Fis.Rad.I /1 Notas de aula (Prof. Stenio Dore) (Dated: May 28, 2004)

Tamanho: px
Começar a partir da página:

Download "Fis.Rad.I /1 Notas de aula (Prof. Stenio Dore) (Dated: May 28, 2004)"

Transcrição

1 INTRODUÇÃO À ESTATÍSTICA DE CONTAGEM Fis.Rad.I - 24/1 Notas de aula (Prof. Stenio Dore) (Dated: May 28, 24) I. PROBABILIDADE: E E OU Vimos que, para nossas finalidades podemos definir a probabilidade de um evento qualquer A, indicada por P (A), como número de casos favoráveis a A P (A) (1) número total de casos possíveis Recordemos as regras de combinação de probabilidades. Sejam, por exemplo, dois eventos possíveis: A e B. Valem as igualdades: P (A e B) P (A)P (B) (2) P (A ou B) P (A)+P(B) (3) Vejamos: 1. Exemplo 1 a)- Qual a probabilidade de, lançando-se um dado duas vezes, obtermos o número 2 na primeira e depois o número 3? Do enunciado, o evento A é : número 2 na primeira e o evento B é: número 3 na segunda. Da Eq.1 temos que: P (A) P (B) 1/6. Então, usando-se a Eq.2, temos a resposta: P (A e B) (1/6) (1/6) 1/36 Podemos verificar que a regra funciona, olhando a tabela 1: das 36 possibilidades, somente uma é favorável à seqüência 2,3. Logo, pela Eq.1, sua probabilidade vale 1/36, como já obtido. TABLE I: Os 36 possíveis resultados de dois lances de um dado ,1 1,2 1,3 1,4 1,5 1,6 2 2,1 2,2 2,3 2,4 2,5 2,6 3 3,1 3,2 3,3 3,4 3,5 3,6 4 4,1 4,2 4,3 4,4 4,5 4,6 5 5,1 5,2 5,3 5,4 5,5 5,6 6 6,1 6,2 6,3 6,4 6,5 6,6 b)- Qual seria a probabilidade de, lançando-se um dado duas vezes, obtermos o número 2 e o número 3 numa ordem qualquer? Algebricamente o que queremos agora é : P ([A e B] ou [B e A]) Aplicando-se as regras, temos: P ([A e B] ou [B e A]) P (A e B)+P (B e A) (1/36) + (1/36) 2/36 Resultado que pode ser verificado consultando-se a tabela 1. II. DISTRIBUIÇÃO BINOMIAL Se efetuarmos dez lances de uma moeda, qual a probabilidade de obtermos exatamente 8 caras, numa ordem qualquer? Ora, pela Eq.1, em cada lance a probabilidade de obtenção de cara é 1/2 (de coroa também). Para obtermos uma fórmula geral, usaremos letras em vez de números. Assim p indicará a probabilidade de cara e q a de coroa, satisfazendo a relação p + q 1. Para os dez lances usaremos a letra N. Para o número de caras desejado, 8 no exemplo, a letra n. No quadro a seguir temos uma das possibilidades, 8 caras consecutivas (indicadas por C) e duas coroas ao final (indicadas por X). C C C C C C C C X X Pelas regras, a probabilidade dessa configuração é: p p p p p p p p q q ou p n q N n. Como a ordem não importa, qualquer permutação dos quadrados contendo C ou X também satisfaz. Por exemplo: C C X C C C C C X C E como a ordem dos fatores não altera o produto, se obtém a mesma probabilidade: p n q N n. O número de permutações dos quadrados vale N!, como sabemos. Mas cuidado, para cada troca de um quadrado com C por outro com X, podemos construir configurações totalmente idênticas, em que X troca com X. E para cada uma delas, podemos construir (N n)! idênticas em que C troca com C. Em resumo: N! número de configurações em que X troca com C número de configurações em que X troca com X número de configurações em que C troca com C Pela Eq.3, a probabilidade total será dada pela soma das probabilidades de todas as configurações diferentes, ou seja: P (n) N! (N n)! pn q N n (4) Esta é a equação da Distribuição Binomial. O nome vem da expansão de um binômio (dita de Newton), pois a

2 2 Eq.4 pode ser escrita CN n pn q N n, sendo um dos termos da expansão de (p + q) N CN n p n q N n Aliás, essa última igualdade garante que, como se espera de qualquer distribuição de probabilidades, a binomial seja normalizada ( soma das probabilidades de todos os casos possíveis tem que ser 1): N P (n) Exemplo 2 Aplicando ao nosso caso particular N 1, p q 1/2 en 8: P (8) 1! 2!8! (1/2)8 (1/2) Como esta probabilidade se revela na prática? Como já vimos em outra parte do curso, revela-se pela tendência da freqüência do evento. Recordando: P lim número de tentativas [ número de sucessos número de tentativas ] (5) Como na prática não podemos efetuar um número infinito de tentativas, as freqüências obtidas experimentalmente variam para mais ou para menos em relação ao valor de P são as flutuações estatísticas. Se repetirmos muitas vezes os dez lances da moeda, por exemplo 12 vezes, o número de vezes em que esperase obter 8 caras será, arredondando para o inteiro mais próximo, dado por: P (8) 12 5 O quadro completo, de zero caras até dez caras, para 12 repetições está na tabela II, onde N S indica o número de sucessos (ou ocorrências): TABLE II: Valor esperado do número de vezes em que se obtém n caras em 12 repetições de dez lances de uma moeda n P (n) N S, , , , , , , , , , , Execute o pequeno programa JMOEDA.EXE, disponível na página do curso, e observe as flutuações nas 12 jogadas A. O valor médio na binomial A tabela II e os histogramas do programa JMOE- DA.EXE indicam que, no caso do exemplo, 5 caras é o valor médio do número de caras em 1 lances. Verifiquemos o que a binomial prevê: <n> np(n) N! n (N n)! pn q N n n1 Np n1 (N 1)! (N n)!(n 1)! pn 1 q N n N 1 (N 1)! Np (N n 1)!n! pn q N n 1 Np Np n N n N! (N n )!n! pn q N n Portanto, no exemplo <n>1 (1/2) 5, o que confirma o resultado. III. DISTRIBUIÇÃO DE POISSON Estamos interessados na seguinte questão: é dado que na duração de tempo que vai de a t são contadas em média <n>partículas por um detector. Como varia o número de partículas contadas em várias repetições da medição?. t t t t... t t t t t Poderíamos usar a binomial. Dividimos o tempo de medição t em N intervalos iguais t, onde N é escolhido de forma a que a probabilidade p de uma contagem no intervalo t seja menor que 1. Nese caso, a probabilidade de nada contar em t fica sendo q 1 p. Transformamos assim numa situação semelhante ao exemplo com a moeda. Usando a binomial restaria calcular P (n). Note que p < n>/n, o que permite fazer p tão pequeno quanto se quiser, simplesmente aumentando o número de intervalos. É isso que se faz na prática, obtendo-se uma outra distribuição mais fácil de usar - a Distribuição de Poisson.

