ESTATÍSTICA BÁSICA NA CALCULADORA CIENTÍFICA
|
|
|
- Bruno da Conceição di Azevedo
- 9 Há anos
- Visualizações:
Transcrição
1 ESTATÍSTICA BÁSICA NA CALCULADORA CIENTÍFICA Este guia usa a calculadora Casio modelo fx-82es ou similares. I MODO DE OPERAÇÃO MODE até aparecer o menu COMP SD REG COMP modo de operação para cálculos comuns SD modo estatístico REG modo de regressão Para cálculos estatísticos simples, Escolha o modo SD ( 2 ) (Statistical Data) II LIMPE AS MEMORIAS ESTATÍTICAS Scl SHIFT = III CONTEÚDO DAS MEMÓRIAS A contém» B contém» C contém n (número de dados) IV RESULTADOS Para obter a média dos valores de x, pressione SHIFT =»w»êº 1 Para obter o desvio padrão dos dados, pressione SHIFT = 1
2 IV ENTRANDO COM OS DADOS digite o número e tecle M+ se entrar com um número incorreto, digite esse numero e tecle SHIFT M V EXEMPLO Vamos calcular a média e o desvio padrão amostral das notas que 15 alunos tiraram em uma provinha que valia até 10 pontos: 6,7 8,2 5,4 9,0 3,1 4,9 7,2 6,0 6,7 9,5 1. coloque a calculadora no modo estatístico, limpe as memórias estatísticas e entre com os dez dados 2. confira o conteúdo da memória C, que deve ser o total de dados (10) 3. calcule a média e o desvio padrão, obtendo»w 6,67 e Ê 1,94 VI SIGNIFICADO DA MÉDIA E DO DESVIO PADRÃO A média»w é simplesmente a média aritmética dos dados (soma dos dados dividida pelo número de dados). A formula matemática é»w» O desvio padrão é calculado como Ê w /º w Para um grande número de dados (n > 10, tipicamente ), n é praticamente igual a (n 1). O desvio padrão é a média dos desvios dos dados em relação à média. Para um pequeno conjunto de dados, usa-se (n 1) porque a teoria mostra que essa é uma estimativa melhor das características da população de onde os dados foram extraídos. 2
3 VII USO PRÁTICO DA MÉDIA E DO DESVIO PADRÃO Na prática, em muitos casos, os dados colhidos de amostras com variações estatísticas seguem a distribuição Gaussiana, ou Normal. Isso acontece quando os resultados medidos estão sujeitos a várias pequenas influências probabilísticas que são independentes uma das outras. A distribuição Normal tem uma forma de sino, simétrica em torno do valor médio µ. O desvio padrão σ é uma medida da largura da distribuição (espalhamento dos dados em torno da média). 68% 16% 16% µ σ µ µ+σ Se os dados forem extraídos de uma população gaussi ana, então: - aproximadamente 68% deles estarão entre (µ σ) e (µ+σ) - aproximadamente 16% deles estarão abaixo de (µ σ) - aproximadamente 16% deles estarão acima de (µ+σ) A máquina de Galton: bolinhas caem batendo nos preguinhos. A quantidade de bolinhas em cada caixa segue uma distribuição Normal. EXEMPLO 1: Abaixo estão as alturas, em metros, de trinta mulheres escolhidas ao acaso: 1,60 1,52 1,72 1,87 1,57 1,52 1,61 1,75 1,52 1,50 1,63 1,64 1,72 1,56 1,63 1,58 1,64 1,88 1,56 1,45 1,72 1,51 1,66 1,56 1,73 1,62 1,34 1,67 1,89 1,73 Utilizando a calculadora, encontramos: - média da amostra: 1,63m - desvio padrão da amostra: 0,13 - faixa média: (µ σ, µ+σ) = 1,50m a 1,76m Examinando a tabela, contamos 24 mulheres (80%) com altura entre 1,50m e 1,76m 3 mulheres (10%) com altura maior ou igual que 1,76m (muito altas) 3 mulheres (10%) com altura menor ou igual a que 1,50m (muito baixas) Histograma das alturas das mulheres 3
