Falha(s) nas pressuposições da ANOVA

Tamanho: px
Começar a partir da página:

Download "Falha(s) nas pressuposições da ANOVA"

Transcrição

1 Falha(s) nas pressuposições da ANOVA Prof. a Dr. a Simone Daniela Sartorio de Medeiros DTAiSeR-Ar 1

2 Na prática, é comum que uma ou mais hipóteses não se verifique. A mais comum é não existir homocedasticidade. Das exigências vamos nos preocupar, especialmente com a homogeneidade de variâncias, que consideramos a exigência mais importante e com a normalidade. 2

3 Quando a pressuposição de homogeneidade não for atendida os dados não podem ser analisados como estão. Para tentar resolver o problema, deve-se tentar alguma das seguintes alternativas, nessa ordem: 1) Verificar se os dados apresentam algum outlier; DICA: Retirando-o o(s) outlier(s) muitas vezes resolve-se o problema. 2) Transformar os dados; Pode solucionar ou não o problema de heterocedasticidade e/ou normalidade dos erros. 3) Verificar se no modelo não falta algum termo. 4) Assumir outra distribuição para os erros. Por exemplo: Exponencial, Poisson, Binomial, Gama, Beta, etc. MODELOS LINEARES GENERALIZADOS 5) Realizar uma análise não-paramétrica. 3

4 a) Transformação de dados 4

5 Algumas sugestões de transformações Seja X a variável resposta original avaliada no experimento. Se, dados de contagem, tende-se, provavelmente uma distribuição de Poisson. Usa-se a transformação dos dados, do tipo: Y X k em que k 0, geralmente 0 (zero) ou 0,5. Este valor quando os dados de observação apresentarem valores baixos, inclusive zeros. Se, dados de proporção (ou %), tende-se, provavelmente uma distribuição de Binomial. Se estas estiverem entre [0,30%] e [70, 100%] usa-se a transformação Y arcsen X em que p são as porcentagens. 5

6 Algumas sugestões de transformações Seja X a variável resposta original avaliada no experimento. Se médias de tratamentos são proporcionais às respectivas variâncias, usa-se a transformação: Y log( X k) para k 0. Transformação recíproca: é uma função de transformação adequada quando X refere-se à taxa de sobrevivência. Por conseguinte, Y 1 X refere-se à taxa de mortalidade. 6

7 Exemplo 1 Um pesquisador pretende realizar um experimento visando ao enraizamento de estacas de pessegueiros. São 4 variedades ou cultivares onde cada parcela recebeu 20 estacas de uma determinada variedade, através de um sorteio. Passando o tempo necessário, o pesquisador arrancou as estacas e anotou o número de enraizadas. O resultado foi: Repetições Tratamento Totais A ,2 0,7 B ,6 0,3 C ,8 7,7 D ,8 9,7 Fixando =5%, existe diferença entre os cultivares em relação ao enraizamento de estacas de pessegueiros? Justifique sua resposta apresentando todos os cálculos mˆ i s i 7

8 No R: n.estacas <- c( 2, 2, 1, 1, 0, 1, 0, 0, 1, 1, 12,10,14,17,11, 7, 9,15, 8,10) TRAT<- rep(c("a","b","c","d"), each=5) dados<-data.frame(trat,n.estacas) # ou dados<- read.csv2( DIC_estacas.csv, head=t) Os dados: Repetições Trat A B C D No excel: DIC_estacas.csv TRAT REP n.estacas A 1 2 A 2 2 A 3 1 A 4 1 A 5 0 B 1 1 B 2 0 B 3 0 B 4 1 B 5 1 C 1 12 C 2 10 C 3 14 C 4 17 C 5 11 D 1 7 D 2 9 D 3 15 D 4 8 D

9 Verificando as pressuposições do modelo dados brutos ##--- Modelo DIC mod1<- lm(n.estacas ~ TRAT, data=dados) # 1) Teste de Shapiro-Wilk (normalidade dos erros) shapiro.test(rstudent(mod1)) Shapiro-Wilk normality test data: rstudent(mod) W = , p-value = # 2.1) Teste de Hartley (homocedasticidade) var.res<- tapply(rstudent(mod1),trat,var); var.res a b c d Fmaximo<- max(var.res)/min(var.res); Fmaximo # 2.2) Teste de Bartlett (homocedasticidade) OBS: precisa de normalidade dos erros! bartlett.test(n.estacas ~ TRAT, data = dados) Bartlett test of homogeneity of variances data: n.estacas by TRAT Bartlett's K-squared = , df = 3, p-value =

