Roteiro em construção do objeto água
|
|
|
- João Vítor Coradelli da Silva
- 9 Há anos
- Visualizações:
Transcrição
1 Roteiro em construção do objeto água Título da animação: Armazenamento de Água Abertura do Objeto de aprendizagem Texto: Armazenamento de Água Arlindo José de Sousa Junior Figura: Virgínia Helena Ribeiro Miranda Fernando da Costa Barbosa Alex Carvalho Danilo Pereira Explicação sobre a ação: Nesta tela uma animação apresentará ao aluno o título do objeto de aprendizagem que será trabalhado por ele nas atividades propostas.
2 Armazenamento de Água Segunda tela: Texto: Nesta tela aparecerão três botões: Introdução, teoria e Atividades. E agora o aluno ao clicar na opção introdução ele será redirecionado para uma tela onde terá a introdução do objeto de aprendizagem. O aluno ao clicar no botão teoria ele será direcionado diretamente para a tela teoria onde o aluno encontrará a teoria necessária para a realização de sua atividade. O aluno ainda ao clicar no menu atividades ele será direcionado para uma tela onde ele poderá escolher a atividade através de uma animação. Explicação sobre a ação: três botões deverão aparecer nesta tela e quando o aluno escolher um dos botões, ao clicar em cima dele ele irá para outra tela de acordo com a opção escolhida. Exemplo se ele clicar em Teoria então aparecerá um balão vinculado ao botão Teoria que dará uma simplificada explicação sobre o botão ao qual ele está clicando. Cada botão terá seu respectivo balão explicativo.
3 Armazenamento de água Tela: Introdução Texto: Olá, caro aluno, vamos aprender hoje sobre volume de cilindros, cones e troncos de cone, utilizando objetos que você tem em casa. Explicação sobre a ação: Nesta tela aparecerá um pequeno texto introdutório e motivador, sobre o objeto de aprendizagem. Armazenamento de Água Arlindo José de Sousa Junior Virgínia Helena Ribeiro Miranda Fernando da Costa Barbosa Teoria Alex Carvalho Danilo Pereira
4 Cone Um cone é um sólido geométrico formado por todos os segmentos de reta que têm uma extremidade em um ponto V (vértice) em comum e a outra extremidade em um ponto qualquer de uma mesma região plana R (delimitada por uma curva suave, a base). O volume, V, de um cone de altura, h, e base com raio, r, é 1/3 do volume do cilindro com as mesmas dimensões, i.e. Cilindro Em Matemática, um cilindro é o objeto tridimensional gerado pela superfície de revolução de um retângulo em torno de um de seus lados. De maneira mais prática, o cilindro é um corpo alongado e de aspecto roliço, com o mesmo diâmetro ao longo de todo o comprimento. Se o cilindro tem um raio r e uma altura h, o volume é
5 Tronco Em geometria chama-se tronco a uma "fatia" cortada de um sólido geométrico (prisma, pirâmide, cilindro ou cone) por um plano que não intersecta as bases (ou a única base, no caso da pirâmide e do cone). No caso de um prisma ou de um cilindro, o plano que corta o sólido num tronco não pode ser paralelo à base, caso contrário, ficamos com outros dois prismas ou outros dois cilindros. O VOLUME DE UM TRONCO DE CONE PODE SER CALCULADO PELO VOLUME DO CILINDRO? Algumas coisas ficam óbvias sobre a questão, porém, matematicamente não é possível somente supor, e sim provar numérica e principalmente
6 genericamente. Vejamos então a suposição e dedução abaixo: Volume do cilindro Volume do tronco do cone, onde Rm é o raio médio, matematicamente comprovado.
7 para vários valores de r e R. o volume calculado pela fórmula do cilindro é diferente do volume obtido através da fórmula do tronco de cone. Isso se dá pelo fato de que ao transformar o tronco de cone num cilindro há uma perda na extremidade do raio maior e um ganho na extremidade do raio menor. Porém, nada nos garante que essas perdas e ganhos são exatamente ou somente razoavelmente compensatórios em relação aos diâmetros. Já no tronco de cone usamos as medidas das extremidades do tronco, já deixando de perder ao encontrar um raio médio como anteriormente. Explicação sobre a ação Cada inicio de definição começa em negrito, e essas definições deverão ser colocadas para tirar algumas duvidas dos alunos caso apareça e não colocar barra de rolagem. Para continuar as definições caso não caiba na mesma pagina haverá uma setinha de avançar. Armazenamento de água tela: Atividades
8 Texto: Olá, caro aluno, escolha uma das atividades para iniciarmos nossa aventura de hoje pelo mundo da matemática. Explicação sobre a ação: 3 botões deverão aparecer nesta tela e quando o aluno escolher um dos botões, ao clicar em cima dele ele irá para uma outra tela de acordo com a opção escolhida. Exemplo se ele clicar em Atividade 1 então aparecerá um balão vinculado ao botão Atividade 1 que dará uma simplificada explicação sobre o botão ao qual ele está clicando. Cada botão terá seu respectivo balão explicativo. Armazenamento de água tela: Atividade 1
9 Texto: Esta é a casa do Deive, Pedro tem em casa duas caixas d água, uma no formato de um cilindro e outra no formato de um cone. Apesar das caixas serem de formatos diferente, ambas tem a mesma área da base e altura. Perguntas: Pergunta 1: Qual caixa de água enche primeiro? Sabendo que elas possuem a mesma área da base e altura. Cilindro Cone Igual Pergunta: Sabendo que o diâmetro da base do cilindro e cone mede 3 metros e tem altura de 4 metros. Calcule o volume do cilindro e do cone. Pergunta 2: Quanto de água vazou do cone até que o cilindro estivesse completamente cheio? Litros Pergunta 3: Quantos litros de água armazenam 3 cones juntos, sabendo que todos são idênticos e ambos tem a mesma área da base e altura de um cilindro que armazena 900 litros?