4 PROBLEMINHAS Exercício 1 Abaixo estão as notas bimestrais de 25 alunos, numa escala de 0 a 10. Amanda 8,9 Aline 2,7 Bruno 6,3 Cecília 4,9 Claudio 4,0 Dario 3,5 Daniel 7,2 Ernesto 5,5 Fabiana 6,6 Felipe 5,6 Gabriel 5,4 Gilda 7,4 Hugo 8,2 Iris 10,0 Janaina 3,2 José 7,3 João 10,0 Lucia 8,2 Mauro 10,0 Pedro 7,7 Paulo 4,0 Roberto 9,0 Sandra 5,6 Tais 3,2 Waldo 10,0 (a) Calcule a média e o desvio padrão dos dados. Resp.: µ = 6,58 e σ = 2,36 (b) Quais alunos foram particularmente bem? Resp.: Iris, João, Mauro, Roberto e Waldo (20%) (c) Quais alunos foram muito mal? Resp.: Aline, Claudio, Dario, Janaina, Paulo e Tais (24%) (d) A mãe de Cecília soube que ela está abaixo da média. Até que ponto deve ficar preocupada? Resp.: Ela está dentro da faixa média, mas perigosamente próxima das piores notas. Exercício 2 Abaixo estão os pesos (kg) de cinquenta rapazes, escolhidos ao acaso (a) Calcule a média e o desvio padrão dos dados. Resp.: µ = 65,1 e σ = 5,1 (b) Quantos estão acima do peso, em comparação com os outros dessa amostra? Resp.: nove (18%) (c) Quantos estão abaixo do peso, em comparação com os outros dessa amostra? Resp.: oito (16%) (d) Faça um histograma desses dados, agrupando os pesos de 3 em 3kg. 4
5 Exercício 3 A tabela abaixo mostra alguns dados meteorológicos da cidade de Sheffield, UK, durante os últimos trinta anos, durante o mês de Ju lho. ( ) year T max T min Rain (mm) Sun (hours) Year = ano T max = temperatura máxima em o C T min = temperatura mínima em o C Rain = milímetros de chuva Sun = horas de Sol (a) Discuta se houve algum ano em que Julho foi um mês particularmente quente, entre 1980 e (b) Discuta se houve algum ano em que Julho foi um mês particularmente chuvoso, entre 1980 e (c) Discuta se houve algum ano em que Julho foi um mês particularmente nublado, entre 1980 e Maurício Fabbri MCT/INPE: Universidade São Francisco USF Itatiba/Campinas São Paulo - Brasil Permitido uso livre para fins educacionais, sem ônus, desde que seja citada a fonte. 5
USO DA CALCULADORA CIENTÍFICA
USO DA CALCULADORA CIENTÍFICA Este guia usa a calculadora Casio modelo fx-82ms ou similares. REGRA BÁSICA PARA O USO CONSCIENTE DA CALCULADORA: Salvo em situações mais complicadas, UTILIZE A CALCULADORA
Medidas Descritivas de Posição, Tendência Central e Variabilidade
Medidas Descritivas de Posição, Tendência Central e Variabilidade Prof. Gilberto Rodrigues Liska UNIPAMPA 29 de Agosto de 2017 Material de Apoio e-mail: [email protected] Local: Sala dos professores
Métodos Quantitativos II
Métodos Quantitativos II MEDIDAS DE VARIABILIDADE O que significa Variabilidade? As medidas de tendência central nos dão uma ideia da concentração dos dados em torno de um valor. Entretanto, é preciso
Distribuição Gaussiana
Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Distribuição Gaussiana Introdução à Bioestatística Turma Nutrição Aula 7: Distribuição Normal (Gaussiana) Distribuição
Erros em medidas e análises físicas e químicas
Erros em medidas e análises físicas e químicas Erros sistemáticos: têm um valor definido e uma causa identificável e são da mesma ordem de grandeza para réplicas de medidas realizadas de maneira semelhante.