10 Verificando as pressuposições do modelo dados brutos #--- Gráfico de resíduos versus preditos plot(predict(mod1), rstudent(mod1), ylim= c(-4,4), pch=19) abline(h=c(-3,0,3), lty=2) #--- Gráfico quantil-quantil com envelope simulado require(car) qqplot(rstudent(mod1), distribution="norm", pch=19, col="blue", xlab="quantis da dist. normal", ylab="resíduos Studentizados") 10

11 Dados brutos 11

12 Verificando as pressuposições do modelo dados transformados ##---(Dados transformados) n.est.transf<- sqrt(n.estacas + 0.5) dados.tr<- data.frame(dados, n.est.transf) mod2<- aov(n.est.transf ~ TRAT, data=dados.tr) #--- Novo modelo #--- Teste de Shapiro-Wilk (normalidade dos erros) shapiro.test(rstudent(mod2)) Shapiro-Wilk normality test data: rstudent(mod2) W = 0.967, p-value = 0.69 # 1.1) Teste de Hartley (homocedasticidade) var.res<- tapply(rstudent(mod2), TRAT, var); var.res a b c d Fmaximo<- max(var.res)/min(var.res); Fmaximo [1] # 1.2) Teste de Bartlett (homocedasticidade) # OBS: precisa de normalidade dos erros! bartlett.test(n.est.transf ~ TRAT, data = dados.tr) Bartlett test of homogeneity of variances data: n.est.transf by trat Bartlett's K-squared = , df = 3, p-value =

13 Verificando as pressuposições do modelo dados transformados #--- Gráfico de resíduos versus preditos plot(predict(mod2), rstudent(mod2), ylim= c(-4,4), pch=19) abline(h=c(-3,0,3), lty=2) #--- Gráfico quantil-quantil com envelope simulado require(car) qqplot(rstudent(mod2), distribution="norm", pch=19, col="blue, xlab="quantis da dist. normal", ylab="resíduos Studentizados") 13

14 Dados com transformação 14

15 ANOVA dados transformados anova(mod2) Analysis of Variance Table Response: n.est.transf Df Sum Sq Mean Sq F value Pr(>F) Trat e-09 *** Residuals Conclusão:... Trat. Média transformada Média original C D A B OBS: Na apresentação dos resultados em relatórios (ou artigos, etc ) não coloca-se as médias dos dados transformados. Coloca-se as médias originais e os resultados da análise com os dados transformados. 15

16 Transformação Box-Cox Seja X a variável resposta original avaliada no experimento. Para tentar contornar o problema vamos usar a Transformação Box-Cox, que consiste em transformar os dados de acordo com a expressão: Y 1 X, onde é um parâmetro a ser estimado dos dados. Se = 0, a equação acima se reduz a Y log( X ), onde log(.) é o logarítmo neperiano. Uma vez obtido o valor de encontramos os valores dos dados transformados conforme a equação acima e utilizamos estes dados transformados para efetuar as análises. 16

17 No R: #==== Transformação Box-Cox require(mass) box.tr <- boxcox(y ~ TRAT, data=dic, lambda=seq(-2, 2, 1/10)) abline(v=1, col='red') # Precisa transformar? SIM #--- Valor exato lambda <- box.tr$x[which(box.tr$y == max(box.tr$y))]; lambda #--- Novo modelo Y_transf<- (y^(lambda)-1)/(lambda) dic<- data.frame(dic, Y_transf) mod1<- lm(y_transf ~ TRAT, data=dic) = 0,54 Referência: BOX, G.E.P.; COX, D.R. An analysis of transformations. Journal of Royal Statistical Society, series B, v.26, p ,

18 b) Modelo Linear Generalizado 18

19 c) Teste não paramétrico 19

20 Não-paramétricos (Media na) Paramétricos (Média) Testes não-paramétricos Duas Amostras Três ou mais amostras Tipo de Teste Uma amostra Emparelhadas Independentes Emparelhadas Independentes _T-Student _T-Student (emparelhadas) _T-Student (independentes) _ANOVA de medidas repetidas _ANOVA _Wilcoxon signed rank _Teste de Wilcoxon _Teste de Mann-Whitney _Teste de Friedman _Teste de Kruskal-Wallis 20