3 3 1. Exemplo 3 Seja dado que, em medições com duração de 6 segundos, um detector registra em média 12 contagens. Use a binomial para obter a probabilidade de em uma medição serem registradas 1 contagens. Solução: podemos, por exemplo, dividir os 6 segundos em 6 intervalos de 1 segundo, ou seja t 1seN 6, nesse caso a probabilidade de ocorrer alguma contagem em t valerá p < n>/n12/6, 2. A escolha satisfaz a condição de p<1. Agora é como se jogássemos 6 vezes a moeda, cada intervalo t fazendo o papel de um lance da moeda. Em cada lance pode ocorrer uma cara desintegração, ou não. Então: P (1) 6! (6 1)! 1!, 21, 8 (6 1), 11 A. Da Binomial a Poisson Da Eq.4: P (n) 1 [ ] N! p n [ (1 p) N n] (6) (N n)! e nela os dois termos entre colchetes serão simplificados pois faremos N e p, pois pn < n>é fixo. n [ ] {}}{ N! N(N 1) (N n +1) (N n)! (N n)! (N n)! N n (7) E usando a relação: lim x ( 1+ A ) x e A x FIG. 1: Poisson com <n>12 2. Exemplo 5 Um detector registra uma taxa média, a, de 6 contagens por hora. Durante um dia, em quantos intervalos de 5 minutos espera-se contar: a) 5 partículas; b) 3 partículas; c) 7 partículas; d) partículas? Do enunciado a 1min 1, então no intervalo de interesse <n> at (1min 1 ) (5min 1 )5. Neste intervalo temos que: P (5) 55 5! e 5, ; P (3) 53 3! e 5, ; P (7) 57 7! e 5, ; P () 5! e 5, Então: a) 288 P (5) 51; b) 288 P (3) 4; c) 288 P (7) 3; d) 288 P () 2 com A/x p e x N, [ (1 p) N n ] (1 p) N e pn (8) Levando-se (7) e (8) em (6) e usando a relação pn < n> obtemos finalmente a expressão da distribuição de Poisson: P (n) <n>n e <n> (9) 1. Exemplo 4 Vamos refazer o exemplo 3, usando Poisson. P (1) 121 1! e 12, 11 FIG. 2: Poisson com <n>5 Confira os resultados numéricos da binomial e poisson com os programas de mesmo nome disponíveis na página do curso (reunidos em binpoisn.zip) B. Média e Desvio Padrão em Poisson 1. Média Claro, já sabemos que a média é <n>, herdada da binomial. Entretanto, suponhamos que a expressão da distribuição de Poisson tivesse sido dada de início, então < n > seria apenas um parâmetro. Vamos indicar a

4 4 média por n: n n np(n) n1 n <n>n e <n> <n>e <n> <n> (n 1) (n 1)! n1 <n>e <n> <n> n n! n <n>e <n> e <n> n <n> 2. Desvio Padrão O desvio padrão, como sabemos, é dado por σ < (n n) 2 > <n 2 2nn + n 2 > <n 2 > 2 <n>n + n 2 <n 2 > n 2 (1) Então, como: <n 2 > n 2 P (n) n1 n 2 <n>n e <n> <n>e <n> n <n>(n 1) (n 1)! n1 <n>e <n> (n +1) <n>n n! <n>{ n n n <n>n n e <n> +! +e <n> <n> n n }! n <n>{< n>+e <n> e <n> } <n> 2 + <n> <n 2 > n 2 + <n> Levando em (1), finalmente temos: σ <n> (11) Este é um resultado muito importante, com grande aplicação na avaliação das incertezas de contagem no laboratório: o desvio padrão em Poisson é a raiz quadrada do valor médio 3. Exemplo 6 Desprezando o fundo, qual deve ser a área de um pico no espectro de forma a medir-se a taxa de contagem com incerteza percentual de 1%? R: a resolução finita faz com que os picos tenham uma largura, sendo o número de partículas de uma dada energia detectadas dado pela área do pico. Em uma medição esta é a melhor estimativa do valor médio das contagens, <n>. Então a incerteza é dada por σ <n>, portanto queremos que <n> 1 1% n n ou seja, n 1. C. Uso de Poisson na contagem de desintegrações de fontes radioativas A teoria permite o cálculo da probabilidade de desintegração por unidade de tempo de um núcleo, λ, constante para uma dada desintegração de um dado nuclídeo: dp dt λ Efetuando-se a passagem para a freqüência de desintegrações, quando num dado instante houver N núcleos presentes: dn/n λ dt O sinal negativo é necessário, pois dn < (Explique!). Integrando-se desde um número inicial N de núcleos: N(t) N e λt Portanto, num dado instante, a taxa de desintegrações é dada por: dn(t) dt λn e λt (12) No detector registra-se uma taxa de contagem a k dn(t) dt onde o fator k, aeficiência total de detecção, satisfaz <k<1. Para a poder ser suposta constante impõe-se a condição: λt 1 ou, λ τ, sendo τ a vida-média (prove que τ 1/λ). Satisfeita esta condição, podemos usar Poisson. Para tanto deve-se primeiro, no enunciado do problema, identificar qual o intervalo de tempo de interesse. Vamos chamá-lo de t. Então, como foi feito no exemplo 5, aplica-se Poisson com: <n> at