10 Pergunta 4: Qual a relação existente entre o volume do cilindro e o volume do cone, da pergunta 3? Metade Um quarto Um terço Um oitavo Armazenamento de água tela: Atividade 2 Texto: Esta é a casa do Douglas, quando o pai de Douglas construiu a casa foi cometido um erro com a altura do telhado, e o pai de Maria teve que cortar a caixa d água cônica que havia comprado ao meio, para que ela coubesse no telhado. Perguntas: Pergunta 1: Sabendo que a caixa d água comprada pelo pai de Maria possuía diâmetro de 6 metros e altura de 2 metros, então seu volume e área lateral são: 31pi/4 m3, (9pi 13)/2 m2
11 21pi/4 m3, (3pi 13)/2 m2 21pi/4 m3, (9pi 13)/2 m2 31pi/4 m3, (3pi 13)/2 m2 Pergunta 2: Qual a capacidade de armazenamento de água perdido pelo pai de Maria após ter realizado o corte na caixa d água? pi/16 mcubicos pi/8 mcubicos pi/4 mcubicos pi/2 mcubicos Armazenamento de água tela: Atividade 3 Texto: Esta é a ETE (Estação de Tratamento de Esgoto). Ela é composta por 3 reservatórios que tem formato de tronco de cone, ambos interligados. A cada reservatório que a água passa ela sai mais limpa do que entrou isso porque os tanques contêm produtos químicos e filtros que retêm a sujeira presente na água. Perguntas: Pergunta 1: Sabendo que o reservatório 1 tem altura de 2 metros, diâmetro de 6 metros e geratriz igual
12 a 4 metros, o reservatório 2 tem altura de 3 metros, diâmetro de 4 metros e geratriz igual 5 metros e o reservatório 3 tem altura de 1 metro, diâmetro de 8 metros e geratriz igual a 2 metros, responda: Qual caixa possui o maior volume? 1=2=3 1<2<3 1>2>3 2<1<3 2<3<1 3<2<1 3<1<2
Matemática GEOMETRIA ESPACIAL. Professor Dudan
Matemática GEOMETRIA ESPACIAL Professor Dudan CUBO Um hexaedro é um poliedro com 6 faces, um paralelepípedo retângulo com todas as arestas congruentes ( a= b = c). Exemplo O volume de uma caixa cúbica
MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho
MATEMÁTICA Professor Haroldo Filho MÓDULO 16 CONE E CILINDRO 1. CILINDRO CIRCULAR Considere dois planos paralelos, α e β, seja R um círculo no plano α, seja s uma reta secante aos dois planos que não intersecta
Cones, cilindros, esferas e festividades, qual a ligação?
Cones, cilindros, esferas e festividades, qual a ligação? Helena Sousa Melo [email protected] Professora do Departamento de Matemática da Universidade dos Açores Publicado no jornal Correio dos Açores em 5
3 O ANO EM. Lista de Recuperação tri2. Matemática II RAPHAEL LIMA
3 O ANO EM Matemática II RAPHAEL LIMA Lista de Recuperação tri2 1. Uma indústria de cerâmica localizada no município de São Miguel do Guamá no estado do Pará fabrica tijolos de argila (barro) destinados
Definição A figura geométrica formada pela reunião de todos os segmentos de reta paralelos à reta r, com uma extremidade num ponto do círculo R e a
CILINDRO Definição A figura geométrica formada pela reunião de todos os segmentos de reta paralelos à reta r, com uma extremidade num ponto do círculo R e a outra no plano, denomina-se cilindro circular.
