Uma abordagem geométrica da cinemática da partícula
|
|
|
- Valdomiro Cruz Galvão
- 9 Há anos
- Visualizações:
Transcrição
1 Uma abordagem geométrica da cinemática da partícula André da Silva Ramos de Faria MPEF Orientador: Professor Vitorvani Soares
2 Objetivos
3 Objetivos Discussão geométrica dos conceitos físicos relevantes para a descrição do movimento:
4 Objetivos Discussão geométrica dos conceitos físicos relevantes para a descrição do movimento: Partícula, Referencial, deslocamento, intervalo de tempo;
5 Objetivos Discussão geométrica dos conceitos físicos relevantes para a descrição do movimento: Partícula, Referencial, deslocamento, intervalo de tempo; Geometria do MRU;
6 Objetivos Discussão geométrica dos conceitos físicos relevantes para a descrição do movimento: Partícula, Referencial, deslocamento, intervalo de tempo; Geometria do MRU; Geometria do MRUV;
7 Objetivos Discussão geométrica dos conceitos físicos relevantes para a descrição do movimento: Partícula, Referencial, deslocamento, intervalo de tempo; Geometria do MRU; Geometria do MRUV; Descrever o movimento parabólico utilizando a geometria como ferramenta.
8 Vantagens da Geometria
9 Vantagens da Geometria Exploração visual do movimento da partícula;
10 Vantagens da Geometria Exploração visual do movimento da partícula; Utilização da geometria plana elementar, não sendo necessário usar contas sofisticadas.
11 Euclides de Alexandria (360 a.c. 295 a.c)
12 Geometria Euclidiana Em sua obra Os elementos, o filósofo e matemático grego Euclides, introduziu definições básicas de geometria. No livro I são definidos os objetos geométricos cujas propriedades desejamos estudar. São 23 definições, entre as quais são definidos ponto, reta, círculo, triângulo, retas paralelas e ângulos. Acrescenta-se ainda cinco axiomas e nove noções comuns que são afirmações admitidas como verdades óbvias. (EUCLIDES, Os elementos. Tr. pt. de Bicudo 2009 )
13 Geometria Euclidiana Tomaremos como início algumas das definições dadas por Euclides, em sua obra.
14 Geometria Euclidiana Tomaremos como início algumas das definições dadas por Euclides, em sua obra. 1. Um ponto é aquilo de que nada é parte.
15 Geometria Euclidiana Tomaremos como início algumas das definições dadas por Euclides, em sua obra. 1. Um ponto é aquilo de que nada é parte.
16 Geometria Euclidiana 2. E linha é comprimento sem largura.
17 Geometria Euclidiana 2. E linha é comprimento sem largura. 3. E linha reta é a que está posta por igual com os pontos sobre si mesma.
18 Geometria Euclidiana 2. E linha é comprimento sem largura. 3. E linha reta é a que está posta por igual com os pontos sobre si mesma.
19 Geometria Euclidiana 6. E superfície é aquilo que tem somente comprimento e largura.
20 Geometria Euclidiana 6. E superfície é aquilo que tem somente comprimento e largura. 7. Superfície plana é a que está posta por igual com as retas sobre si mesma.
21 Geometria Euclidiana 6. E superfície é aquilo que tem somente comprimento e largura. 7. Superfície plana é a que está posta por igual com as retas sobre si mesma.
22 Geometria Euclidiana 8. E ângulo plano é a inclinação, entre elas, de duas linhas no plano, que se tocam e não estão postas sobre uma reta.
23 Geometria Euclidiana 8. E ângulo plano é a inclinação, entre elas, de duas linhas no plano, que se tocam e não estão postas sobre uma reta.
24 Geometria Euclidiana 15. Círculo é uma figura plana contida por uma linha [que é chamada circunferência], em relação à qual todas as retas que se encontram [até a circunferência do círculo], a partir de um ponto dos postos no interior da figura, são iguais entre si.
25 Geometria Euclidiana
26 Geometria Euclidiana
27 Geometria Euclidiana Ângulo Reto
28 Geometria Euclidiana
29 Geometria Euclidiana
30 Geometria Euclidiana
31 Geometria Euclidiana
32 Geometria Euclidiana
33 Geometria Euclidiana
34 O teorema de Pitágoras
35 O teorema de Pitágoras
36 O teorema de Pitágoras
37 O teorema de Pitágoras
38 O teorema de Pitágoras (a +b)² = a² + 2ab + b²
39 O teorema de Pitágoras
40 O teorema de Pitágoras
41 O teorema de Pitágoras (a +b)² = a² + 2ab + b²
42 O teorema de Pitágoras (a +b)² = a² + 2ab + b² c = a + b
43 O teorema de Pitágoras (a +b)² = a² + 2ab + b² c = a + b c² = d² + 4(ab/2) c² = (a + b)² = a² +2ab + b²
44 O teorema de Pitágoras (a +b)² = a² + 2ab + b² c = a + b c² = d² + 4(ab/2) c² = (a + b)² = a² +2ab + b² Logo:
45 O teorema de Pitágoras (a +b)² = a² + 2ab + b² c = a + b c² = d² + 4(ab/2) c² = (a + b)² = a² +2ab + b² Logo: a² + 2ab + b² = d² + 2ab
46 O teorema de Pitágoras (a +b)² = a² + 2ab + b² c = a + b c² = d² + 4(ab/2) c² = (a + b)² = a² +2ab + b² Logo: a² + 2ab + b² = d² + 2ab Podemos concluir então que:
47 O teorema de Pitágoras (a +b)² = a² + 2ab + b² c = a + b c² = d² + 4(ab/2) c² = (a + b)² = a² +2ab + b² Logo: a² + 2ab + b² = d² + 2ab Podemos concluir então que: d² = a² + b²