5 5 IV. A DISTRIBUIÇÃO DE INTERVALOS Uma outra pergunta que se pode fazer, em vez de qual a probabilidade de n contagens no intervalo de tempo t, é: como se distribuem os intervalos de tempo entre as contagens de partículas consecutivas? A resposta é obtida de maneira simples, mas atenção para duas coisas: 1. em Poisson tínhamos uma variável discreta n, assumindo valores inteiros. Agora teremos uma variável contínua, que pode assumir qualquer valor real não negativo. Será pois obtida uma densidade de probabilidade. 2. a mesma letra t será usada para representar esta variável (t intervalo de tempo entre duas contagens consecutivas) sendo dp/dt a densidade de probabilidade dos intervalos de tempo. 1. Exercício-Exemplo 7 Prove que o intervalo de tempo médio entre contagens <t> tdp vale 1/a, ou seja, é oinverso da taxa média de contagem. Por exemplo, se a 2s 1 então <t>, 5s Note que se trata de uma média ponderada, nesse caso deveria haver uma divisão pela soma dos pesos dp. Mostre que esta soma vale 1 (afinal, uma distribuição de probabilidades tem de ser normalizada!). 2. Exercício-Exemplo 8 A probabilidade do intervalo de tempo entre contagens estar na faixa t 1 <t<t 2 é dada por P (t 1 <t<t 2 ) t2 Qual a probabilidade de os intervalos de tempo serem maiores que <t>? t 1 dp 3. Exercício-Exemplo 9 FIG. 3: Distribuição de intervalos: a área cinza representa a probabilidade de um intervalo de tempo entre contagens consecutivas estar entre t e t + dt Quando uma partícula chega ao detector t. Quando a seguinte chega registra-se t. Deseja-se a probabilidade de zero contagem entre t et e uma contagem entre t e t + dt. Como sabemos, será dada pelo produto. No intervalo de a t: <n> at, e P () (at) e at e at! No intervalo de t a t + dt: <n> adt,e Um detector registra uma taxa média, a, de 6 contagens por hora. Durante um dia, quantas vezes o intervalo de tempo entre contagens será maior que um minuto? 4. Exercício 1 Voltando um pouco à noção de vida-média, τ. Ela é o intervalo de tempo em que o número de núcleos cai a 1/e do valor inicial. Por que o nome vida-média?. Calcule o valor médio do instante de desintegração usando a equação (12): τ tdn(t) dn(t) então P (1) (adt)1 e adt adt 1! dp ae at dt (13) Esboce um gráfico semelhante ao da Fig.3. Entenda que, como sempre, efetua-se uma média ponderada onde no caso os pesos são as desintegrações no intervalo t, t + dt. Obtem-se o centroide da distribuição. Lembre-se dos cálculos de centro de massa.

Definição da Distribuição de Poisson

Definição da Distribuição de Poisson Capítulo IX Distribuição de Poisson Definição da Distribuição de Poisson Significado do parâmetro Propriedades da Distribuição de Poisson Aproximação Gaussiana da Distribuição de Poisson O problema do

Leia mais

DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros

DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros UNIVERSIDADE FEDERAL DA PARAÍBA Variáveis Aleatórias Departamento de Estatística Luiz Medeiros Introdução Como sabemos, características de interesse em diversas áreas estão sujeitas à variação Essa variabilidade

Leia mais

Módulo III: Processos de Poisson, Gaussiano e Wiener

Módulo III: Processos de Poisson, Gaussiano e Wiener Módulo III: Processos de Poisson, Gaussiano e Wiener Wamberto J. L. Queiroz Universidade Federal de Campina Grande-UFCG Departamento de Engenharia Elétrica Processos Estocásticos Campina Grande - PB Módulo

Leia mais

Distribuição de Probabilidade Discreta

Distribuição de Probabilidade Discreta Departamento de Física Experimental (Gota de Orvalho em Broto de Bambu) 11-12 de março de 2014 Pro logo Distribuic a o Binomial Gota de Orvalho em Broto de Bambu - Ibiuna Distribuic a o de Probabilidade

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte IV 2012/02 1 Distribuição Poisson Objetivos Ao final deste capítulo você deve ser capaz de: Ententer suposições para cada uma das

Leia mais

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno Unidade I ESTATÍSTICA APLICADA Prof. Mauricio Fanno Estatística indutiva Estatística descritiva Dados no passado ou no presente e em pequena quantidade, portanto, reais e coletáveis. Campo de trabalho:

Leia mais

Estatística (MAD231) Turma: IGA. Período: 2018/2

Estatística (MAD231) Turma: IGA. Período: 2018/2 Estatística (MAD231) Turma: IGA Período: 2018/2 Aula #03 de Probabilidade: 19/10/2018 1 Variáveis Aleatórias Considere um experimento cujo espaço amostral é Ω. Ω contém todos os resultados possíveis: e

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros UNIVERSIDADE FEDERAL DA PARAÍBA Variáveis Aleatórias Departamento de Estatística Luiz Medeiros Introdução Como sabemos, características de interesse em diversas áreas estão sujeitas à variação; Essa variabilidade

Leia mais

AULA 5 - Independência, Combinatória e

AULA 5 - Independência, Combinatória e AULA 5 - Independência, Combinatória e permutações Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Independência Um importante caso particular da probabilidade condicional surge quando a ocorrˆncia

Leia mais

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 11/2014 Variáveis Aleatórias Variáveis Aleatórias Probabilidade e Estatística 3/41 Variáveis Aleatórias Colete

Leia mais

MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 28 de Agosto, 2013 Probabilidade: uma Introdução / Aula 8 1 Desigualdades de Markov e

Leia mais

Notas de Aula. Copyright 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley.

