um dos vértices do triângulo a um ponto pertencente à reta suporte do lado oposto a este vértice. Teorema
Lista 11. Geometria, Coleção Profmat, SBM. Problemas selecionados das seções 7.2 (pág. 311) e 7.3 (pág. 329).
MA13 Exercícios das Unidades 17 e 18 2014 Lista 11 Geometria, Coleção Profmat, SBM. Problemas selecionados das seções 7.2 (pág. 311) e 7.3 (pág. 329). 1) Sejam dados um ponto A e um plano α com A α. Prove
MA13 Geometria I Avaliação
13 Geometria I valiação 1 2012 SOLUÇÕS Questão 1. (pontuação: 2) O ponto pertence ao lado do triângulo. Sabe-se que = = e que o ângulo mede 21 o. etermine a medida do ângulo. 21 o omo =, seja = =. O ângulo
GEOMETRIA ANALÍTICA. 2) Obtenha o ponto P do eixo das ordenadas que dista 10 unidades do ponto Q (6, -5).
GEOMETRIA ANALÍTICA Distância entre Dois Pontos Sejam os pontos A(xA, ya) e B(xB, yb) e sendo d(a, B) a distância entre eles, temos: Aplicando o teorema de Pitágoras ao triângulo retângulo ABC, vem: [d
Coordenadas Cartesianas
1 Coordenadas Cartesianas 1.1 O produto cartesiano Para compreender algumas notações utilizadas ao longo deste texto, é necessário entender o conceito de produto cartesiano, um produto entre conjuntos
Lista 5. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante.
MA13 Exercícios das Unidades 8, 9 e 10 2014 Lista 5 Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante. 1) As retas r, s e t são paralelas com s entre r e t. As transversais
LISTA DE EXERCÍCIOS 3º ANO
Questão 0 a) Soma dos ângulos internos de um pentágono: 180 ( 5 ) = 540 Sendo o ângulo FPG = α, temos: α + 90 + 10 + 90 = 360 => α = 60. Como os lados adjacentes ao ângulo α são os lados de quadrados congruentes,
Semi-Reta: é uma parte da reta limitada por apenas um ponto. É representada como mostra a figura acima.
01. Conceitos Primitivos: Ponto: é representado por uma letra maiúscula do nosso alfabeto. Reta: é representado por uma letra minúscula do nosso alfabeto. Plano: é representado por uma letra grega. 0.
CM127 - Lista 3. Axioma da Paralelas e Quadriláteros Notáveis. 1. Faça todos os exercícios dados em aula.
CM127 - Lista 3 Axioma da Paralelas e Quadriláteros Notáveis 1. Faça todos os exercícios dados em aula. 2. Determine as medidas x e y dos ângulos dos triângulos nos itens abaixo 3. Dizemos que um triângulo
COLÉGIO MARQUES RODRIGUES - SIMULADO
COLÉGIO MRQUES RODRIGUES - SIMULDO PROFESSOR HENRIQUE LEL DISCIPLIN MTEMÁTIC SIMULDO: P5 Estrada da Água Branca, 2551 Realengo RJ Tel: (21) 3462-7520 www.colegiomr.com.br LUNO TURM 801 Questão 1 Qual dos
Ortocentro, Reta de Euler e a Circunferência dos 9 pontos
Prof. ícero Thiago - [email protected] rtocentro, Reta de uler e a ircunferência dos 9 pontos Propriedade 1. Seja o centro da circunferência circunscrita ao triângulo acutângulo e seja a projeção de
Geometria Euclidiana Plana Parte I
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.2 Geometria Euclidiana Plana Parte I Joyce Danielle de Araújo - Engenharia de Produção Vitor Bruno Santos Pereira - Engenharia Civil CURSO INTRODUTÓRIO
Avaliação 1 Solução Geometria Espacial MAT 050
Avaliação 1 Solução Geometria Espacial MAT 050 6 de abril de 2018 As respostas das quatro questões a seguir devem ser entregue até o final da aula de hoje: 1. (3 pontos) Mostre que por dois pontos dados