48 Médias da Grécia antiga
49 Médias da Grécia antiga Aritmética; Geométrica; Harmônica.
50 Médias da Grécia antiga
51 Médias da Grécia antiga
52 Médias da Grécia antiga
53 Médias da Grécia antiga
54 Médias da Grécia antiga
55 Médias da Grécia antiga
56 Médias da Grécia antiga
57 Médias da Grécia antiga
58 Médias da Grécia antiga
59 Médias da Grécia antiga
60 Médias da Grécia antiga
61 Médias da Grécia antiga a + b 2 2 = x 2 + b a 2 2
62 Médias da Grécia antiga a + b 2 2 = x 2 + b a 2 2 x 2 = a + b 2 2 b a 2 2
63 Médias da Grécia antiga a + b 2 2 = x 2 + b a 2 2 x 2 = a + b 2 2 b a 2 2 x = ab
64 Médias da Grécia antiga a + b 2 2 = x 2 + b a 2 2 x 2 = a + b 2 2 b a 2 2 x = ab Média Geométrica
65 Médias da Grécia antiga Aritmética; z = a + b 2
66 Médias da Grécia antiga Aritmética; a + b z = 2 2z = a + b
67 Médias da Grécia antiga Aritmética; a + b z = 2 2z = a + b z + z = a + b
68 Médias da Grécia antiga Aritmética; a + b z = 2 2z = a + b z + z = a + b z a = b z
69 Médias da Grécia antiga Aritmética; a + b z = 2 2z = a + b z + z = a + b z a = b z z a b z = 1
70 Médias da Grécia antiga Harmônica 1 a + 1 b = 2 z
71 Médias da Grécia antiga Harmônica 1 a + 1 b = 2 z z = 2 ab a + b
72 Médias da Grécia antiga Harmônica 1 a + 1 b = 2 z z = 2 z = ab a + b ab ab a + b 2
73 Médias da Grécia antiga Harmônica 1 a + 1 b = 2 z z = 2 z = ab a + b ab ab a + b 2 z ab = ab a + b 2
74 Constante de Arquimedes Descobrindo a área da Circunferência
75 Constante de Arquimedes
76 Constante de Arquimedes
77 Constante de Arquimedes
78 Constante de Arquimedes A/4 < R²
79 Constante de Arquimedes
80 Constante de Arquimedes
81 Constante de Arquimedes
82 Constante de Arquimedes
83 Constante de Arquimedes
84 Constante de Arquimedes
85 Constante de Arquimedes
86 Constante de Arquimedes
87 Constante de Arquimedes
88 Constante de Arquimedes
89 Constante de Arquimedes
90 Constante de Arquimedes
91 Constante de Arquimedes Se chamarmos essa constante de π, ficaremos com o seguinte resultado:
92 Constante de Arquimedes Se chamarmos essa constante de π, ficaremos com o seguinte resultado: A = πr²
93 Constante de Arquimedes Descobrindo o comprimento da Circunferência
94 Constante de Arquimedes Descobrindo o comprimento da Circunferência 17. E diâmetro do círculo é alguma reta traçada através do centro, e terminando, em cada um dos lados, pela circunferência do círculo e que corta o círculo em dois.
95 Constante de Arquimedes R
96 Constante de Arquimedes Representação de um dodecágono regular inscrito no círculo de raio R.
97 Constante de Arquimedes Unindo os pontos do polígono até o centro do círculo formamos doze triângulos semelhantes entre si.
98 Constante de Arquimedes Recorte dos triângulos semelhantes
99 Constante de Arquimedes Agrupamento dos seis triângulos recortados
100 Constante de Arquimedes Recorte de um dos triângulos da extremidade
101 Constante de Arquimedes Acoplamento do triângulo recortado na outra extremidade, formando uma figura que se assemelha à um retângulo.
102 Constante de Arquimedes Retângulo de altura semelhante ao raio da circunferência e de comprimento semelhante à um quarto do perímetro do polígono.
103 Constante de Arquimedes Podemos escrever então uma relação entre a área do retângulo e a área da metade circunferência, recortada no inicio do procedimento.
104 Constante de Arquimedes Podemos escrever então uma relação entre a área do retângulo e a área da metade circunferência, recortada no inicio do procedimento. (P/4) R = A/2
105 Constante de Arquimedes Podemos escrever então uma relação entre a área do retângulo e a área da metade circunferência, recortada no inicio do procedimento. (P/4) R = A/2 P = 2A/R
106 Constante de Arquimedes Podemos escrever então uma relação entre a área do retângulo e a área da metade circunferência, recortada no inicio do procedimento. (P/4) R = A/2 P = 2A/R P = 2 π R