Lista 19 - GEOMETRIA ESPACIAL (Cilindros e Cones)
Lista 19 - GEOMETRIA ESPACIAL (Cilindros e Cones) 1) Um tipo de descarga de água para vaso sanitário é formado por um cilindro com altura de m e diâmetro interno de 8 cm. Então, dos valores abaixo, o mais
OS PRISMAS. 1) Definição e Elementos :
1 OS PRISMAS 1) Definição e Elementos : Dados dois planos paralelos α e β, um polígono contido em um desses planos e um reta r, que intercepta esses planos, chamamos de PRISMA o conjunto de todos os segmentos
V= V = AULA 7 - GEOMETRIA ESPACIAL CONE DE REVOLUÇÃO. Área Lateral
UL 7 - GEOMETRI ESPCIL Área Lateral CONE DE REVOLUÇÃO É um sólido gerado pela rotação completa de um triângulo retângulo em torno de um de seus catetos. Elementos: R é o raio da base g é a geratriz h é
Projeto Jovem Nota 10 Cilindros e Cones Lista A Professor Marco Costa
1. Um tanque, na forma de um cilindro circular reto, tem altura igual a 3 m e área total (área da superfície lateral mais áreas da base e da tampa) igual a 20. m2. Calcule, em metros, o raio da base deste
Hewlett-Packard. Cilindros. Aulas 01 a 02. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz
Hewlett-Packard Cilindros Aulas 01 a 02 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Sumário Cilindros... 1 Cilindro... 1 Elementos do cilindro... 1 O cilindro possui:... 1 Classificação... 1 O cilindro
Roteiro de Estudos do 2º Trimestre 2ª Série Disciplina: Geometria Professor: Hugo P.
Roteiro de Estudos do º Trimestre ª Série Disciplina: Geometria Professor: Hugo P Conteúdos para Avaliação Trimestral: Pirâmides; Cones; Cilindros; Cálculos de área lateral; área total; volume Problemas
Matéria: Matemática Assunto: Volume Prof. Dudan
Matéria: Matemática Assunto: Volume Prof. Dudan Matemática VOLUME DEFINIÇÃO As medidas de volume possuem grande importância nas situações envolvendo capacidades de sólidos. Podemos definir volume como
UNITAU APOSTILA CILINDROS PROF. CARLINHOS
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA CILINDROS PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: 1 CILINDROS Na figura abaixo, temos: - Dois planos paralelos α e β; - Um círculo contido em
Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Cone. Professores Cleber Assis e Tiago Miranda
Módulo Geometria Espacial - olumes e Áreas de Cilindro, Cone e Esfera Cone. ano/e.m. Professores Cleber Assis e Tiago Miranda Geometria Espacial - olumes e Áreas de Cilindro, Cone e Esfera. Cone. 1 Exercícios
Quantos cones cabem em um cilindro?
Reforço escolar M ate mática Quantos cones cabem em um cilindro? Dinâmica 4 2º Série 3º Bimestre Aluno Matemática 2 Série do Ensino Médio Geométrico Geometria Espacial: Prismas e Cilindros. PRIMEIRA ETAPA
COLÉGIO MILITAR DO RIO E JANEIRO. Equipe: Prof. Cap Boente, Prof Magda, Prof Zamboti e Prof Fernando 3º TRIMESTRE DE 2016
COLÉGIO MILITR DO RIO E JNEIRO LIST 3 DE EXERCÍCIOS COMPLEMENTRES GEOMETRI ESPCIL º NO DO ENSINO MÉDIO Equipe: Prof. Cap Boente, Prof Magda, Prof Zamboti e Prof Fernando 3º TRIMESTRE DE 016 CILINDRO Sejam
ÁREA. Unidades de medida de área. Prof. Patricia Caldana
ÁREA Prof. Patricia Caldana Área ou superfície de uma figura plana tem a ver com o conceito (primitivo) de sua extensão (bidimensional). Usamos a área do quadrado de lado unitário como referência de unidade
INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016
INSTITUTO GEREMÁRIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (1) 1087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): º Ano:C1 Nº Professora: Marcilene Siqueira Gama COMPONENTE CURRICULAR:
Cone. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT
Cone MA13 - Unidade 23 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Cone Em um plano H considere uma curva simples fechada C e seja V um ponto fora
ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO
ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO 2011-2012 Sólidos Geométricos NOME: Nº TURMA: Polígonos Um polígono é uma figura geométrica plana limitada por uma linha fechada.
CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano.
CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano. Denominamos cone ao sólido formado pela reunião de todos os segmentos de reta que têm uma
Mat. Alex Amaral Monitor: Roberta Teixeira
1 Mat. Professor: Luanna Ramos Alex Amaral Monitor: Roberta Teixeira 2 Cones 08/10 ago RESUMO Cone: Elementos e classificação. Cone é um solido geométrico caracterizado pela reunião de todos os segmentos
Como funciona o OA Geometria
Como funciona o OA Geometria 1. Para dar inicio as atividades é necessário clicar sobre, para acessar o guia do professor é necessário clicar sobre. 2. Um breve texto introduzindo o contexto das atividades
Resposta: A Matemática B 2ª série 1º trimestre Prismas Tarefa 10
2011 - Matemática B 2ª série 1º trimestre Prismas Tarefa 9 1) As dimensões de um paralelepípedo retângulo são 12 cm, 15 cm e 16 cm. A área total(em cm²) e a medida da diagonal (em cm) são iguais, respectivamente
Matemática Geometria Espacial. Professor Bacon
Matemática Geometria Espacial Professor Bacon Prismas Volume Fórmula Geral: V= A.base x Altura (h) Área lateral = soma das áreas laterais Um caminhão basculante tem a carroceria com as dimensões indicadas
Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Cilindro. Professores Cleber Assis e Tiago Miranda
Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera Cilindro. 3 ano/e.m. Professores Cleber Assis e Tiago Miranda Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera.
Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF
Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF 01) Observando a figuras e simplesmente contando, determine o número de faces, arestas e o vértices
c) o volume do cone reto cujo vértice é o centro da esfera e a base é o círculo determinado pela intersecção do plano com a esfera.
Esferas forças armadas 1 (FUVEST) Uma superfície esférica de raio 1 é cortada por um plano situado a uma distância de 1 do centro da superfície esférica, determinando uma circunferência O raio dessa circunferência
Geometria Espacial - AFA
Geometria Espacial - AFA 1. (AFA) O produto da maior diagonal pela menor diagonal de um prisma hexagonal regular de área lateral igual a 1 cm e volume igual a 1 cm é: 10 7. 0 7. 10 1. (D) 0 1.. (AFA) Qual
DESENHO GEOMÉTRICO 3º ANO ENSINO MÉDIO
DESENHO GEOMÉRICO º NO ENSINO MÉDIO PROFESSOR: DENYS YOSHID PERÍODO: NOIE DESENHO GEOMÉRICO NO ENSINO MÉDIO - 016 1 Sumário 1.Pirâmide... 1.1 Elementos de uma pirâmide... 1. Classificação da pirâmide...
Formação continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Matemática 2º ano 2º Bimestre de 2014 Plano de Trabalho
Formação continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Matemática 2º ano 2º Bimestre de 2014 Plano de Trabalho Geometria Espacial Prismas e Cilindros Tarefa 2 Cursista: Maria Candida Pereira
ATIVIDADES DE RECUPERAÇÃO PARALELA 3º Trimestre 2 EM DISCIPLINA: Matemática - Setor A
ATIVIDADES DE RECUPERAÇÃO PARALELA 3º Trimestre 2 EM DISCIPLINA: Matemática - Setor A Observação: Antes de responder às atividades, releia o material de orientação de estudos Exercícios: 1) Uma associação
2. (Uerj 2002) Admita uma esfera com raio igual a 2 m, cujo centro O dista 4 m de um determinado ponto P.
1. (Ita 2002) Seja S a área total da superfície de um cone circular reto de altura h, e seja m a razão entre as áreas lateral e da base desse cone. Obtenha uma expressão que forneça h em função apenas
LISTA P1T2. Cilindros. Professores: Leonardo. Matemática. 2ª Série
Matemática Professores: Leonardo 2ª Série LISTA P1T2 Cilindros 1- Um fabricante de caixas - d água pré moldadas deseja produzi-las na forma cilíndrica, com 2 metros de altura e interna e capacidade de
MATEMÁTICA - 2 o ANO MÓDULO 08 SÓLIDOS SEMELHANTES E TRONCOS
MATEMÁTICA - 2 o ANO MÓDULO 08 SÓLIDOS SEMELHANTES E TRONCOS l Como pode cair no enem (UNIFICADO) Uma ampulheta é formada por dois cones de revolução iguais, com eixos verticais e justapostos pelo
REVISÃO Lista 11 Geometria Espacial. para área lateral, total, V para volume, d para diagonal, h para altura, r para raio, g para geratriz )
NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições (Nas fórmulas a seguir, vamos utilizar aqui REVISÃO Lista Geometria Espacial A B para área da base, para área lateral, total, V
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ANO 2016 PROFESSOR (a) DISCIPLINA Bruno Rezende Pereira Matemática ALUNO (a) SÉRIE 3º Ano do Ensino Médio
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ANO 2015 PROFESSOR (a) DISCIPLINA Bruno Rezende Pereira Matemática ALUNO (a) SÉRIE 3º Ano do Ensino Médio
Volumes (prismas e cilindros) Áreas (prismas e cilindros) Volumes (pirâmides e cones) Áreas (pirâmides e cones)
Volumes (prismas e cilindros) Áreas (prismas e cilindros) Volumes (pirâmides e cones) Áreas (pirâmides e cones) A geometria é um ramo da matemática que se dedica ao estudo do espaço e das figuras que podem
Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos
Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos Candidatura de 205 EXAME DE MATEMÁTICA Tempo para realização da prova: 2 horas Tolerância: 30 minutos Material admitido: material de escrita
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ANO 2017 PROFESSOR (a) DISCIPLINA Bruno Rezende Pereira Matemática ALUNO (a) SÉRIE 3º Ano do Ensino Médio
1 ELEMENTOS DO CONE 3 ÁREAS E VOLUME DO CONE 2 SECÇÃO MERIDIANA. 3.1 Área lateral. 3.2 Área da base. 3.3 Área total. 3.4 Volume
Matemática Pedro Paulo GEOMETRIA ESPACIAL VII 1 ELEMENTOS DO CONE Cone é um sólido formado por um círculo que é a base e um ponto fora do plano da base que é o vértice, que é ligado a todos os pontos do
Definição e elementos. Um plano Um círculo C contido em Um ponto V que não pertence a
CONE Cones Definição e elementos Um plano Um círculo C contido em Um ponto V que não pertence a Elementos do cone Base: é o círculo C, de centro O, situado no plano Vértice: é o ponto V Elementos do cone
Mat. Rafael Jesus. Monitor: Fernanda Aranzate
Mat. Professor: Luanna Ramos Rafael Jesus Monitor: Fernanda Aranzate Exercícios de revisão geral 29 set EXERCÍCIOS DE AULA 1. Uma superfície esférica de raio 1 cm é cortada por um plano situado a uma distância
Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Esfera. Professores Cleber Assis e Tiago Miranda
Módulo Geometria Espacial - Volumes e Áreas de Cilindro, Cone e Esfera Esfera. a série E.M. Professores Cleber Assis e Tiago Miranda Geometria Espacial - Volumes e Áreas de Cilindro, Cone e Esfera. Esfera.