MATEMÁTICA 2 Ângulos PROFESSOR: TÚLIO 1. b) 52º10 25 d) 127º12 15
Ângulos 01 O ângulo de 2º 8 25 equivale a: a) 9180 b) 2825 c) 625 d) 7705 02 25347 corresponde a: a) 8º 9 54 b) 9º 25 42 c) 2º 53 47 d) 5º 12 35 e) 7º 2 27 03 (ESA/2000) A transformação de 9º em segundos
O que é triângulo (*)
Escola SESI Jundiaí Anápolis Disciplina: Matemática Turma: 1º Ano Professor (a) : César Lopes de Assis O que é triângulo (*) Considere três pontos A, B e C não colineares. Chama-se triângulo à figura geométrica
Triângulos DEFINIÇÃO ELEMENTOS
Triângulos DEFINIÇÃO Do latim - triangulu, é um polígono de três lados e três ângulos. Os três ângulos de um triângulo são designados por três letras maiúsculas, B e C e os lados opostos a eles, pelas
Problemas de Otimização em Geometria Plana
Universidade Federal de Minas Gerais Instituto de Ci^encias Exatas e Naturais Departamento de Matemática Problemas de Otimização em Geometria Plana José Renato Fialho Rodrigues Belo Horizonte - MG 1995
8 TRIÂNGULOS 8.1 PONTOS NOTÁVEIS DE UM TRIÂNGULO
32 8 TRIÂNGULOS 8.1 PONTOS NOTÁVEIS DE UM TRIÂNGULO Definição: O encontro das mediatrizes dos lados de um triângulo é único e chama-se circuncentro. Propriedades: 1) O circuncentro é o centro da circunferência
A PARTIR DE TRÊS PONTOS
UFSC - UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS CURSO DE GRADUAÇÃO EM MATEMÁTICA - HABILITAÇÃO LICENCIATURA CONSTRUÇÃO DE TRIÂNGULOS A PARTIR DE TRÊS PONTOS João
Aula 24 mtm B GEOMETRIA ESPACIAL
Aula 24 mtm B GEOMETRIA ESPACIAL Entes Geométricos Ponto A T Reta r s Plano Espaço y α z x Entes Geométricos Postulados ou Axiomas Teorema a 2 = b 2 + c 2 S i =180 Determinação de uma reta Posições relativas
(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4
TEOREMA DE TALES. Na figura abaixo as retas r, s e t são (A) 0 (B) 6 (C) 00 (D) 80 (E) 0. Três retas paralelas são cortadas por duas Se AB = cm; BC = 6 cm e XY = 0 cm a medida, em cm, de XZ é: (A) 0 (B)
PONTOS NOTAVEIS NO TRIANGULO
1. (Udesc) Observe a figura. Sabendo que os segmentos BC e DE são paralelos, que o ponto I é incentro do triângulo ABC e que o ângulo BIC é igual a 105, então o segmento AC mede: a) 5 b) 10 c) 0 d) 10
Geometria Analítica I
Geom. Analítica I Respostas do Módulo I - Aula 14 1 Geometria Analítica I 10/03/011 Respostas dos Exercícios do Módulo I - Aula 14 Aula 14 1. a. A equação do círculo de centro h, k) e raio r é x h) + y
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 2017.1 Gabarito Questão 01 [ 1,25 ] Determine as equações das duas retas tangentes à parábola de equação y = x 2 2x + 4 que passam pelo ponto (2,
Aula Exemplos e aplicações - continuação. Exemplo 8. Nesta aula continuamos com mais exemplos e aplicações dos conceitos vistos.
Aula 1 Nesta aula continuamos com mais exemplos e aplicações dos conceitos vistos. 1. Exemplos e aplicações - continuação Exemplo 8 Considere o plano π : x + y + z = 3 e a reta r paralela ao vetor v =
LISTA DE EXERCÍCIOS MAT GEOMETRIA E DESENHO GEOMÉTRICO I
LISTA DE EXERCÍCIOS MAT 230 - GEOMETRIA E DESENHO GEOMÉTRICO I 1. Numa geometria de incidência, o plano tem 5 pontos. Quantas retas tem este plano? A resposta é única? 2. Exibir um plano de incidência
3.6 TRIÂNGULOS. Definição: Dados três pontos A, B e C, no plano e não-colineares, a figura formada pelos segmentos AB, BC e AC chamamos de triângulo.