107 Próximos passos Referencial Medir posições e duração de tempo MRU MRUV Movimento Parabólico
108 Obrigado.
Descobrindo medidas desconhecidas (I)
Descobrindo medidas desconhecidas (I) V ocê é torneiro em uma empresa mecânica. Na rotina de seu trabalho, você recebe ordens de serviço acompanhadas dos desenhos das peças que você tem de tornear. Vamos
Capítulo 6. Geometria Plana
Capítulo 6 Geometria Plana 9. (UEM - 2013 - Dezembro) Com base nos conhecimentos de geometria plana,assinale o que for correto. 01) O maior ângulo interno de um triângulo qualquer nunca possui medida inferior
UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA
UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA TEXTO: CÍRCULO TRIGONOMÉTRICO AUTORES: Mayara Brito (estagiária da BOM) André Brito (estagiário da BOM) ORIENTADOR:
Aula de Matemática. Turma 1 28/03/13 e 05/04/13 Prof. Silvânia Alves de Carvalho Cursinho TRIU Barão Geraldo Campinas /SP
Aula de Matemática Turma 1 28/03/13 e 05/04/13 Prof. Silvânia Alves de Carvalho Cursinho TRIU Barão Geraldo Campinas /SP Cursinho TRIU -Matemática Ementa do curso CURSINHO TRIU Conteúdo de Matemática (
EXERCÍCIOS DE REVISÃO MATEMÁTICA II GEOMETRIA ANALÍTICA PLANA (Ponto, reta e circunferência)
EXERCÍCIOS DE REVISÃO MATEMÁTICA II GEOMETRIA ANALÍTICA PLANA (Ponto, reta e circunferência) ************************************************************************************* 1) (U.F.PA) Se a distância
Módulo 2 Geometrias Plana e Espacial
1. Geometria Plana Módulo 2 Geometrias Plana e Espacial Os conceitos da geometria são muito utilizados na área de logística, principalmente nas medidas das dimensões dos volumes; nos cálculos do espaço
1 PONTOS NOTÁVEIS. 1.1 Baricentro. 1.3 Circuncentro. 1.2 Incentro. Matemática 2 Pedro Paulo
Matemática 2 Pedro Paulo GEOMETRIA PLANA VIII 1 PONTOS NOTÁVEIS 1.1 Baricentro O baricentro é o encontro das medianas de um triângulo. Na figura abaixo, é o ponto médio do lado, é o ponto médio do lado
Relações métricas nos triângulos retângulos 1) Usando o teorema de Pitágoras, determine os elementos indicados por x ou y nas figuras seguintes:
AS RESPOSTAS ESTÃO NO FINAL DOS EXERCÍCIOS. Relações métricas nos triângulos retângulos ) Usando o teorema de Pitágoras, determine os elementos indicados por ou nas figuras seguintes: d) e) f) g) h) 0
1 SOMA DOS ÂNGULOS 2 QUADRILÀTEROS NOTÀVEIS. 2.2 Paralelogramo. 2.1 Trapézio. Matemática 2 Pedro Paulo
Matemática 2 Pedro Paulo GEOMETRIA PLANA IX 1 SOMA DOS ÂNGULOS A primeira (e talvez mais importante) relação válida para todo quadrilátero é a seguinte: A soma dos ângulos internos de qualquer quadrilátero
Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos:
Lei dos Cossenos Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos: Triângulo Obtusângulo Tomemos um triângulo Obtusângulo qualquer,
A primeira coisa ao ensinar o teorema de Pitágoras é estudar o triângulo retângulo e suas partes. Desta forma:
As atividades propostas nas aulas a seguir visam proporcionar ao aluno condições de compreender de forma prática o teorema de Pitágoras em sua estrutura geométrica, através do uso de quadrados proporcionais
Construções Geométricas
Desenho Técnico e CAD Técnico Prof. Luiz Antonio do Nascimento Engenharia Ambiental 2º Semestre Ângulo - é a região plana limitada por duas semirretas de mesma origem. Classificação dos ângulos: Tipos
Desenho Técnico e Geometria Descritiva Construções Geométricas. Construções Geométricas
Desenho Técnico e Geometria Descritiva Prof. Luiz Antonio do Nascimento Engenharia Ambiental 2º Semestre Bissetriz - é a reta que divide um ângulo qualquer em dois ângulos iguais, partindo do vértice deste
Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano
Geometria Perímetros e áreas Perímetro de polígonos regulares e irregulares Perímetro do círculo Equivalência de figuras planas Unidades de área Área do triângulo Área do círculo Síntese Perímetro O perímetro
2.1 - Triângulo Equilátero: é todo triângulo que apresenta os três lados com a mesma medida. Nesse caso dizemos que os três lados são congruentes.
Matemática Básica 09 Trigonometria 1. Introdução A palavra Trigonometria tem por significado do grego trigonon- triângulo e metron medida, associada diretamente ao estudo dos ângulos e lados dos triângulos,
Cevianas: Baricentro, Circuncentro, Incentro e Mediana.