Medidas de Tendência Central. Prof.: Joni Fusinato
Medidas de Tendência Central Prof.: Joni Fusinato [email protected] [email protected] 1 Medidas de Tendência Central Informam o valor em torno do qual os dados se distribuem. Tem por objetivo
Inferência. 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média. Renata Souza
Inferência 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média Renata Souza Aspectos Gerais A estatística descritiva tem por objetivo resumir ou descrever características importantes
Prof. Francisco Crisóstomo
Unidade II ESTATÍSTICA BÁSICA Prof. Francisco Crisóstomo Unidade II Medidas de posição Medidas de posição Tem como característica definir um valor que representa um conjunto de valores (rol), ou seja,
Estatística Aplicada II. } Revisão: Probabilidade } Propriedades da Média Amostral
Estatística Aplicada II } Revisão: Probabilidade } Propriedades da Média Amostral 1 Aula de hoje } Tópicos } Revisão: } Distribuição de probabilidade } Variáveis aleatórias } Distribuição normal } Propriedades
Estatística e Probabilidade Aula 06 Distribuições de Probabilidades. Prof. Gabriel Bádue
Estatística e Probabilidade Aula 06 Distribuições de Probabilidades Prof. Gabriel Bádue Teoria A distribuição de Poisson é uma distribuição discreta de probabilidade, aplicável a ocorrências de um evento
Estatística Descritiva
C E N T R O D E M A T E M Á T I C A, C O M P U T A Ç Ã O E C O G N I Ç Ã O UFABC Estatística Descritiva Centro de Matemática, Computação e Cognição March 17, 2013 Slide 1/52 1 Definições Básicas Estatística
PET QUÍMICA - CURSO DE CALCULADORA CIENTÍFICA CASIO fx-82ms
PET QUÍMICA - CURSO DE CALCULADORA CIENTÍFICA CASIO fx-82ms A calculadora científica é a melhor amiga do universitário, por isso é de devida importância saber dos comandos básicos até os avançados para
Tiago Viana Flor de Santana
ESTATÍSTICA BÁSICA DISTRIBUIÇÃO NORMAL DE PROBABILIDADE (MODELO NORMAL) Tiago Viana Flor de Santana www.uel.br/pessoal/tiagodesantana/ [email protected] sala 07 Curso: MATEMÁTICA Universidade Estadual
Introdução ao modelo de Regressão Linear
Introdução ao modelo de Regressão Linear Prof. Gilberto Rodrigues Liska 8 de Novembro de 2017 Material de Apoio e-mail: [email protected] Local: Sala dos professores (junto ao administrativo)
Variáveis Aleatórias Contínuas
Variáveis Aleatórias Contínuas Bacharelado em Administração - FEA - Noturno 2 o Semestre 2017 MAE0219 (IME-USP) Variáveis Aleatórias Contínuas 2 o Semestre 2017 1 / 35 Objetivos da Aula Sumário 1 Objetivos
Aproximação da Distribuição Binomial pela Distribuição Normal
Aproximação da Distribuição Binomial pela Distribuição Normal Uma das utilidades da distribuição normal é que ela pode ser usada para fornecer aproximações para algumas distribuições de probabilidade discretas.
Distribuição de frequências. Prof. Dr. Alberto Franke
Distribuição de frequências Prof. Dr. Alberto Franke E-mail: [email protected] 1 Distribuição de frequências Há necessidade de distinguir entre: Distribuição observada Distribuição verdadeira Distribuição
2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.