Matemática Pirâmides Fácil [20 Questões]
Matemática Pirâmides Fácil [0 Questões] 01 - (MACK SP) Considere uma pirâmide cuja base é um polígono convexo. Se a soma das medidas dos ângulos internos de todas as suas faces é 600º, o número de lados
Geometria Espacial PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR)
Espacial 1 PRISMAS Os prismas são sólidos geométricos bastante recorrentes em Espacial. Podemos definir o prisma da seguinte forma: PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR) Prisma é um sólido
Exercícios e problemas propostos 1. A fotografia é de uma escultura, o Cubo da Ribeira, no
Tema 6 Sólidos geométricos 15 Exercícios e problemas propostos 1. A fotografia é de uma escultura, o Cubo da Ribeira, no Porto. O cubo tem metros de aresta. Determina: 1.1 o volume do cubo, em m ; 1. a
MATEMÁTICA III Prof. Emerson Dutra 1 semestre de 2018 DCC05A, EDIF05A e LOG05A
MATEMÁTICA III Prof. Emerson Dutra [email protected] www.profedutra.webnode.com 1 semestre de 2018 DCC05A, EDIF05A e LOG05A Nome: RA: Lista 17 - Geometria Espacial 01/06/2018 Obs.: É importante
COLÉGIO PREVEST LISTA DE GEOMETRIA ESPACIAL CILINDROS, CONES E ESFERAS PROF. ULISSES MOTTA 1. (Ufpr 2017)
COLÉGIO PREVEST LISTA DE GEOMETRIA ESPACIAL CILINDROS, CONES E ESFERAS PROF. ULISSES MOTTA 1. (Ufpr 2017) Na modelagem matemática de um processo de fabricação, é comum supor que não há perda de material
Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes
Apostila de Matemática II 3º bimestre/2016 Professora : Cristiane Fernandes Pirâmide A pirâmide é uma figura geométrica espacial, um poliedro composto por uma base (triangular, pentagonal, quadrada, retangular,
Relação da matéria para a recuperação final. 2º Colegial / Geometria / Jeca
Relação da matéria para a recuperação final. º olegial / eometria / Jeca ula 33 - eometria métrica do espaço - Prisma reto. ula 34 - Paralelepípedo retorretângulo. ula 35 - ubo. ula 36 - Prisma regular.
1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V):
EXERCÍCIOS DE FIXAÇÃO GEOMETRIA SÓLIDA ÁREAS E VOLUMES DE PRISMAS, CILINDROS E CONES 2 a SÉRIE ENSINO MÉDIO 2011 ==========================================================================================
FORMAÇÃO CONTINUADA EM MATEMÁTICA. Matemática 2º Ano 3º Bimestre/2012. Plano de Trabalho 2 PIRÂMIDES E CONES
FORMAÇÃO CONTINUADA EM MATEMÁTICA Matemática 2º Ano 3º Bimestre/2012 Plano de Trabalho 2 PIRÂMIDES E CONES Cursista: Izabel Leal Vieira Tutor: Paulo Alexandre Alves de Carvalho 1 SUMÁRIO INTRODUÇÃO.......................................
2. (Puc-rio 99) Ache o volume do sólido de revolução obtido rodando um triângulo retângulo de lados 1,1 e Ë2cm em torno da hipotenusa.