Cevianas: Baricentro, Circuncentro, Incentro e Mediana. 1. (Ita 014) Em um triângulo isósceles ABC, cuja área mede 48cm, a razão entre as medidas da altura AP e da base BC é igual a. Das afirmações abaixo:
Gabarito - Colégio Naval 2016/2017 Matemática Prova Amarela
Gabarito - Colégio Naval 016/017 PROFESSORES: Carlos Eduardo (Cadu) André Felipe Bruno Pedra Jean Pierre QUESTÃO 1 Considere uma circunferência de centro O e raio r. Prolonga-se o diâmetro AB de um comprimento
A Área do Círculo: Atividades Experimentais
A Área do Círculo: Atividades Experimentais Resumo Rita de Cássia Pavani Lamas 1 Durante o ano de 2008 foi desenvolvido o Projeto do Núcleo de Ensino da UNESP, Material Concreto para o Ensino de Geometria,
NOTAÇÕES. : distância do ponto P à reta r : segmento de extremidades nos pontos A e B
R C i z Rez) Imz) det A tr A : conjunto dos números reais : conjunto dos números complexos : unidade imaginária: i = 1 : módulo do número z C : parte real do número z C : parte imaginária do número z C
REVISITANDO A GEOMETRIA PLANA
REVISITANDO A GEOMETRIA PLANA Polígonos são figuras planas fechadas com lados retos. Todo polígono possui os seguintes elementos: ângulos, vértices, diagonais e lados. De acordo com o número de lados a
Novo Espaço Matemática A 11.º ano Proposta de Teste Intermédio [Novembro 2015]
Proposta de Teste Intermédio [Novembro 05] Nome: Ano / Turma: N.º: Data: - - Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado. Para cada resposta, identifica
Solução Comentada Prova de Matemática
18. Se x e y são números inteiros maiores do que 1, tais que x é um divisor de 0 e y é um divisor de 35, então o menor valor possível para y x é: A) B) C) D) E) 4 35 4 7 5 5 7 35 Questão 18, alternativa
II - Teorema da bissetriz
I - Teorema linear de Tales Se três ou mais paralelas são cortadas por duas transversais, então os segmentos determinados numa transversal têm medidas que são diretamente proporcionais às dos segmentos
Módulo Elementos Básicos de Geometria - Parte 3. Circunferência. Professores: Cleber Assis e Tiago Miranda
Módulo Elementos Básicos de Geometria - Parte Circunferência. 8 ano/e.f. Professores: Cleber Assis e Tiago Miranda Elementos Básicos de Geometria - Parte. Circunferência. 1 Exercícios Introdutórios Exercício
MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Equações de retas e planos
MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Equações de retas e planos 1 Seja um número real. Considere, num referencial o.n., a reta e o plano definidos, respetivamente, por e Sabe-se
SEQUÊNCIA DIDÁTICA PODCAST ÁREA CIÊNCIAS DA NATUREZA I MATEMÁTICA - ENSINO FUNDAMENTAL E ENSINO MÉDIO
SEQUÊNCIA DIDÁTICA PODCAST ÁREA CIÊNCIAS DA NATUREZA I MATEMÁTICA - ENSINO FUNDAMENTAL E ENSINO MÉDIO Título do Podcast Área Segmento Duração Geometria do Cotidiano Ciências da Natureza I Matemática Ensino
ESCOLA BÁSICA INTEGRADA DE MANIQUE DO INTENDENTE Ano Letivo / Nome ; Ano/Turma ; N.º
EDUCAÇÃO VISUAL ESCOLA BÁSICA INTEGRADA DE MANIQUE DO INTENDENTE Ano Letivo / APONTAMENTOS DE GEOMETRIA Nome ; Ano/Turma ; N.º 1 - O PONTO - ao colocares o bico do teu lápis no papel obténs um ponto. O
QUESTÃO 16 Dois garotos, tentando pular um muro, encostaram um banco de 50 cm de altura no muro e colocaram uma escada sobre ele, conforme a figura.
Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO EM 0 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 Dois garotos, tentando pular um muro, encostaram um banco de 50
Teste de Avaliação Escrita
Teste de Avaliação Escrita Duração: 90 minutos 19 de fevereiro de 014 Escola E.B.,3 Eng. Nuno Mergulhão Portimão Ano Letivo 013/014 Matemática 9.º B Nome: N.º Classificação: Fraco (0% 19%) Insuficiente
= 1 1 1 1 1 1. Pontuação: A questão vale dez pontos, tem dois itens, sendo que o item A vale até três pontos, e o B vale até sete pontos.
VTB 008 ª ETAPA Solução Comentada da Prova de Matemática 0 Em uma turma de alunos que estudam Geometria, há 00 alunos Dentre estes, 30% foram aprovados por média e os demais ficaram em recuperação Dentre
Lista de Exercícios de Recuperação de MATEMÁTICA 2. NOME Nº SÉRIE: DATA 4 BIMESTRE PROFESSOR : Denis Rocha DISCIPLINA : Matemática 2 VISTO COORDENAÇÃO
Lista de Exercícios de Recuperação de MTEMÁTIC NME Nº SÉRIE: DT 4 IMESTRE RFESSR : Denis Rocha DISCILIN : Matemática VIST CRDENÇÃ EM no ) Na figura abaixo 0 e a distância entre o centro da circunferência
Matemática Fascículo 07 Manoel Benedito Rodrigues
Matemática Fascículo 07 Manoel Benedito Rodrigues Índice Geometria Resumo Teórico...1 Exercícios...4 Dicas...5 Resoluções...7 Geometria Resumo Teórico 1. O volume de um prisma eodeumcilindro (retos ou
Aula 2 - Revisão. Claudemir Claudino 2014 1 Semestre
Aula 2 - Revisão I Parte Revisão de Conceitos Básicos da Matemática aplicada à Resistência dos Materiais I: Relações Trigonométricas, Áreas, Volumes, Limite, Derivada, Integral, Vetores. II Parte Revisão
1 - RECORDANDO 2 - CENTRO NA ORIGEM 3 - EQUAÇÃO GERAL DA CIRCUNFERÊNCIA. Exercício Resolvido 2: Exercício Resolvido 1: Frente I
Matemática Frente I CAPÍTULO 22 EQUAÇÕES DA CIRCUNFERÊNCIA 1 - RECORDANDO Até agora, o nosso foco principal foi as retas: calculamos as equações geral e reduzida de uma reta, a interseção entre duas retas,
Como calcular sua área?