2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y :
Medidas Descritivas de Posição, Tendência Central e Variabilidade
Medidas Descritivas de Posição, Tendência Central e Variabilidade Prof. Gilberto Rodrigues Liska UNIPAMPA 27 de Março de 2017 Material de Apoio e-mail: [email protected] Sumário 1 Introdução
Física Geral. Incertezas em Medidas Diretas
Física Geral Incertezas em Medidas Diretas Experimento Simples Medidas diretas: valores resultantes de medições de uma mesma grandeza, realizadas por um mesmo experimentador, com o mesmo instrumento de
Inferência a partir de duas amostras
Inferência a partir de duas amostras Inferência a partir de duas amostras. Inferência sobre duas médias: amostras dependentes. Inferência sobre duas médias: amostras grandes e independêntes 3. Comparação
Distribuição Normal. Estatística Aplicada I DISTRIBUIÇÃO NORMAL. Algumas característica importantes. 2πσ
Estatística Aplicada I DISTRIBUIÇÃO NORMAL Prof a Lilian M. Lima Cunha AULA 5 09/05/017 Maio de 017 Distribuição Normal Algumas característica importantes Definida pela média e desvio padrão Media=mediana=moda
( x) = a. f X. = para x I. Algumas Distribuições de Probabilidade Contínuas
Probabilidade e Estatística I Antonio Roque Aula Algumas Distribuições de Probabilidade Contínuas Vamos agora estudar algumas importantes distribuições de probabilidades para variáveis contínuas. Distribuição
Capítulo 3. Introdução à Probabilidade E à Inferência Estatística
Capítulo 3 Introdução à Probabilidade E à Inferência Estatística definições e propriedades: Propriedade 5: A probabilidade condicional reflete como a probabilidade de um evento pode mudar se soubermos
Métodos Estatísticos
Métodos Estatísticos 5 - Distribuição Normal Referencia: Estatística Aplicada às Ciências Sociais, Cap. 7 Pedro Alberto Barbetta. Ed. UFSC, 5ª Edição, 2002. Distribuição de Probabilidades A distribuição
Medidas de Posição ou Tendência Central
Medidas de Posição ou Tendência Central Medidas de Posição ou Tendência Central Fornece medidas que podem caracterizar o comportamento dos elementos de uma série; Possibilitando determinar se um valor
AULA 17 - Distribuição Uniforme e Normal
AULA 17 - Distribuição Uniforme e Normal Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Distribuições Contínuas Em muitos problemas se torna matematicamente mais simples considerar um espaço
Tratamento estatístico de dados experimentais - conceitos básicos
Tratamento estatístico de dados eperimentais - conceitos básicos 1 Incerteza associada a uma medição Propagação de erros 3 Representação gráfica 4 Pequeno guia para criar gráficos 5 Regressão linear 1
Licenciatura em Ciências Biológicas Universidade Federal de Goiás. Bioestatística. Prof. Thiago Rangel - Dep. Ecologia ICB
Licenciatura em Ciências Biológicas Universidade Federal de Goiás Bioestatística Prof. Thiago Rangel - Dep. Ecologia ICB [email protected] Página do curso: http://www.ecologia.ufrgs.br/~adrimelo/bioestat
MINI CURSO DE CALCULADORA CIENTIFICA PET-QUÍMICA -LAMEQ
MINI CURSO DE CALCULADORA CIENTIFICA PET-QUÍMICA -LAMEQ ANTES DE INICIAR São utilizadas para executar mais de uma função. Auxiliando você a executar cálculos com rapidez e facilidade, porém a escolha da
Cálculo das Probabilidades I
Cálculo das Probabilidades I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição Normal 06/11 1 / 41 LEMBRANDO: Variável Aleatória Contínua Assume
Variável Aleatória Contínua:
Distribuição Contínua Normal Prof. Tarciana Liberal Departamento de Estatística UFPB x x Variável Aleatória Contínua: Assume valores num intervalo de números reais. Não é possível listar, individualmente,