1. (Fuvest 2000) Um setor circular, com ângulo central š (0
Pirâmides e Cones. Tarefa 2-2º Ano 3º Bimestre/2014 Tutor: Susi Cristine Britto Ferreira Cursista: Simone Nascimento de Albuquerque
Pirâmides e Cones Tarefa - º Ano º Bimestre/014 Tutor: Susi Cristine Britto Ferreira Cursista: Simone Nascimento de Albuquerque Índice INTRODUÇÃO DESENVOLVIMENTO 4 AVALIACÃO 19 REFERÊNCIAS BIBLIOGRÁFICAS
FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ COLÉGIO: CIEP
FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ COLÉGIO: CIEP 463 - João Borges Barreto - Ururai Campos dos Goytacazes/RJ PROFESSOR: Príscila Henriques Gomes Oliveira MATRÍCULA:
Cone Nível Fácil
Cone 016 Nível Fácil 1. (Ufjf-pism 016) São dados dois cones equiláteros C 1 e C tais que a área total de C é o dobro da área total de C 1 e que o raio da base de C 1 é cm. Sabendo que em um cone equilátero,
2 CILINDRO E ESFERA 1 CUBO E ESFERA. 2.1 Cilindro inscrito. 1.1 Cubo inscrito. 2.2 Cilindro circunscrito. 1.2 Cubo circunscrito
Matemática Pedro Paulo GEOMETRIA ESPACIAL XI A seguir, nós vamos analisar a relação entre alguns sólidos e as esferas. Os sólidos podem estar inscritos ou circunscritos a uma esfera. Lembrando: A figura
a) 1m. b) 0,5 m. c) 0,6 m. d) 0,314 m. e) 0,628 m. que S pertence à reta determinada por A e E e que AE 2cm, AD 4cm e AB 5cm. sólido seja igual a 4 3
Lista 06 Matemática Geometria Espacial 1. (Fuvest 015) A grafite de um lápis tem quinze centímetros de comprimento e dois milímetros de espessura. Dentre os valores abaixo, o que mais se aproxima do número
Centro de Estudos Gilberto Gualberto Ancorando a sua aprendizagem e) 4. b) 3 3
e) 4 GEOMETRIA ESPACIAL FGV Questão 01 - (FGV /017) O líquido AZ não se mistura com a água. A menos que sofra alguma obstrução, espalha-se de forma homogênea sobre a superfície da água formando uma fina
Ciências da Natureza e Matemática
1 CEDAE Acompanhamento Escolar 2 CEDAE Acompanhamento Escolar 1.(UFG/2013) Um chapeuzinho, distribuído em uma festa, tem a forma de um cone circular reto e, quando planificado, fornece um semicírculo com
Cilindro. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT
Cilindro MA13 - Unidade 23 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Cilindro Em um plano H considere uma curva simples fechada C e seja r uma
Parte 2 Cursinho Popular Paulo Freire Jaquicele Ap. da Costa Graduanda em Matemática- UFV
Geometria Espacial Parte 2 Cursinho Popular Paulo Freire Jaquicele Ap. da Costa Graduanda em Matemática- UFV E-mail:[email protected] Pirâmide Pirâmide Consideremos um polígono convexo qualquer ABCDE,contido
Lista de Recuperação Bimestral de Matemática 2
Lista de Recuperação Bimestral de Matemática NOME Nº SÉRIE: DATA / /01 BIMESTRE PROFESSOR : Denis Rocha DISCIPLINA : Matemática VISTO COORDENAÇÃO INSTRUÇÕES EM Visto: 1) Preencha seu nome número e série
FORMAÇÃO CONTINUADA EM MATEMÁTICA
1 FORMAÇÃO CONTINUADA EM MATEMÁTICA Fundação Cecierj/Consórcio CEDERJ. COLÉGIO ESTADUAL ESTEFÂNIA PEREIRA PINTO MATEMÁTICA 2º ANO- 4º BIMESTRE/ 2012 PLANO DE TRABALHO ESFERAS TAREFA 2 CURSISTA: MARCIA
Pirâmide, cone e esfera
A UA UL LA Pirâmide, cone e esfera Introdução Dando continuidade à unidade de Geometria Espacial, nesta aula vamos estudar mais três dos sólidos geométricos: a pirâmide, o cone e a esfera. Nossa aula A
singular Exercícios-Paralelepípedo
singular Prof. Liana Turma: C17-27 Lista mínima de exercícios para revisão das unidades 1,2 e : Poliedros Exercícios-Prismas 1. Determine a área da base, a área lateral, a área total e o volume de um prisma
Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos
Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos Candidatura de 206 Exame de Matemática Tempo para realização da prova: 2 horas Tolerância: 30 minutos Material admitido: material de escrita
Aulas particulares. 1) (UEL) A capacidade aproximada de um aterro sanitário com a forma apresentada na figura a seguir é:
1) (UEL) A capacidade aproximada de um aterro sanitário com a forma apresentada na figura a seguir é: a) 1135 m 3 b) 1800 m 3 c) 2187 m 3 d) 2742 m 3 e) 3768 m 3 2) (Vunesp) Considere uma lata cilíndrica
Lista de exercícios 07 Aluno (a): Turma: 2º série: (Ensino médio) Professores: Flávio Disciplina: Matemática Cilindro
Lista de exercícios 07 Aluno (a): Turma: 2º série: (Ensino médio) Professores: Flávio Disciplina: Matemática Cilindro Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações: No
Cilindro. Av. Higienópolis, 769 Sobre Loja Centro Londrina PR. CEP: Fones: / site:
GEOMETRIA ESPACIAL: ESTUDO DOS CORPOS REDONDOS Os corpos redondos são os sólidos que tem superfícies curvas, como o cilindro, o cone e a esfera. A sua principal característica é o fato de não apresentarem
Geometria Espacial - Prismas
Geometria Espacial - Prismas ) As três dimensões de um paralelepípedo reto retângulo de volume 05 m, são proporcionais a, e 5. A soma do comprimento de todas as arestas é: a) 08m b) 6m c) 80m d) m 7m )
2. (Uerj) Um quadrado ABCD de centro O está situado sobre um plano.ב Esse plano contém o segmento OV, perpendicular a BC, conforme ilustra a imagem:
1. (Insper) Uma empresa fabrica porta-joias com a forma de prisma hexagonal regular, com uma tampa no formato de pirâmide regular, como mostrado na figura. As faces laterais do porta-joias são quadrados
Geometria Espacial Cilindro, Cone, Esfera, Inscrição e Circunscrição
Geometria Espacial Cilindro, Cone, Esfera, Inscrição e Circunscrição Enem 15 semanas 1. Um quadrado de lados medindo 1 cm sofre uma rotação completa em torno de um eixo paralelo a um de seus lados. A distância
MATEMÁTICA III Prof. Emerson Dutra 1 semestre de 2018 DCC05A, EDIF05A e LOG05A
MATEMÁTICA III Prof. Emerson Dutra [email protected] www.profedutra.webnode.com 1 semestre de 2018 DCC05A, EDIF05A e LOG05A Nome: RA: Lista 16 - Geometria Espacial 28/05/2018 Obs.: É importante
Resumo de Geometria Espacial Métrica
1) s. esumo de Geometria Espacial Métrica Extensivo - São João da Boa Vista Matemática - Base Base Base Base Base oblíquo reto quadrangular regular exagonal regular triangular regular Base Fórmulas dos
MATEMÁTICA III Prof. Emerson Dutra 1 semestre de 2019 DCC05A, EDIF05A e LOG05A
MATEMÁTICA III Prof. Emerson Dutra [email protected] www.profedutra.webnode.com 1 semestre de 2019 DCC05A, EDIF05A e LOG05A Nome: RA: Lista 4 - Geometria Espacial 01/03/2019 Obs.: É importante
Exercícios Obrigatórios
Exercícios Obrigatórios 1) (UFRGS) A figura abaixo, formada por trapézios congruentes e triângulos equiláteros, representa a planificação de um sólido. Esse sólido é um (a) tronco de pirâmide. (b) tronco
Prismas e. cilindros
FORMAÇÃO CONTINUADA MATEMÁTICA PLANO DE TRABALHO 2 2º BIMESTRE Prismas e cilindros NOME: JOSIANE ALVES DA SILVA 2ª SÉRIE DO ENSINO MÉDIO TUTURA: SUSI CRISTINA GRUPO: 03 2014 SUMÁRIO 1 Introdução... 03
Plano de Trabalho. Matemática 2º Ano 4º Bimestre/2012. Esferas
Matemática 2º Ano 4º Bimestre/2012 Plano de Trabalho Esferas Tarefa 2 Cursista: Arli Maria Corrêa de Miranda Tutora: Edileizer da Silva Pereira Grupo: 2 S u m á r i o INTRODUÇÃO................................
Mat. Monitor: Roberta Teixeira
Professor: Rafael Jesus Monitor: Roberta Teixeira Exercícios de revisão sobre geometria espacial 22 set EXERCÍCIOS DE AULA 1. Dois dados, com doze faces pentagonais cada um, têm a forma de dodecaedros
48 3cm. 1) A aresta da base e a altura de um prisma regular triangular medem 8cm e 6cm, respectivamente. Calcule:
LISTA DE EXERCÍCIO 01 GEOMETRIA ESPACIAL - PRISMA - 2019 1) A aresta da base e a altura de um prisma regular triangular medem 8cm e 6cm, respectivamente. Calcule: a) a área de cada face lateral (AF) 48cm
PROPOSTA DIDÁTICA. Desenvolvimento da proposta didática (10 min) Acomodação dos alunos em semicírculo e realização da chamada.