TRAPÉZIO Vamos tentar preencher o trapézio com os quadradinhos. Somente 40 pequenos quadrados de 1 u.a. estão na superfície interna. Os outros estão parte dentro e parte fora. Como calcular sua área? TRAPÉZIO
Aula de Matemática. Semana do período zero Turma 2 28/03/13 Prof. Silvânia Alves de Carvalho Cursinho TRIU Barão Geraldo Campinas /SP
Aula de Matemática Semana do período zero Turma 2 28/03/13 Prof. Silvânia Alves de Carvalho Cursinho TRIU Barão Geraldo Campinas /SP Cursinho TRIU -Matemática Ementa Geometria plana Congruência de figuras
a) 30 b) 40 c) 50 d) 60 e) 70
Geometria Plana I Exercícios TEXTO PARA A PRÓXIMA QUESTÃO: O revestimento do piso de um ambiente, com a utilização de tacos de madeira, pode ser feito formando desenhos que constituam um elemento decorativo
Faculdade Pitágoras Unidade Betim
Faculdade Pitágoras Unidade Betim Atividade de Aprendizagem Orientada Nº 4 Profª: Luciene Lopes Borges Miranda Nome/ Grupo: Disciplina: Cálculo III Tempo da atividade: h Curso: Engenharia Civil Data da
Circunferência e círculo
54 Circunferência e círculo Ângulos na circunferência Ângulo central Ângulo central é o ângulo que tem o vértice no centro da circunferência. A medida de um ângulo central é igual à medida do arco correspondente
PLANEJAMENTO ANUAL 2014
PLANEJAMENTO ANUAL 2014 Disciplina: GEOMETRIA Período: Anual Professor: JOÃO MARTINS Série e segmento: 9º ANO 1º TRIMESTRE 2º TRIMESTRE 3º TRIMESTRE vários campos da matemática**r - Reconhecer que razão
é necessário percorrer pelas seguintes etapas: , sendo ACV e BCA ângulos suplementares; , por ser um ângulo inscrito e portanto ser igual a
Escola Secundária com º CEB de Lousada PM Assunto: Soluções da Mega-ficha de Preparação para o Eame Nacional I _ No cálculo de AV B é necessário percorrer pelas seguintes etapas: AB A- Determinar A C B
Eixo Temático ITema 1: Conjuntos Numéricos. Números e Operações
Eixo Temático ITema 1: Conjuntos Numéricos Números e Operações 1. Conjunto dos números naturais 2. Conjunto dos números inteiros 1.0. Conceitos 3 1.1. Operar com os números naturais: adicionar, multiplicar,
7) (F.C.CHAGAS) Determine a área da região hachurada nos casos:
EXERCÍCIOS - PARTE 1 1) (PUC) Se a área do retângulo é de 32 cm 2 e os triângulos formados são isósceles, então o perímetro do pentágono hachurado, em cm, é: 39 a) b) 10+7 2 c) 10 + 12 2 d) 32 e) 70 2
Colégio Santa Dorotéia
Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Série: ª Ensino Médio Professor: Elias Bittar Matemática Atividades para Estudos Autônomos Data: 9 / 0 / 016 1) (UFMG) Observe a figura.
Exercícios de Revisão Áreas de figuras Planas 3 o Ano Ensino Médio - Manhã
Exercícios de Revisão Áreas de figuras Planas 3 o Ano Ensino Médio - Manhã ======================================================== 1) Num retângulo, a base tem cm a mais do que o dobro da altura e a diagonal
Construções Geométricas Usuais
Construções Geométricas Usuais Rectas. Ângulos. Circunferência e círculo. Tangentes a circunferências. Polígonos. Rectas Duas rectas dizem-se perpendiculares quando dividem o espaço em quatro partes iguais,
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE Professor: João Carmo INTRODUÇÃO O traçado de linhas retas PERPENDICULARES, PARALELAS e OBLÍQUAS é feito com o auxílio de esquadros,
Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner. Seções Cônicas
Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner 1 - Elipses Seções Cônicas Definição 1.1: Dados os pontos no plano, F e F com FF =2c e um comprimento
1º Ano do Ensino Médio
MINISTÉRIO DA DEFESA Manaus AM 18 de outubro de 009. EXÉRCITO BRASILEIRO CONCURSO DE ADMISSÃO 009/010 D E C E x - D E P A COLÉGIO MILITAR DE MANAUS MATEMÁTICA 1º Ano do Ensino Médio INSTRUÇÕES (CANDIDATO
Unidade 11 Geometria Plana I. Congruência e semelhança de figuras planas Relações métricas do triângulo retângulo Triângulo qualquer
Unidade 11 Geometria Plana I Congruência e semelhança de figuras planas Relações métricas do triângulo retângulo Triângulo qualquer Congruência e Semelhança de Figuras Planas TRIÂNGULOS SEMELHANTES Dois
Características das Figuras Geométricas Espaciais
Características das Figuras Geométricas Espaciais Introdução A Geometria espacial (euclidiana) funciona como uma ampliação da Geometria plana e trata dos métodos apropriados para o estudo de objetos espaciais,
2. (Uerj 2001) Um triângulo acutângulo ABC tem 4cm de área e seus lados åæ e åè medem, respectivamente, 2cm e 5cm.