MAE0219 Introdução à Probabilidade e Estatística I
Exercício 1 1 o semestre de 201 O tempo de vida útil de uma lavadora de roupas automática tem distribuição aproximadamente Normal, com média de 3,1 anos e desvio padrão de 1,2 anos. a Qual deve ser o valor
Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias
Aula de hoje! Tópicos! Distribuição de probabilidades! Variáveis aleatórias! Variáveis discretas! Variáveis contínuas! Distribuição binomial! Distribuição normal! Referências! Barrow, M. Estatística para
Estatística. O que é Estatística? Estatística pode ser: Estatística Descritiva. Ivonete Melo de Carvalho. Conteúdo
Estatística Estatística Descritiva Ivonete Melo de Carvalho Conteúdo Definições; Tabelas e Gráficos; Medidas de tendência central; Medidas de dispersão. Objetivos Diferenciar população e amostra. Elaborar
Cálculo das Probabilidades e Estatística I
Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB [email protected] Distribuição Normal Motivação: Distribuição
- desvio padrão, caracteriza a dispersão dos resultados
O resultado da experiência, então, pode ser expresso na forma < x > ± x n (veja a explicação mais adiante) - desvio padrão, caracteriza a dispersão dos resultados Histograma de frequências Histograma
Módulo IV Medidas de Variabilidade ESTATÍSTICA
Módulo IV Medidas de Variabilidade ESTATÍSTICA Objetivos do Módulo IV Compreender o significado das medidas de variabilidade em um conjunto de dados Encontrar a amplitude total de um conjunto de dados
Fundamentos Teóricos e Metodológicos do Uso de Tecnologias no Ensino de Matemática Prof. Fernando Guedes Cury
UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE CIÊNCIAS EXATAS E DA TERRA PROGRAMA DE PÓS GRADUAÇÃO EM ENSINO DE CIÊNCIAS NATURAIS E MATEMÁTICA Fundamentos Teóricos e Metodológicos do Uso de Tecnologias
Curso: Eng da Produção Aula 1, 2, 4, 5 Agosto 09. Prof. Eduardo R Luz - MsC
Curso: Eng da Produção Aula 1, 2, 4, 5 Agosto 09 Prof. Eduardo R Luz - MsC AULA 1 SUMÁRIO A Administração da Qualidade O Controle da Qualidade CEP Origem e história Outros conceitos relacionados ao CEP
Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno
Unidade I ESTATÍSTICA APLICADA Prof. Mauricio Fanno Estatística indutiva Estatística descritiva Dados no passado ou no presente e em pequena quantidade, portanto, reais e coletáveis. Campo de trabalho:
Simulação Monte Carlo
Simulação Monte Carlo Nome do Prof. Fernando Saba Arbache Email do prof. [email protected] Definição Análise de risco faz parte da tomada de decisão Surgem constantemente incertezas, ambiguidades e
Stela Adami Vayego DEST/UFPR
Resumo 9 Modelos Probabilísticos Variável Contínua Vamos ver como criar um modelo probabilístico, o que é uma função densidade de probabilidade (fdp), e como calcular probabilidades no caso de variáveis
Planejamento e Otimização de Experimentos
Planejamento e Otimização de Experimentos Um Pouco de Estatística Prof. Dr. Anselmo E de Oliveira anselmo.quimica.ufg.br [email protected] Populações, Amostras e Distribuições População Amostra
b) 5 6 d) 1 6 e) 7 6
CONHECIMENTOS ESPECÍFICOS 21. Em estatística, duas medidas são de grande importância na análise de dados, medidas de tendência central e de dispersão. Dentre as medidas indicadas abaixo, são, respectivamente,
Estatística
Estatística 1 2016.2 Sumário Capítulo 1 Conceitos Básicos... 3 MEDIDAS DE POSIÇÃO... 3 MEDIDAS DE DISPERSÃO... 5 EXERCÍCIOS CAPÍTULO 1... 8 Capítulo 2 Outliers e Padronização... 12 VALOR PADRONIZADO (Z)...