PROPOSTA DIDÁTICA Dados de Identificação 1.1 Nome do bolsista: Mariely Rodrigues Anger. 1.2 Público alvo: 6º e 7º ano 1.3 Duração: 2 horas 1.4 Conteúdos desenvolvidos: Noções primitivas de Geometria; Identificação
Uma família que utilizar 12 vezes a capacidade total do kit em um mês pagará a quantia de (considere π=3 )
Lista de Geometria espacial Para PO ET Manhã 3C13 1 (ENEM) Um porta-lápis de madeira foi construído no formato cúbico, seguindo o modelo ilustrado a seguir. O cubo de dentro é vazio. A aresta do cubo maior
LISTA DE EXERCÍCIOS PRISMAS, PIRÂMIDES, CILINDROS E CONES PROF. FLABER
ALUNO(A): TURMA: Nº Caro aluno, Esta lista de exercícios tem como objetivo auxiliá-lo e orientá-lo no estudo para que possa melhorar seu desempenho na Prova Oficial. Resolva os exercícios com dedicação.
g 2 2 = ( 5) = = 9 g = 3 cm
Matemática Unidade III Geometria espacial Série 11 - Cone circular reto 01 a) Considere esta figura: g = ( 5) + = 5 + 4 = 9 g = 3 cm b) Ab = π r = 4π cm c) Al = π r g = π 3 = 6π cm d) At = Ab + Al = 4π
Lista 21 - GEOMETRIA ESPACIAL (Esfera e Pirâmides)
Lista 1 - GEOMETRIA ESPACIAL (Esfera e Pirâmides) 1) Certa quantidade de queijo é vendida em embalagens esféricas com tamanhos. A embalagem menor tem capacidade pra 50g de queijo, e seu raio é a metade
Sólidos Inscritos. Interbits SuperPro Web
Sólidos Inscritos 1. (Uerj 014) Uma esfera de centro A e raio igual a 3dm é tangente ao plano de uma mesa em um ponto T. Uma fonte de luz encontra-se em um ponto F de modo que F, A e T são colineares.
AVALIAÇÃO DE ESTUDOS INDEPENDENTES E. E. DR. JOSÉ MARQUES DE OLIVEIRA
AVALIAÇÃO DE ESTUDOS INDEPENDENTES - 2018 E. E. DR. JOSÉ MARQUES DE OLIVEIRA Professor: Bruno Rezende Pereira Disciplina: Matemática 3º Ano Ensino Médio Valor: 70,0 pontos Aluno: Turma: CONTAS E DESENVOLVIMENTO
Formação Continuada em Matemática Fundação Cecierj/consórcio CEDERJ ESFERA
Formação Continuada em Matemática Fundação Cecierj/consórcio CEDERJ Matemática 2ºAno-4º Bimestre/2012 PLANO DE TRABALHO 2 ESFERA Cursista: Werbert Augusto Coutinho Tutor(a): Silvana Ribeiro Lima Cavalcante
Exercícios de matemática - 2º ano - Ensino Médio - 3º bimestre
Exercícios de matemática - 2º ano - Ensino Médio - 3º bimestre Pergunta 1 de 10 - Assunto: Geometria Espacial [2014 - FUVEST] Três das arestas de um cubo, com um vértice em comum, são também arestas de
DESENHO BÁSICO AULA 03. Prática de traçado e desenho geométrico 14/08/2008
DESENHO BÁSICO AULA 03 Prática de traçado e desenho geométrico 14/08/2008 Polígonos inscritos e circunscritos polígono inscrito polígono circunscrito Divisão da Circunferência em n partes iguais n=2 n=4
01. (UEPB) A capacidade de um cilindro obtido através da rotação em torno do lado menor de um retângulo de dimensões 3 cm e 4 cm é:
singular Lista de exercícios-(cubo-cilindro- cone)-c17-prof.liana (0/06/016) 01. (UEPB) A capacidade de um cilindro obtido através da rotação em torno do lado menor de um retângulo de dimensões cm e 4
V = 12 A = 18 F = = 2 V=8 A=12 F= = 2
Por: Belchior, Ismaigna e Jannine Relação de Euler Em todo poliedro convexo é válida a relação seguinte: V - A + F = 2 em que V é o número de vértices, A é o número de arestas e F, o número de faces. Observe
Geometria Espacial Profº Driko
Geometria Espacial Profº Driko PRISMAS Sejam α e β dois planos paralelos distintos, uma reta r secante a esses planos e uma região poligonal convexa A1A2A3...An contida em α. Consideremos todos os segmentos
GEOMETRIA MÉTRICA ESPACIAL
GEOMETRIA MÉTRICA ESPACIAL .. PARALELEPÍPEDOS RETÂNGULOS Um paralelepípedo retângulo é um prisma reto cujas bases são retângulos. AB CD A' B' C' D' a BC AD B' C' A' D' b COMPRIMENTO LARGURA AA' BB' CC'
FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ/SEEDUC-RJ COLÉGIO ESTADUAL DOM JOÃO VI
FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ/SEEDUC-RJ COLÉGIO ESTADUAL DOM JOÃO VI Professora: ANA PAULA LIMA Matrículas: 09463027/09720475 Série: 2º ANO ENSINO MÉDIO Tutora: KARINA
Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Espacial 2º Ano APROFUNDAMENTO/REFORÇO
Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Espacial 2º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 1 1º Bimestre 2012 Aluno(a): Número: Turma: 1) Resolva