Notas de Aula. Copyright 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Notas de Aula Estatística Elementar 10ª Edição by Mario F. Triola Tradução: Denis Santos Slide 1 Capítulo 5 Distribuições de Probabilidades 5-1 Visão Geral 5-2 Variáveis Aleatórias 5-3 Distribuição de

Leia mais

Distribuição de Probabilidade. Prof. Ademilson

Distribuição de Probabilidade. Prof. Ademilson Distribuição de Probabilidade Prof. Ademilson Distribuição de Probabilidade Em Estatística, uma distribuição de probabilidade descreve a chance que uma variável pode assumir ao longo de um espaço de valores.

Leia mais

Capítulo 5 Distribuições de Probabilidades. Seção 5-1 Visão Geral. Visão Geral. distribuições de probabilidades discretas

Capítulo 5 Distribuições de Probabilidades. Seção 5-1 Visão Geral. Visão Geral. distribuições de probabilidades discretas Capítulo 5 Distribuições de Probabilidades 5-1 Visão Geral 5-2 Variáveis Aleatórias 5-3 Distribuição de Probabilidade Binomial 5-4 Média, Variância e Desvio Padrão da Distribuição Binomial 5-5 A Distribuição

Leia mais

Estatística p/ TCE-PR Teoria e exercícios comentados Prof. Jeronymo Marcondes. Resolução prova Estatística p/ TCE-PR, área atuarial.

Estatística p/ TCE-PR Teoria e exercícios comentados Prof. Jeronymo Marcondes. Resolução prova Estatística p/ TCE-PR, área atuarial. prova Estatística p/ TCE-PR, área atuarial. Boa pessoal! A CESPE deu uma prova de estatística que, acredito, estava muito acima do esperado por muitos candidatos. Vamos lá! Não encontrei recursos! Vamos

Leia mais

Introdução às Medidas em Física 2 a Aula *

Introdução às Medidas em Física 2 a Aula * Introdução às Medidas em Física 2 a Aula * http://fge.if.usp.br/~takagui/fap0152_2010/ Marcia Takagui Ed. Ala 1 * Baseada em Suaide/ Munhoz 2006 sala 216 ramal 6811 1 Objetivos! Medidas de tempo Tempo

Leia mais

Sumário. 2 Índice Remissivo 11

Sumário. 2 Índice Remissivo 11 i Sumário 1 Principais Distribuições Contínuas 1 1.1 Distribuição Uniforme................................. 1 1.2 A Distribuição Normal................................. 2 1.2.1 Padronização e Tabulação

Leia mais

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y :

Leia mais

Aula 5. Variáveis Aleatórias Discretas

Aula 5. Variáveis Aleatórias Discretas Aula 5. Variáveis Aleatórias Discretas Definição formal : Variável aleatória é qualquer função definida em espaço Ω. Ω função é uma regra que para cada valor de domínio corresponde um valor de R R Definição

Leia mais

3 a Lista de PE Solução

3 a Lista de PE Solução Universidade de Brasília Departamento de Estatística 3 a Lista de PE Solução. Se X representa o ganho do jogador, então os possíveis valores para X são,, 0, e 4. Esses valores são, respectivamente, correspondentes

Leia mais

Distribuições Discretas

Distribuições Discretas META: Estudar o comportamento das Variáveis Aleatórias Discretas, bem como das Distribuições Binomial e Poisson e suas aplicações. Entender o comportamento de uma Variável aleatória Contínua. OBJETIVOS:

Leia mais

Inferência Estatistica

Inferência Estatistica Inferência Estatistica Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Modelos e Inferência Um modelo é uma simplificação da realidade (e alguns

Leia mais

Variáveis Aleatórias Discretas

Variáveis Aleatórias Discretas Variáveis Aleatórias Discretas Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução Definição Uma variável aleatória é uma função definida

Leia mais

Aproximação da Distribuição Binomial pela Distribuição Normal

Aproximação da Distribuição Binomial pela Distribuição Normal Aproximação da Distribuição Binomial pela Distribuição Normal Uma das utilidades da distribuição normal é que ela pode ser usada para fornecer aproximações para algumas distribuições de probabilidade discretas.

Leia mais

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja:

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja: Pessoal, trago a vocês a resolução da prova de Estatística do concurso para Auditor Fiscal aplicada pela FCC. Foram 10 questões de estatística! Não identifiquei possibilidade para recursos. Considero a

Leia mais

RESOLUÇÃO DAS QUESTÕES DE ESTATÍSTICA E RACIOCÍNIO LÓGICO

RESOLUÇÃO DAS QUESTÕES DE ESTATÍSTICA E RACIOCÍNIO LÓGICO RESOLUÇÃO DAS QUESTÕES DE ESTATÍSTICA E RACIOCÍNIO LÓGICO Caro aluno, Disponibilizo abaixo a resolução das questões de Estatística e Raciocínio Lógico da prova de Analista da SEFAZ/PI 015. Resolvi as questões

Leia mais

Teoria da Probabilidade

Teoria da Probabilidade Teoria da Probabilidade Luis Henrique Assumpção Lolis 14 de fevereiro de 2014 Luis Henrique Assumpção Lolis Teoria da Probabilidade 1 Conteúdo 1 O Experimento Aleatório 2 Espaço de amostras 3 Álgebra dos

Leia mais

Modelos de Distribuição PARA COMPUTAÇÃO

Modelos de Distribuição PARA COMPUTAÇÃO Modelos de Distribuição MONITORIA DE ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO Distribuições Discretas Bernoulli Binomial Geométrica Hipergeométrica Poisson ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO

Leia mais

PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE

PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE 3.1 INTRODUÇÃO Muitas variáveis aleatórias associadas a experimentos aleatórios têm propriedades similares e, portanto, podem ser descritas através de