1 Projeto Jovem Nota 10 1. (Ufv 2001) Seja AB o diâmetro de uma circunferência de raio r, e seja C um ponto da mesma, distinto de A e B, conforme figura a seguir. a) Sendo o ângulo AïC=, determine a área
Projeto Rumo ao ITA Exercícios estilo IME
PROGRAMA IME ESPECIAL 1991 GEOMETRIA ESPACIAL PROF PAULO ROBERTO 01 (IME-64) Um cone circular reto, de raio da base igual a R e altura h, está circunscrito a 1 1 uma esfera de raio r Provar que = rh r
A área do triângulo OAB esboçado na figura abaixo é
Questão 01 - (UNICAMP SP) No plano cartesiano, a reta de equação = 1 intercepta os eios coordenados nos pontos A e B. O ponto médio do segmento AB tem coordenadas (4, 4/) b) (, ) c) (4, 4/) d) (, ) Questão
P 3 ) Por dois pontos distintos passa uma única reta. P 4 ) Um ponto qualquer de uma reta divide-a em duas semi-retas.
Geometria Espacial Conceitos primitivos São conceitos primitivos ( e, portanto, aceitos sem definição) na Geometria espacial os conceitos de ponto, reta e plano. Habitualmente, usamos a seguinte notação:
Canguru Matemático sem Fronteiras 2014
http://www.mat.uc.pt/canguru/ Destinatários: alunos do 12. ano de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões
Da linha poligonal ao polígono
Polígonos Da linha poligonal ao polígono Uma linha poligonal é formada por segmentos de reta consecutivos, não alinhados. Polígono é uma superfície plana limitada por uma linha poligonal fechada. Dos exemplos
TERCEIRA SÉRIE ENSINO MÉDIO INTEGRADO. CIRCUNFERÊNCIA E DISCO Prof. Rogério Rodrigues NOME :... NÚMERO :... TURMA :...
1 TERCEIRA SÉRIE ENSINO MÉDIO INTEGRADO CIRCUNFERÊNCIA E DISCO Prof. Rogério Rodrigues NOME :... NÚMERO :... TURMA :... 2 V - CIRCUNFERÊNCIA E DISCO V.1) Circunferência e Disco Elementos : a) Circunferência
EXERCÍCIOS COMPLEMENTARES
EXERCÍCIO COMPLEMENTARE ÁREA DE FIGURA PLANA PROF.: GILON DUARTE Questão 01 Uma sala retangular tem comprimento x e largura y, em metros. abendo que (x + y) (x y) =, é CORRETO afirmar que a área dessa
18/06/2013. Professora: Sandra Tieppo UNIOESTE Cascavel
18/06/01 Professora: Sandra Tieppo UNIOESTE Cascavel 1 Superfícies geradas por uma geratriz (g) que passa por um ponto dado V (vértice) e percorre os pontos de uma linha dada d (diretriz), V d. Se a diretriz
Lista de Exercícios Geometria Plana - Pontos notáveis do triângulo 3ª Série do Ensino Médio Prof. Lucas Factor
Lista de Exercícios Geometria Plana - Pontos notáveis do triângulo 3ª Série do Ensino Médio Prof. Lucas Factor 1. Considere os pontos notáveis de um triângulo, sendo: B Baricentro C Circuncentro I Incentro
LISTA DE EXERCÍCIOS DE GEOMETRIA PLANA
LIST E EXERÍIOS E GEOMETRI PLN 01) FUVEST - medida do ângulo inscrito na circunferência de centro O é: a) 125 o b) 110 o c) 120 o 35 d) 100 o O e) 135 o 02) Num triângulo de lados = 12, = 8 e = 10, a medida
Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner
Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner 2 - Hipérboles Definição 1.1: Dados os pontos no plano, F e F com FF =2c e um comprimento 2a
Nome: N.º: Turma: Classificação: Professor: Enc. Educação:
Escola EB, de Ribeirão (Sede) ANO LECTIVO 010/011 Dezembro 010 Nome: Nº: Turma: Classificação: Professor: Enc Educação: Ficha de Avaliação de Matemática Versão Duração do Teste: 90 minutos 6 de Dezembro
1.1 UFPR 2014. Rumo Curso Pré Vestibular Assistencial - RCPVA Disciplina: Matemática Professor: Vinícius Nicolau 04 de Novembro de 2014
Sumário 1 Questões de Vestibular 1 1.1 UFPR 2014.................................... 1 1.1.1 Questão 1................................. 1 1.1.2 Questão 2................................. 2 1.1.3 Questão
CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 96 / 97 MÚLTIPLA ESCOLHA
18 1 a QUESTÃO. (VALOR: 0 ESCORES) - ESCORES OBTIDOS MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES ABAIXO. Item 01. A representação gráfica de M ( M N) P é a. ( )
Polígonos Regulares Inscritos e Circunscritos