ESTATÍSTICA NA CASIO fx 82 MS
ESTATÍSTICA NA CASIO fx 82 MS Como Fazer Cálculos Estatísticos na Casio fx-82ms Os cálculos estatísticos são realizados em dois modos: O chamado Desvio Padrão - SD E o modo de Regressão REG CONFIGURANDO
Calculadora Casio fx-82ms Determinando Raízes de Funções. Professor Fernando Porto
Calculadora Casio fx-82ms Determinando Raízes de Funções Professor Fernando Porto Sua calculadora científica, seja qual seja o fabricante ou modelo, lhe oferece uma ampla variedade de recursos, que podem
Aula 8 : Estimação de parâmetros
UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA MEAU- MESTRADO EM ENGENHARIA AMBIENTAL URBANA ENG C 18 Métodos de Pesquisa Quantitativos e Qualitativos Aula 8 : Estimação de parâmetros DOCENTE:CIRA SOUZA
Estatística Básica. Variáveis Aleatórias Contínuas. Renato Dourado Maia. Instituto de Ciências Agrárias. Universidade Federal de Minas Gerais
Estatística Básica Variáveis Aleatórias Contínuas Renato Dourado Maia Instituto de Ciências Agrárias Universidade Federal de Minas Gerais Lembrando... Uma quantidade X, associada a cada possível resultado
Estimação parâmetros e teste de hipóteses. Prof. Dr. Alberto Franke (48)
Estimação parâmetros e teste de hipóteses Prof. Dr. Alberto Franke (48) 91471041 Intervalo de confiança para média É um intervalo em que haja probabilidade do verdadeiro valor desconhecido do parâmetro
A figura 5.1 ilustra a densidade da curva normal, que é simétrica em torno da média (µ).
Capítulo 5 Distribuição Normal Muitas variáveis aleatórias contínuas, tais como altura, comprimento, peso, entre outras, podem ser descritas pelo modelo Normal de probabilidades. Este modelo é, sem dúvida,
Medidas de Posição. Tendência Central. É um valor que representa uma entrada típica, ou central, de um conjunto de dados. média. mediana.
Tendência Central É um valor que representa uma entrada típica, ou central, de um conjunto de dados. média mediana moda Análise exploratória de dados Histograma Simétrico Uniforme Média = Mediana Assimétrico
FMU- Cursos de Tecnologia Disciplina: Métodos Quantitativos em Gestão e Negócios-
FMU- Cursos de Tecnologia Disciplina: Métodos Quantitativos em Gestão e Negócios- Memória - Teoria e Exercícios sobre Distribuição Normal de Probabilidade Distribuição Normal de Probabilidade As distribuições
Capítulo 3: Elementos de Estatística e Probabilidades aplicados à Hidrologia
Departamento de Engenharia Civil Prof. Dr. Doalcey Antunes Ramos Capítulo 3: Elementos de Estatística e Probabilidades aplicados à Hidrologia 3.1 - Objetivos Séries de variáveis hidrológicas como precipitações,
Universidade Federal de Lavras
Universidade Federal de Lavras Departamento de Estatística Prof. Daniel Furtado Ferreira 6 a Lista de Exercícios Teoria da Estimação pontual e intervalar 1) Marcar como verdadeira ou falsa as seguintes
Inferência. 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média. Renata Souza
Inferência 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média Renata Souza Aspectos Gerais A estatística descritiva tem por objetivo resumir ou descrever características importantes
Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística
Introdução ao Planejamento e Análise Estatística de Experimentos Capítulo 3 Introdução à Probabilidade e à Inferência Estatística Introdução ao Planejamento e Análise Estatística de Experimentos Agora,
NOÇÕES RÁPIDAS DE ESTATÍSTICA E TRATAMENTO DE DADOS
NOÇÕES RÁPIDAS DE ESTATÍSTICA E TRATAMENTO DE DADOS Prof. Érica Polycarpo Bibliografia: Data reduction and error analysis for the physica sciences (Philip R. Bevington and D. Keith Robinson) A practical
Métodos Experimentais em Ciências Mecânicas
Métodos Experimentais em Ciências Mecânicas Professor Jorge Luiz A. Ferreira Função que descreve a chance que uma variável pode assumir ao longo de um espaço de valores. Uma distribuição de probabilidade
Conceito de Estatística
Conceito de Estatística Estatística Técnicas destinadas ao estudo quantitativo de fenômenos coletivos, observáveis. Unidade Estatística um fenômeno individual é uma unidade no conjunto que irá constituir
Probabilidade Aula 08
332 Probabilidade Aula 8 Magno T. M. Silva Escola Politécnica da USP Maio de 217 A maior parte dos exemplos dessa aula foram extraídos de Jay L. Devore, Probabilidade e Estatística para engenharia e ciências,
ALGARISMOS SIGNIFICATIVOS E TRATAMENTO DE DADOS
ALGARISMOS SIGNIFICATIVOS E TRATAMENTO DE DADOS 1.0 Objetivos Utilizar algarismos significativos. Distinguir o significado de precisão e exatidão. 2.0 Introdução Muitas observações na química são de natureza
Estatística Descritiva
Estatística Descritiva Tabela s Gráficos Números x, s 2, s, m o, Q 1, Q 2, Q 3,...etc. 1 Estatística Descritiva 3. Números 3.1. Medidas de posição (ou tendência ) 3.2. Medidas de dispersão 2 3.1. Medidas
Capítulo 1 Estatística Descritiva. Prof. Fabrício Maciel Gomes
Capítulo 1 Estatística Descritiva Prof. Fabrício Maciel Gomes Gráficos 1. Gráfico de Colunas Um gráfico de colunas mostra as alterações de dados em um período de tempo ou ilustra comparações entre itens.