21 3.6 TRIÂNGULOS Definição: Dados três pontos A, B e C, no plano e não-colineares, a figura formada pelos segmentos AB, BC e AC chamamos de triângulo. Propriedades P1. Num triângulo qualquer, a soma das
Pirâmides: Neste momento, continuaremos a estudar a geometria espacial dos sólidos geométricos, enfatizando agora as pirâmides.
Pirâmides: Neste momento, continuaremos a estudar a geometria espacial dos sólidos geométricos, enfatizando agora as pirâmides. A seguir, algumas representações de pirâmides: Essa forma espacial é bastante
BC Geometria Analítica. Lista 4
BC0404 - Geometria Analítica Lista 4 Nos exercícios abaixo, deve-se entender que está fixado um sistema de coordenadas cartesianas (O, E) cuja base E = ( i, j, k) é ortonormal (e positiva, caso V esteja
Congruência de triângulos
Congruência de triângulos 1 o Caso: Se dois triângulos têm ordenadamente congruentes dois lados e o ângulo compreendido, então eles são congruentes. (LAL) 2 o Caso: Se dois triângulos têm ordenadamente
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 20152 Gabarito Questão 01 [ 1,00 ::: (a)0,50; (b)0,50 ] Determine TODOS os valores possíveis para os algarismos x, y, z e t de modo que os números
Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP
Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria Resumo do Encontro 6, 22 de setembro de 2012 Questões de geometria das provas da OBMEP http://www.obmep.org.br/provas.htm 1. Área: conceito e áreas do quadrado
Lista 3 com respostas
Lista 3 com respostas Professora Nataliia Goloshchapova MAT0105-1 semestre de 2019 Exercício 1. Sendo que w = ( u v) ( u + v), determine o ângulo entre os vetores u e v, sabendo que u = v = w = 1 e u v
J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial
76 Capítulo 4 Distâncias no plano e regiões no plano 1. Distância de um ponto a uma reta Dados um ponto P e uma reta r no plano, já sabemos calcular a distância de P a cada ponto P r. Definição 1 Definimos
3) O ponto P(a, 2) é equidistante dos pontos A(3, 1) e B(2, 4). Calcular a abscissa a do ponto P.
Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Lista 2: Plano cartesiano, sistema de coordenadas: pontos e retas. 1) Represente no plano cartesiano
Polos Olímpicos de Treinamento. Aula 18. Curso de Geometria - Nível 3. Transformações geométricas II - Simetria e rotação. Prof.
olos límpicos de Treinamento urso de Geometria - Nível 3 rof. ícero Thiago ula 18 Transformações geométricas II - Simetria e rotação. 1. Simetria com relação a um ponto. Dizemos que o ponto é o simétrico
Módulo de Geometria Espacial I - Fundamentos. Pontos, Retas e Planos. 3 ano/e.m.
Módulo de Geometria Espacial I - Fundamentos Pontos, Retas e Planos. 3 ano/e.m. Geometria Espacial I - Fundamentos Pontos, Retas e Planos. 1 Exercícios Introdutórios 2 Exercícios de Fixação Exercício 4.
J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial
178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que
1 Geometria Analítica Plana
UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria
Equações da reta no plano
3 Equações da reta no plano Sumário 3.1 Introdução....................... 2 3.2 Equação paramétrica da reta............. 2 3.3 Equação cartesiana da reta.............. 7 3.4 Equação am ou reduzida da reta..........
Polos Olímpicos de Treinamento. Aula 16. Curso de Geometria - Nível 2. Pontos Notáveis 2: Incentro. Prof. Cícero Thiago
Polos Olímpicos de Treinamento urso de Geometria - Nível Prof. ícero Thiago ula 16 Pontos Notáveis : ncentro Teorema 1. Seja XOY umângulodadoep umpontoemseuinterior. Então, adistância de P a XO é igual