Leia mais

Universidade Federal do Ceará

Universidade Federal do Ceará Universidade Federal do Ceará Faculdade de Economia Vicente Lima Crisóstomo Fortaleza, 2011 1 Sumário Introdução Estatística Descritiva Probabilidade Distribuições de Probabilidades Amostragem e Distribuições

Leia mais

Estatística (MAD231) Turma: IGA. Período: 2017/2

Estatística (MAD231) Turma: IGA. Período: 2017/2 Estatística (MAD231) Turma: IGA Período: 2017/2 Aula #03 de Probabilidade: 04/10/2017 1 Variáveis Aleatórias Considere um experimento cujo espaço amostral é Ω. Ω contém todos os resultados possíveis: e

Leia mais

AULA 07 Distribuições Discretas de Probabilidade

AULA 07 Distribuições Discretas de Probabilidade 1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Quarta Lista de Exercícios 12 de fevereiro de 2014 1 Sejam X e Y duas VAs que só podem assumir os valores 1 ou -1 e seja p(x, y) = P (X = x, Y = y), x, y { 1, 1} a função de probabilidade

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Aula 5 Probabilidade: Distribuições de Discretas Parte 1 Leitura obrigatória: Devore, 3.1, 3.2 e 3.3 Chap 5-1 Objetivos Nesta parte, vamos aprender: Como representar a distribuição

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte III 23 de Abril de 2012 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Calcular probabilidades aproximadas

Leia mais

Estatística I Aula 6. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística I Aula 6. Prof.: Patricia Maria Bortolon, D. Sc. statística I Aula 6 Prof.: Patricia Maria Bortolon, D. Sc. VARIÁVIS ALATÓRIAS Variáveis Aleatórias xaminemos as seguintes situações: Um estudante que fez um teste do tipo verdadeiro ou falso está interessado

Leia mais

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09 Teoria das Filas aplicadas a Sistemas Computacionais Aula 09 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas

Leia mais

ESTATÍSTICA. x(s) W Domínio. Contradomínio

ESTATÍSTICA. x(s) W Domínio. Contradomínio Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.

Leia mais

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08 Teoria das Filas aplicadas a Sistemas Computacionais Aula 08 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas

Leia mais

Variáveis Aleatórias. Prof. Tarciana Liberal Departamento de Estatística - UFPB

Variáveis Aleatórias. Prof. Tarciana Liberal Departamento de Estatística - UFPB Variáveis Aleatórias Prof. Tarciana Liberal Departamento de Estatística - UFPB Introdução Ao descrever o espaço amostral de um experimento aleatório, não especificamos que um resultado individual seja

Leia mais

F (x) = P (X x) = Σ xi xp(x i ) E(X) = x i p(x i ).

F (x) = P (X x) = Σ xi xp(x i ) E(X) = x i p(x i ). Variável Aleatória Uma variável aleatória é uma variável numérica, cujo valor medido pode variar de uma réplica para outra do experimento. Exemplos: (i) Variáveis aleatórias contínuas: corrente elétrica,

Leia mais

Solução Prova 2 (Queda do Gato)

Solução Prova 2 (Queda do Gato) Departamento de Física Experimental Solução Prova 2 (Queda do Gato) 13-14 de maio de 2014 Queda do Gato La Recherche 487 (2014) pag. 54 Nesta apresentação são mostradas as soluções da prova 2 das turmas

Leia mais

Mecânica Quântica I. Slides 1. Ano lectivo 2008/2009 Semestre ímpar Docente: Alfred Stadler. Departamento de Física da Universidade de Évora

Mecânica Quântica I. Slides 1. Ano lectivo 2008/2009 Semestre ímpar Docente: Alfred Stadler. Departamento de Física da Universidade de Évora Mecânica Quântica I Ano lectivo 2008/2009 Semestre ímpar Docente: Alfred Stadler Slides 1 Departamento de Física da Universidade de Évora A equação de Schrödinger Comparação de descrição clássica e quântica:

Leia mais

O teorema de Bayes é uma igualdade simples que vem da afirmação de que prob(a e B) = prob(b e A): prob(a B) prob(b) prob(a)

O teorema de Bayes é uma igualdade simples que vem da afirmação de que prob(a e B) = prob(b e A): prob(a B) prob(b) prob(a) O teorema de Bayes O teorema de Bayes é uma igualdade simples que vem da afirmação de que prob(a e B) = prob(b e A): prob(b A) = no qual o denominador é a probabilidade total. prob(a B) prob(b), (4) prob(a)

Leia mais

Variáveis Aleatórias. Prof. Tarciana Liberal Departamento de Estatística - UFPB

Variáveis Aleatórias. Prof. Tarciana Liberal Departamento de Estatística - UFPB Variáveis Aleatórias Prof. Tarciana Liberal Departamento de Estatística - UFPB Introdução Ao descrever o espaço amostral de um experimento aleatório, não especificamos que um resultado individual seja

Leia mais

O poço de potencial finito

O poço de potencial finito O poço de potencial finito A U L A 13 Meta da aula Aplicar o formalismo quântico ao caso de um potencial V(x) que tem a forma de um poço (tem um valor V 0 para x < -a/ e para x > a/, e um valor 0 para

Leia mais

Sistemas Aleatórios. Um sistema é aleatório quando seu estado futuro só pode ser conhecido. jogar uma moeda ou um dado. decaimento de uma partícula

Sistemas Aleatórios. Um sistema é aleatório quando seu estado futuro só pode ser conhecido. jogar uma moeda ou um dado. decaimento de uma partícula Sistemas Aleatórios Um sistema é aleatório quando seu estado futuro só pode ser conhecido pela realização de uma experiência. jogar uma moeda ou um dado decaimento de uma partícula trajetória de uma partícula

Leia mais

Física Geral - Laboratório 2016/2. Estimativas e erros em medidas diretas (II) Níveis de confiança, compatibilidade e combinação

Física Geral - Laboratório 2016/2. Estimativas e erros em medidas diretas (II) Níveis de confiança, compatibilidade e combinação Física Geral - Laboratório 206/2 Estimativas e erros em medidas diretas (II) Níveis de confiança, compatibilidade e combinação Resumo aula II: Medidas diretas Resultado = estimativa do valor esperado ±