Polígonos Regulares Inscritos e Circunscritos 1. (Fgv 013) Na figura, ABCDEF é um hexágono regular de lado 1 dm, e Q é o centro da circunferência inscrita a ele. O perímetro do polígono AQCEF, em dm, é
PROVA DE MATEMÁTICA CONCURSO DE ADMISSÃO 2013/2014 1º ANO DO ENSINO MÉDIO
CONCURSO DE ADMISSÃO 2013/2014 PROVA DE MATEMÁTICA 1º ANO DO ENSINO MÉDIO CONFERÊNCIA: Membro da CEOCP (Mat / 1º EM) Presidente da CEI Dir Ens CPOR / CMBH PÁGINA 1 RESPONDA AS QUESTÕES DE 1 A 20 E TRANSCREVA
III. A área do triângulo ABC é igual a r. 2
(Mackenzie SP/1998/Julho) área do triângulo da figura é 5 0 60 Então, supondo 1, 7, o perímetro do triângulo é: a) 7 b) 9 c) 41 d) 4 e) 45 Gab: (PU MG/001) Em certo município, para implantar uma avenida,
Assunto: Estudo do ponto
Assunto: Estudo do ponto 1) Sabendo que P(m+1;-3m-4) pertence ao 3º quadrante, determine os possíveis valores de m. resp: -4/3
TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa A. alternativa E. alternativa E
Questão TIPO DE PROVA: A Uma empresa entrevistou k candidatos a um determinadoempregoerejeitouumnúmerode candidatos igual a 5 vezes o número de candidatos aceitos. Um possível valor para k é: a) 56 b)
MATEMÁTICA. cos x : cosseno de x log x : logaritmo decimal de x
MATEMÁTICA NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SÍMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: x : módulo do número x i : unidade imaginária sen x : seno de x cos x : cosseno de x log x : logaritmo
ATIVIDADES NO GEOGEBRA SOBRE DEMONSTRAÇÕES DE ARQUIMEDES E BARROW
ATIVIDADES NO GEOGEBRA SOBRE DEMONSTRAÇÕES DE ARQUIMEDES E BARROW Luiz Antônio Jacyntho (UNEMAT e mestrando da UNICAMP) Luiz Mariano Carvalho (UERJ) Através de um programa de Geometria Dinâmica, Geogebra,
10 FGV. Na figura, a medida x do ângulo associado é
urso de linguagem matemática Professor Renato Tião 6. Sabendo que ângulos geométricos têm medidas entre 0º e 180º, ângulos adjacentes têm um lado em comum, ângulos complementares têm a soma de suas medidas
para x = 111 e y = 112 é: a) 215 b) 223 c) 1 d) 1 e) 214 Resolução Assim, para x = 111 e y = 112 teremos x + y = 223.
MATEMÁTICA d Um mapa está numa escala :0 000 000, o que significa que uma distância de uma unidade, no mapa, corresponde a uma distância real de 0 000 000 de unidades. Se no mapa a distância entre duas
MATEMÁTICA - 3 o ANO MÓDULO 24 CIRCUNFERÊNCIA
MATEMÁTICA - 3 o ANO MÓDULO 24 CIRCUNFERÊNCIA r (a, b) P R C P R C P R C Como pode cair no enem (UFRRJ) Em um circo, no qual o picadeiro tem no plano cartesiano a forma de um círculo de equação igual a
Lista de exercícios do teorema de Tales
Componente Curricular: Professor(a): PAULO CEZAR Turno: Data: Matemática Matutino / /2014 Aluno(a): Nº do Aluno: Série: Turma: 8ª (81) (82) Sucesso! Lista de Exercícios Lista de exercícios do teorema de
Lista de exercícios para a P8 Conteúdo: Pontos notáveis do triângulo, quadriláteros e polígonos. Prof. Rafa, Prof. Bill, Prof. Marcelo C. e Marcelo L.
Lista de exercícios para a P8 Conteúdo: Pontos notáveis do triângulo, quadriláteros e polígonos. Prof. Rafa, Prof. Bill, Prof. Marcelo C. e Marcelo L. Mas antes de começar, atente para as seguintes dicas:
SISTEMA DE EQUAÇÕES DO 2º GRAU
SISTEMA DE EQUAÇÕES DO 2º GRAU Os sistemas a seguir envolverão equações do 2º grau, lembrando de que suas soluções constituem na determinação do par ordenado { (x, y )(x, y ) }. Resolver um sistema envolvendo
Metrologia Professor: Leonardo Leódido
Metrologia Professor: Leonardo Leódido Sumário Definição Conceitos Básicos Classificação de Forma de Orientação de Posição Definição Tolerância pode ser definida como um intervalo limite no qual as imperfeições
a, em que a e b são inteiros tais que a é divisor de 3
Matemática 0. Considere a expressão x x 3 5x x 6. Pede-se: A) encontrar o valor numérico da expressão para x. B) obter todas as raízes complexas do polinômio p(x) x x 3 5x x 6. Questão 0 Comentários: A
Os degraus serão obtidos cortando-se uma peça linear de madeira cujo comprimento mínimo, em cm, deve ser: (D) 225.