PROBABILIDADES: VARIÁVEL ALEATÓRIA CONTÍNUA E DISTRIBUIÇÃO NORMAL
PROBABILIDADES: VARIÁVEL ALEATÓRIA CONTÍNUA E DISTRIBUIÇÃO NORMAL Aula 6 META Estudar o comportamento e aplicação das Variáveis Aleatórias Contínuas, bem como da Distribuição Normal. OBJETIVOS Ao final
Inferência Estatística. Medidas de Tendência Central Medidas de Variação Medidas de Posição
Inferência Estatística Medidas de Tendência Central Medidas de Variação Medidas de Posição Notações Estatísticas Característica amostra população Somatório de um conjunto de valores Valores individuais
ANÁLISE ESTATÍSTICA DA RELAÇÃO ENTRE A ATITUDE E O DESEMPENHO DOS ALUNOS
ANÁLISE ESTATÍSTICA DA RELAÇÃO ENTRE A ATITUDE E O DESEMPENHO DOS ALUNOS Nível de significância No processo de tomada de decisão sobre uma das hipóteses levantadas num estudo, deve-se antes de tudo definir
Escola Secundária de Jácome Ratton
Escola Secundária de Jácome Ratton Ano Lectivo 21/211 Matemática Aplicada às Ciências Sociais Dados bidimensionais ou bivariados são dados obtidos de pares de variáveis. A amostra de dados bivariados pode
aula DISTRIBUIÇÃO NORMAL - PARTE I META OBJETIVOS PRÉ-REQUISITOS Apresentar o conteúdo de distribuição normal
DISTRIBUIÇÃO NORMAL - PARTE I 4 aula META Apresentar o conteúdo de distribuição normal OBJETIVOS Ao final desta aula, o aluno deverá: determinar a média e a variância para uma função contínua; padronizar
Distribuições Amostrais
Estatística II Antonio Roque Aula Distribuições Amostrais O problema central da inferência estatística é como fazer afirmações sobre os parâmetros de uma população a partir de estatísticas obtidas de amostras
Seção 2.1. Distribuições de freqüência e seus gráficos
Seção 2.1 Distribuições de freqüência e seus gráficos Distribuições de freqüência Minutos gastos ao telefone 102 124 108 86 103 82 71 104 112 118 87 95 103 116 85 122 87 100 105 97 107 67 78 125 109 99
Métodos Estatísticos Básicos
Aula 4 - Medidas de dispersão Departamento de Economia Universidade Federal de Pelotas (UFPel) Abril de 2014 Amplitude total Amplitude total: AT = X max X min. É a única medida de dispersão que não tem
Esse material foi extraído de Barbetta (2007 cap 13)
Esse material foi extraído de Barbetta (2007 cap 13) - Predizer valores de uma variável dependente (Y) em função de uma variável independente (X). - Conhecer o quanto variações de X podem afetar Y. Exemplos
b) Variáveis Aleatórias Contínuas
Disciplina: 221171 b) Variáveis Aleatórias Contínuas Prof. a Dr. a Simone Daniela Sartorio de Medeiros DTAiSeR-Ar 1 Uma variável aleatória é contínua (v.a.c.) se seu conjunto de valores é qualquer intervalo
Universidade Federal do Ceará Pós-Graduação em Modelagem e Métodos Quantitativos Mestrado Acadêmico na Área Interdisciplinar
Universidade Federal do Ceará Pós-Graduação em Modelagem e Métodos Quantitativos Mestrado Acadêmico na Área Interdisciplinar Prova Escrita - Estatística e Matemática Pós-Graduação em Modelagem e Métodos
Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo
Testes de Hipóteses Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução e notação Em geral, intervalos de confiança são a forma mais
1 Distribuição Uniforme
Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 03 Aula 8 Professor: Carlos Sérgio UNIDADE 4 - Distribuições Contínuas (Notas de Aula) Distribuição Uniforme
Planejamento e Otimização de Experimentos
Planejamento e Otimização de Experimentos Um Pouco de Estatística Descritiva Prof. Dr. Anselmo E de Oliveira anselmo.quimica.ufg.br [email protected] Populações, Amostras e Distribuições População
Adilson Cunha Rusteiko
Janeiro, 2015 Estatística , A Estatística Estatística: É a parte da matemática aplicada que fornece métodos para coleta, organização, descrição, análise e interpretação
Variável Aleatória Contínua:
Distribuição Contínua Normal Luiz Medeiros de Araujo Lima Filho Departamento de Estatística UFPB Variável Aleatória Contínua: Assume valores num intervalo de números reais. Não é possível listar, individualmente,
Estatística Descritiva. Objetivos de Aprendizagem. 6.1 Sumário de Dados. Cap. 6 - Estatística Descritiva 1. UFMG-ICEx-EST. Média da amostra: Exemplo:
6 ESQUEMA DO CAPÍTULO Estatística Descritiva 6.1 IMPORTÂNCIA DO SUMÁRIO E APRESENTAÇÃO DE DADOS 6.2 DIAGRAMA DE RAMO E FOLHAS 6.3 DISTRIBUIÇÕES DE FREQUÊNCIA E HISTOGRAMAS 6.4 DIAGRAMA DE CAIXA 6.5 GRÁFICOS
Modelos Lineares Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite. Professora Ariane Ferreira
Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite Professora Ariane Ferreira Modelos Probabilísticos de v.a. continuas Distribuição de Probabilidades 2 IPRJ UERJ Ariane Ferreira
Capítulo 5 Distribuições de Probabilidades. Seção 5-1 Visão Geral. Visão Geral. distribuições de probabilidades discretas
Capítulo 5 Distribuições de Probabilidades 5-1 Visão Geral 5-2 Variáveis Aleatórias 5-3 Distribuição de Probabilidade Binomial 5-4 Média, Variância e Desvio Padrão da Distribuição Binomial 5-5 A Distribuição
Estatística Indutiva
Estatística Indutiva MÓDULO 7: INTERVALOS DE CONFIANÇA 7.1 Conceitos básicos 7.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição
Definição. Os valores assumidos pelos estimadores denomina-se estimativas pontuais ou simplesmente estimativas.
1. Inferência Estatística Inferência Estatística é o uso da informção (ou experiência ou história) para a redução da incerteza sobre o objeto em estudo. A informação pode ou não ser proveniente de um experimento
Tutorial para o desenvolvimento das Oficinas
Tutorial para o desenvolvimento das Oficinas 1 Métodos Quantitativos Profa. Msc. Regina Albanese Pose 2 Objetivos Objetivo Geral Este tutorial tem como objetivo parametrizar o desenvolvimento da oficina
5- Variáveis aleatórias contínuas
5- Variáveis aleatórias contínuas Para variáveis aleatórias contínuas, atribuímos probabilidades a intervalos de valores. Exemplo 5.1 Seja a variável correspondente ao tempo de vida útil de determinado
AULA 02 Distribuição de probabilidade normal
1 AULA 02 Distribuição de probabilidade normal Ernesto F. L. Amaral 02 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas (FAFICH)