Leia mais

Vamos revisar alguns fatos básicos a respeito de séries de potências

Vamos revisar alguns fatos básicos a respeito de séries de potências Seção 4 Revisão sobre séries de potências Vamos revisar alguns fatos básicos a respeito de séries de potências a n (x x ) n, que serão úteis no estudo de suas aplicações à resolução de equações diferenciais

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Aula 5 Probabilidade: Distribuições de Discretas Parte 2 Leitura obrigatória: Devore, seções 3.4, 3.5 (hipergeométrica), 3.6 Aula 5-1 Objetivos Nesta parte 01 aprendemos a representar,

Leia mais

Estatística em Feixes de Luz

Estatística em Feixes de Luz Estatística em Feixes de Luz Por Gabriel Nagaoka 7994169 Luiz Couto 3470373 Professor Zwinglio Guimarães Instituto de Física, Universidade de São Paulo 2015 1 1 Introdução 2 1 Introdução A motivação principal

Leia mais

1 Distribuições Discretas de Probabilidade

1 Distribuições Discretas de Probabilidade 1 Distribuições Discretas de Probabilidade A distribuição discreta descreve quantidades aleatórias (dados de interesse) que podem assumir valores particulares e os valores são finitos. Por exemplo, uma

Leia mais

Distribuições de Probabilidade

Distribuições de Probabilidade Distribuições de Probabilidade Carla Henriques, Nuno Bastos e Cristina Lucas Departamento de Matemática Escola Superior de Tecnologia de Viseu. Henriques, N. Bastos e C. Lucas (DepMAT) Distribuições de

Leia mais

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE.1 INTRODUÇÃO Admita que, de um lote de 10 peças, 3 das quais são defeituosas, peças são etraídas ao acaso, juntas (ou uma a uma, sem reposição). Estamos

Leia mais

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues Unidade III ESTATÍSTICA Prof. Fernando Rodrigues Medidas de dispersão Estudamos na unidade anterior as medidas de tendência central, que fornecem importantes informações sobre uma sequência numérica. Entretanto,

Leia mais

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc. Estatística I Aula 8 Prof.: Patricia Maria Bortolon, D. Sc. MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS CONTÍNUAS Lembram o que vimos sobre V.A. contínua na Aula 6? Definição: uma variável

Leia mais

Professora Ana Hermínia Andrade. Período

Professora Ana Hermínia Andrade. Período Distribuições de probabilidade Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2016.2 Modelos de distribuição Para

Leia mais

Noções sobre Probabilidade

Noções sobre Probabilidade Noções sobre Probabilidade Introdução Vimos anteriormente como apresentar dados em tabelas e gráficos, e também como calcular medidas que descrevem características específicas destes dados. Mas além de

Leia mais

Aula 4. Aula de hoje. Aula passada

Aula 4. Aula de hoje. Aula passada Aula 4 Aula passada Função de distribuição Bernoulli Sequência de v.a. Binomial, Geométrica, Zeta Valor esperado Variância Distribuição conjunta Independência de v.a. Aula de hoje Valor esperado condicional

Leia mais

Fundamentos de Estatística

Fundamentos de Estatística Fundamentos de Estatística Clássica Workshop Análise de Incertezas e Validação Programa de Verão 2017 Marcio Borges 1 1LABORATÓRIO NACIONAL DE COMPUTAÇÃO CIENTÍFICA mrborges@lncc.br Petrópolis, 9 de Fevereiro

Leia mais

Variáveis Aleatórias

Variáveis Aleatórias Variáveis Aleatórias Definição: Uma variável aleatória v.a. é uma função que associa elementos do espaço amostral a valores numéricos, ou seja, X : Ω A, em que A R. Esquematicamente As variáveis aleatórias

Leia mais

VARIÁVEIS ALEATÓRIAS e DISTRIBUIÇÃO BINOMIAL

VARIÁVEIS ALEATÓRIAS e DISTRIBUIÇÃO BINOMIAL VARIÁVEIS ALEATÓRIAS e DISTRIBUIÇÃO BINOMIAL 1 Variável Aleatória Uma função X que associa a cada elemento w do espaço amostral W um valor x R é denominada uma variável aleatória. Experimento: jogar 1

Leia mais

1 Introdução à Combinatória Enumerativa: O Princípio de Inclusão-Exclusão

1 Introdução à Combinatória Enumerativa: O Princípio de Inclusão-Exclusão 1 Introdução à Combinatória Enumerativa: O Princípio de Inclusão-Exclusão Dados conuntos finitos X, Y tem-se X Y = X + Y X Y Do mesmo modo X Y Z = X + Y + Z X Y X Z Y Z + X Y Z uma vez que os elementos

Leia mais

Cálculo Numérico. que é denominado erro relativo. Temos então para os dados acima:

Cálculo Numérico. que é denominado erro relativo. Temos então para os dados acima: Cálculo Numérico 1 Erros Nenhum resultado obtido através de cálculos eletrônicos ou métodos numéricos tem valor se não tivermos conhecimento e controle sobre os possíveis erros envolvidos no processo.

Leia mais

ESTATÍSTICA TÓPICO 7 VARIÁVEL ALEATÓRIA DISCRETA / DISTRIBUIÇÃO BINOMIAL / DISTRIBUIÇÃO NORMAL

ESTATÍSTICA TÓPICO 7 VARIÁVEL ALEATÓRIA DISCRETA / DISTRIBUIÇÃO BINOMIAL / DISTRIBUIÇÃO NORMAL ESTATÍSTICA TÓPICO 7 VARIÁVEL ALEATÓRIA DISCRETA / DISTRIBUIÇÃO BINOMIAL / DISTRIBUIÇÃO NORMAL VARIÁVEIS ALEATÓRIAS Como já vimos no estudo das probabilidades, o conjunto de todos os possíveis resultados

Leia mais

Distribuição de Probabilidade. Prof.: Joni Fusinato

Distribuição de Probabilidade. Prof.: Joni Fusinato Distribuição de Probabilidade Prof.: Joni Fusinato joni.fusinato@ifsc.edu.br jfusinato@gmail.com Modelos de Probabilidade Utilizados para descrever fenômenos ou situações que encontramos na natureza, ou

Leia mais

Aula 1. Objetivo: Mostrar o papel fundamental da distribuição de Poisson no comportamento de grandes populações.