1. (ENEM 2000) Um marceneiro deseja construir uma escada trapezoidal com 5 degraus, de forma que o mais baixo e o mais alto tenham larguras respectivamente iguais a 60 cm e a 30 cm, conforme a figura:
Nome: N.º: Endereço: Data: Telefone: PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 2016 Disciplina: MATEMÁTICA
Nome: N.º: Endereço: Data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 06 Disciplina: MATEMÁTICA Prova: DESAFIO NOTA: QUESTÃO 6 Analise cada item com atenção: I. O antecedente
a) 8 b) 12 c) 16 d) 20 e) 24
0) (UFRGS) Na figura abaixo, A, B e C são vértices de hexágonos regulares justapostos, cada um com área 8. Segue-se que a área do triângulo cujos vértices são os pontos A, B e C é: a) 8 b) 1 c) 16 d) 0
GABARITO DA PRIMEIRA LISTA DE EXERCÍCIOS REVISÃO DE TRIGONOMETRIA. Portanto, podemos usar a seguinte relação trigonométrica:
GABARITO DA PRIMEIRA LISTA DE EXERCÍCIOS REVISÃO DE TRIGONOMETRIA 1) Observando a figura, verificamos que: A altura (160 m) em que se encontra o atleta corresponde ao cateto adjacente do triângulo retângulo;
Professor Alexandre Assis. Lista de exercícios - Geometria Analítica. 6. Duas pessoas A e B decidem se encontrar em
6. Duas pessoas A e B decidem se encontrar em 1. Sendo (x + 2, 2y - 4) = (8x, 3y - 10), determine o valor de x e de y. um determinado local, no período de tempo entre 0h e 1h. Para cada par ordenado (x³,
DESENHO TÉCNICO I. Prof. Peterson Jaeger. APOSTILA Versão 2013
APOSTILA Versão 2013 Prof. Peterson Jaeger 1. Folhas 2. Régua paralela e esquadros 3. Distinção de traços 4. Uso do compasso 5. Construções geométricas básicas 6. Tangentes e concordantes 7. Caligrafia
Aula 01 Introdução à Geometria Espacial Geometria Espacial
Aula 01 Introdução à 1) Introdução à Geometria Plana Axioma São verdades matemáticas aceitas sem a necessidade de demonstração. 1 1.1) Axioma da Existência Existem infinitos pontos em uma reta (e fora
GEOMETRIA DO TAXISTA. (a -b )² + (a -b )²
GEOMETRI O TXIST Geometria do Taxista é uma geometria não-euclidiana, no sentido em que a noção de distância não é a mesma e acordo com o desenho abaixo, suponhamos um motorista de táxi que apanha um cliente
Módulo de Semelhança de Triângulos e Teorema de Tales. 8 ano/9 a série E.F.
Módulo de Semelhança de Triângulos e Teorema de Tales Relações Métricas no Triângulo Retângulo. 8 ano/9 a série E.F. Semelhança de Triângulos e Teorema de Tales Relações Métricas no Triângulo Retângulo.
ESCOLA BÁSICA 2,3 MARTIM DE FREITAS NÚCLEO DE ESTÁGIO DE MATEMÁTICA ANO LETIVO 2011/2012
Escola Martim de Freitas ESCOLA BÁSICA 2,3 MARTIM DE FREITAS NÚCLEO DE ESTÁGIO DE MATEMÁTICA ANO LETIVO 2011/2012 Disciplina de Matemática Tópico: Isometrias Ficha de Trabalho n.º 1 Data: 20 / 10 / 2011
Um em cada cinco equivale a = 0,20 = 20%. 5 O número de idosos que nunca foram à escola e apresentam problemas cognitivos é 17%. 20%.
MATEMÁTICA 1 e Uma pesquisa realizada com pessoas com idade maior ou igual a sessenta anos residentes na cidade de São Paulo, publicada na revista Pesquisa/Fapesp de maio de 2003, mostrou que, dentre os
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 2ª FASE 21 DE JULHO 2015 GRUPO I
Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 1500-36 Lisboa Tel.: +351 1 716 36 90 / 1 711 03 77 Fax: +351 1 716 64 4 http://www.apm.pt email: [email protected] PROPOSTA DE
Lista de Estudo P2 Matemática 2 ano
Lista de Estudo P2 Matemática 2 ano 24) Dada a figura a seguir e sabendo-se que os dois quadrados possuem lados iguais a 4cm, sendo O o centro de um deles, quanto vale a área da parte preenchida? a) 100.
DESENHO TÉCNICO ( AULA 03)
Sólidos Geométricos DESENHO TÉCNICO ( AULA 03) Você já sabe que todos os pontos de uma figura plana localizam-se no mesmo plano. Quando uma figura geométrica tem pontos situados em diferentes planos, temos
Adriana da Silva Santi Coord. Pedagógica de Matemática SMED - Maio/2015
GEOMETRIA... Adriana da Silva Santi Coord. Pedagógica de Matemática SMED - Maio/2015 FIGURAS GEOMÉTRICAS PLANAS São representações das faces dos sólidos. Essas formas são chamadas de bidimensionais por
A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos Â
A UA UL LA A lei dos senos Introdução Na Aula 4 vimos que a Lei dos co-senos é uma importante ferramenta matemática para o cálculo de medidas de lados e ângulos de triângulos quaisquer, isto é, de triângulos
1 Determine os valores de x e y, sabendo que os triângulos ABC e DEF são semelhantes:
Nome: nº Professor(a): Série: 1ª EM Data: / /2013 Turmas: 3101 / 3102 / 3103 Sem limite para crescer Bateria de Exercícios de Matemática II 1 Determine os valores de x e y, sabendo que os triângulos ABC