Aula 1. Objetivo: Mostrar o papel fundamental da distribuição de Poisson no comportamento de grandes populações. Aula 1 Objetivo: Mostrar o papel fundamental da distribuição de Poisson no comportamento de grandes populações. Modelo População de n pessoas, n >> 1; Comportamento individual independente num intervalo

Leia mais

Aula 1. Objetivo: Mostrar o papel fundamental da distribuição de Poisson no comportamento de grandes populações.

Aula 1. Objetivo: Mostrar o papel fundamental da distribuição de Poisson no comportamento de grandes populações. Aula 1 Objetivo: Mostrar o papel fundamental da distribuição de Poisson no comportamento de grandes populações. Modelo População de n pessoas, n >> 1; Comportamento individual independente num intervalo

Leia mais

Expansões AULA ... META. Apresentar a expansão binomial e multinomial. OBJETIVOS. Ao final da aula o aluno deverá ser capaz de:

Expansões AULA ... META. Apresentar a expansão binomial e multinomial. OBJETIVOS. Ao final da aula o aluno deverá ser capaz de: Expansões META Apresentar a expansão binomial e multinomial. OBJETIVOS Ao final da aula o aluno deverá ser capaz de: Identificar e utilizar algumas propriedades dos coeficientes binomiais; Expandir produto

Leia mais

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS INTRODUÇÃO O que é uma variável aleatória? Um tipo de variável que depende do resultado aleatório de um experimento aleatório. Diz-se que um experimento é

Leia mais

Laboratório de Física I para Matemáticos. Experiência 4 Medidas de desintegração nuclear utilizando contador Geiger. 1 o semestre de 2011

Laboratório de Física I para Matemáticos. Experiência 4 Medidas de desintegração nuclear utilizando contador Geiger. 1 o semestre de 2011 43115 Laboratório de Física I para Matemáticos Experiência 4 Medidas de desintegração nuclear utilizando contador Geiger 1 o semestre de 2011 26 de abril de 2011 4. Medidas de desintegração nuclear utilizando

Leia mais

Cap. 8 - Variáveis Aleatórias

Cap. 8 - Variáveis Aleatórias Variáveis Aleatórias Discretas: A de Poisson e Outras ESQUEMA DO CAPÍTULO 8.1 A DISTRIBUIÇÃO DE POISSON 8.2 A DISTRIBUIÇÃO DE POISSON COMO APROXIMAÇÃO DA DISTRIBUIÇÃO BINOMIAL 8.3 O PROCESSO DE POISSON

Leia mais

ESCOLA SECUNDÁRIA JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROÍSMO

ESCOLA SECUNDÁRIA JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROÍSMO ESCOLA SECUNDÁRIA JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROÍSMO PLANIFICAÇÃO ANUAL ANO LECTIVO: 008/009 DISCIPLINA: Matemática ANO: 1º Aulas previstas 1º período: 7 (5 ) º período: 7 (5 ) 3º período:

Leia mais

Funções ortogonais e problemas de Sturm-Liouville. Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE

Funções ortogonais e problemas de Sturm-Liouville. Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE Funções ortogonais e problemas de Sturm-Liouville Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE Série de Fourier Soma de funções ortogonais entre si Perguntas: -existem outras bases ortogonais que podem

Leia mais

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)

Leia mais

Distribuições discretas de probabilidade

Distribuições discretas de probabilidade 4 Distribuições discretas de probabilidade x = número de respostas corretas x = número de chegadas pontuais Estatística Aplicada Larson Farber x = número de funcionários que alcançou a cota de vendas x

Leia mais

AULA 15 - Distribuição de Bernoulli e Binomial

AULA 15 - Distribuição de Bernoulli e Binomial AULA 15 - Distribuição de Bernoulli e Binomial Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Variável Aleatória de Bernoulli Podemos dizer que as variáveis aleatórias mais simples entre as

Leia mais

MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 26 de Agosto, 2013 Probabilidade: uma Introdução / Aula 5 1 Variáveis aleatórias Definição

Leia mais

Conforme o conjunto de valores X(S) uma variável aleatória poderá ser discreta ou contínua.

Conforme o conjunto de valores X(S) uma variável aleatória poderá ser discreta ou contínua. Prof. Lorí Viali, Dr. viali@pucrs.br http://www.pucrs.br/famat/viali/ s KKK CKK KKC KCK CCK CKC KCC CCC S X X(s) R X(S) Uma função X que associa a cada elemento de S (s S) um número real X(s) é denominada

Leia mais

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 Cálculo Numérico Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 1 Capítulo 1 Solução numérica de equações não-lineares 1.1 Introdução Lembremos que todo problema matemático pode ser expresso na forma de

Leia mais

Distribuições de Probabilidade

Distribuições de Probabilidade Distribuições de Probabilidade 1 Aspectos Gerais 2 Variáveis Aleatórias 3 Distribuições de Probabilidade Binomiais 4 Média e Variância da Distribuição Binomial 5 Distribuição de Poisson 1 1 Aspectos Gerais

Leia mais

Importantes propriedades da Média, da Variância e do Desvio Padrão:

Importantes propriedades da Média, da Variância e do Desvio Padrão: Importantes propriedades da Média, da Variância e do Desvio Padrão: É importantíssimo o perfeito conhecimento de algumas propriedades da Média, da Variância e do Desvio Padrão para resolver, com facilidade,

Leia mais

Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE

Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE Funções Geradoras de Variáveis Aleatórias 1 Funções Geradoras de Variáveis Aleatórias Nos programas de simulação existe um GNA e inúmeras outras funções matemáticas descritas como Funções Geradoras de

Leia mais

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008 Variável Aleatória Gilson Barbosa Dourado gdourado@uneb.br 6 de agosto de 2008 Denição de Variável Aleatória Considere um experimento E e seu espaço amostral Ω = {a 1, a 2,..., a n }. Variável aleatória

Leia mais

INSTRUMENTAÇÃO NUCLEAR ESTATÍSTICA DE CONTAGEM E ESTIMATIVA DE ERRO

INSTRUMENTAÇÃO NUCLEAR ESTATÍSTICA DE CONTAGEM E ESTIMATIVA DE ERRO INSTRUMENTAÇÃO NUCLEAR ESTATÍSTICA DE CONTAGEM E ESTIMATIVA DE ERRO Princípio Decaimento radioativo é m processo aleatório, portanto sa medida está sjeita à fltação estatística. Esta fltação é m fonte

Leia mais

Bioestatística e Computação I

Bioestatística e Computação I Bioestatística e Computação I Distribuições Teóricas de Probabilidade Maria Virginia P Dutra Eloane G Ramos Vania Matos Fonseca Pós Graduação em Saúde da Mulher e da Criança IFF FIOCRUZ Baseado nas aulas

Leia mais

VARIÁVEIS ALEATÓRIAS 1

VARIÁVEIS ALEATÓRIAS 1 VARIÁVEIS ALEATÓRIAS 1 Na prática é, muitas vezes, mais interessante associarmos um número a um evento aleatório e calcularmos a probabilidade da ocorrência desse número do que a probabilidade do evento.

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ s KKK CKK KKC KCK CCK CKC KCC CCC S X 0 1 2 3 R x X(s) X(S) Uma função X que associa a cada elemento de S (s S) um número real

Leia mais

Variável Aleatória. O conjunto de valores. Tipos de variáveis. Uma função X que associa a cada

Variável Aleatória. O conjunto de valores. Tipos de variáveis. Uma função X que associa a cada Variável Aleatória Uma função X que associa a cada Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ elemento de S (s S) um número real x X(s) é denominada variável aleatória. O

Leia mais

LEEC Probabilidades e Estatística 1 a Chamada 13/06/2005. Parte Prática C (C) M 1% 9% 10% (M) 4% 86% 90% 5% 95% 100%

LEEC Probabilidades e Estatística 1 a Chamada 13/06/2005. Parte Prática C (C) M 1% 9% 10% (M) 4% 86% 90% 5% 95% 100% . Definição dos acontecimentos: M T-shirt tem manchas C T-shirt tem costuras defeituosas D T-shirt é defeituosa A Preço da t-shirt é alterado a) PM) = % PC) = 5% PM C) = % LEEC Probabilidades e Estatística

Leia mais

Decaimento radioativo

Decaimento radioativo Decaimento radioativo Processo pelo qual um nuclídeo instável transforma-se em outro, tendendo a uma configuração energeticamente mais favorável. Tipos de decaimento: (Z, A) * (Z, A) (Z, A) (Z, A)! γ!

Leia mais

AGA Análise de Dados em Astronomia I. 2. Probabilidades

AGA Análise de Dados em Astronomia I. 2. Probabilidades 1 / 20 AGA 0505- Análise de Dados em Astronomia I 2. Probabilidades Laerte Sodré Jr. 1o. semestre, 2018 2 / 20 tópicos 1 probabilidades - cont. 2 distribuições de probabilidades 1 binomial 2 Poisson 3

Leia mais

Distribuições Contínuas de Probabilidade

Distribuições Contínuas de Probabilidade Distribuições Contínuas de Probabilidade Uma variável aleatória contínua é uma função definida sobre o espaço amostral, que associa valores em um intervalo de números reais. Exemplos: Espessura de um item

Leia mais

BIOESTATISTICA. Unidade IV - Probabilidades

BIOESTATISTICA. Unidade IV - Probabilidades BIOESTATISTICA Unidade IV - Probabilidades 0 PROBABILIDADE E DISTRIBUIÇÃO DE FREQUÊNCIAS COMO ESTIMATIVA DA PROBABILIDADE Noções de Probabilidade Após realizar a descrição dos eventos utilizando gráficos,

Leia mais

MATEMÁTICA Professores: Andrey, Cristiano e Julio

MATEMÁTICA Professores: Andrey, Cristiano e Julio MATEMÁTICA Professores: Andrey, Cristiano e Julio Questões Substituindo os valores dados na fórmula teremos: x 1 = x 0+1 = (x 0 )2 +a 2.x 0 = (2)2 +5 = 9 2.2 4 e x 2 = x 1+1 = (x 1 )2 +a = ( 9 4 )2 +5

Leia mais

Matemática E Extensivo V. 6

Matemática E Extensivo V. 6 Etensivo V. 6 Eercícios ) a) P() é sempre igual à soma dos coeficientes de P(). b) P() é sempre igual ao termo independente de P(). c) P() é a raiz de P(), pois P() =. ) D a) P() = ³ + 7. ² 7. P() = +

Leia mais

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL 1 Variável Aleatória Uma função X que associa a cada elemento w do espaço amostral W um valor x R é denominada uma variável aleatória. Experimento: jogar 1 dado

Leia mais

Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias

Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias Aula de hoje! Tópicos! Distribuição de probabilidades! Variáveis aleatórias! Variáveis discretas! Variáveis contínuas! Distribuição binomial! Distribuição normal! Referências! Barrow, M. Estatística para

Leia mais

Cap. 6 Variáveis aleatórias contínuas

Cap. 6 Variáveis aleatórias contínuas Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 004 Cap. 6 Variáveis aleatórias contínuas APOIO: Fundação de Apoio

Leia mais

1 Estatística Descritiva

1 Estatística Descritiva 1 Estatística Descritiva A estatística descritiva é parte da estatística que lida com a organização, resumo e apresentação de dados. Esta é feita por meio de: Tabelas; Gráficos; Medidas Descritivas (média,

Leia mais