21 Intervalo Ordinal Nominal Testes não-paramétricos Duas Amostras k amostras Escala da Variável Uma amostra Emparelhadas Independentes Emparelhadas Independentes _Teste binomial _Teste qui-quadrado _Teste de McNemar _Teste de Fisher _Teste qui-quadrado para 2 amostras independentes _Teste da mediana _Teste Q de Cochran _Teste qui-quadrado para k amostras independetnes _Teste de Kolmogorov- Smirnov para uma amostra _Teste de iterações para uma amostra _Teste do sinal _Teste de Wilcoxon _Teste de Mann-Whitney _Teste de Kolmogorov- Smirnov para duas amostras _Teste de Wald- Wolfowitz _Teste de Friedman _Teste de Kruskal-Wallis _Teste de Moses para reações extremas _Teste de Walsh _Teste de aleatoriedade para pares _Teste de aleatoriedade para 2 amostras independentes 21

Delineamento Inteiramente Casualizado (DIC) Delineamento Casualizado em Blocos (DBC) Delineamento em Quadrado Latino (DQL)

Delineamento Inteiramente Casualizado (DIC) Delineamento Casualizado em Blocos (DBC) Delineamento em Quadrado Latino (DQL) Principais delineamentos: Delineamento Inteiramente Casualizado (DIC) Delineamento Casualizado em Blocos (DBC) Delineamento em Quadrado Latino (DQL) Os delineamentos podem ser: Balanceados Não balanceados

Leia mais

Verificando as pressuposições do modelo estatístico

Verificando as pressuposições do modelo estatístico Verificando as pressuposições do modelo estatístico Prof. a Dr. a Simone Daniela Sartorio de Medeiros DTAiSeR-Ar 1 As pressuposições do modelo estatístico: 1) os efeitos do modelo estatístico devem ser

Leia mais

Delineamento e Análise Experimental Aula 6. Anderson Castro Soares de Oliveira

Delineamento e Análise Experimental Aula 6. Anderson Castro Soares de Oliveira Aula 6 Castro Soares de Oliveira Transformação de dados A análise dos resultados de um experimento é boa quando as pressuposições do modelo são atendidas: Os erros do modelo tem média zero e variância

Leia mais

ÍNDICE. Variáveis, Populações e Amostras. Estatística Descritiva PREFÁCIO 15 NOTA À 3ª EDIÇÃO 17 COMO USAR ESTE LIVRO? 21 CAPÍTULO 1 CAPÍTULO 2

ÍNDICE. Variáveis, Populações e Amostras. Estatística Descritiva PREFÁCIO 15 NOTA À 3ª EDIÇÃO 17 COMO USAR ESTE LIVRO? 21 CAPÍTULO 1 CAPÍTULO 2 COMO USAR ESTE LIVRO ÍNDICE PREFÁCIO 15 NOTA À 3ª EDIÇÃO 17 COMO USAR ESTE LIVRO? 21 CAPÍTULO 1 Variáveis, Populações e Amostras 1.1. VARIÁVEIS ESTATÍSTICAS E ESCALAS DE MEDIDA 27 1.2. POPULAÇÃO VS. AMOSTRA

Leia mais

Variância pop. * conhecida Teste t Paramétrico Quantitativa Distribuição normal Wilcoxon (teste dos sinais, Wilcoxon p/ 1 amostra)

Variância pop. * conhecida Teste t Paramétrico Quantitativa Distribuição normal Wilcoxon (teste dos sinais, Wilcoxon p/ 1 amostra) Testes de Tendência Central (média, mediana, proporção) Classificação Variável 1 Variável 2 Núm ero Gru pos Dependência Teste Z Paramétrico Quantitativa - 1 - Premissas Variância pop. * conhecida Teste

Leia mais

Modelos de Análise de Variância

Modelos de Análise de Variância Modelos de Análise de Variância Delineamento Completamente Aleatorizado: k tratamentos, r réplicas (balanceado) yi iid ~ N ; i i Normalidade Variância constante ( homocedasticidade ) Independência Análise

Leia mais

Análise de Resíduos. investigar características que comprometem a validade do MRLS:

Análise de Resíduos. investigar características que comprometem a validade do MRLS: Análise de Resíduos investigar características que comprometem a validade do MRLS: (1) relação entre X e Y não é linear (2) erros não tem variância constante (3) erros correlacionados (4) erros não são

Leia mais

Mario de Andrade Lira Junior lira.pro.br\wordpress

Mario de Andrade Lira Junior lira.pro.br\wordpress Mario de Andrade Lira Junior lira.pro.br\wordpress lira.pro.br\wordpress autorais. 27/04/2009 1 Modelo simplificação da realidade Linear formato de reta Generalizado não específico Cada delineamento experimental

Leia mais

ANÁLISE DE VARIÂNCIA (ANOVA) Prof. Anderson Rodrigo da Silva

ANÁLISE DE VARIÂNCIA (ANOVA) Prof. Anderson Rodrigo da Silva ANÁLISE DE VARIÂNCIA (ANOVA) Prof. Anderson Rodrigo da Silva [email protected] Exemplo 1 de Introdução Medley & Clements (1998) estudaram o efeito de metais pesados, especialmente zinco, sobre

Leia mais

1 Que é Estatística?, 1. 2 Séries Estatísticas, 9. 3 Medidas Descritivas, 27

1 Que é Estatística?, 1. 2 Séries Estatísticas, 9. 3 Medidas Descritivas, 27 Prefácio, xiii 1 Que é Estatística?, 1 1.1 Introdução, 1 1.2 Desenvolvimento da estatística, 1 1.2.1 Estatística descritiva, 2 1.2.2 Estatística inferencial, 2 1.3 Sobre os softwares estatísticos, 2 1.4

Leia mais

RELATÓRIO DA ANÁLISE DE REGRESSÃO (Ex1 - Reg. Linear Simples) ****************************** PASSO 1 *******************************

RELATÓRIO DA ANÁLISE DE REGRESSÃO (Ex1 - Reg. Linear Simples) ****************************** PASSO 1 ******************************* RELATÓRIO DA ANÁLISE DE REGRESSÃO (Ex1 - Reg. Linear Simples) ****************************** PASSO 1 ******************************* O grau do polinomio é 1 (Linear) Tem um outlier *TESTE DA HOMOCEDASTICIDADE

Leia mais

1. Iniciação ao IBM-SPSS 22

1. Iniciação ao IBM-SPSS 22 Índice Prefácio 17 Introdução 1. Iniciação ao IBM-SPSS 22 1.1. Ficheiro de dados 22 1.2. Definição de variáveis e casos 22 1.3. Análise estatística 27 1.4. Gráficos 28 1.5. Ajudas 29 1.6. Junção de informação

Leia mais

BIE5782. Unidade 7: INTRODUÇÃO AOS MODELOS LINEARES

BIE5782. Unidade 7: INTRODUÇÃO AOS MODELOS LINEARES BIE5782 Unidade 7: INTRODUÇÃO AOS MODELOS LINEARES ROTEIRO 1.Motivação 2. Método dos mínimos quadrados 3. Ajuste no R: função lm 4. Resultado no R: objeto lm 5. Premissas, interpretação e diagnóstico 6.

Leia mais

Apontamentos de Introdução às Probabilidades e à Estatística

Apontamentos de Introdução às Probabilidades e à Estatística i Índice 7. Estimação 1 7.1. Estimação pontual 1 7.1.1. Propriedades dos estimadores 1 7.1.2. Métodos de estimação 4 7.1.2.1. Método dos momentos 4 7.1.2.2. Método da máxima verosimilhança 5 7.1.3. Exemplos

Leia mais

UNIVERSIDADE FEDERAL DA FRONTEIRA SUL Campus CERRO LARGO. PROJETO DE EXTENSÃO Software R: de dados utilizando um software livre.

UNIVERSIDADE FEDERAL DA FRONTEIRA SUL Campus CERRO LARGO. PROJETO DE EXTENSÃO Software R: de dados utilizando um software livre. UNIVERSIDADE FEDERAL DA FRONTEIRA SUL Campus CERRO LARGO PROJETO DE EXTENSÃO Software R: Capacitação em análise estatística de dados utilizando um software livre. Fonte: https://www.r-project.org/ Módulo

Leia mais

Métodos Quantitativos Aplicados

Métodos Quantitativos Aplicados Métodos Quantitativos Aplicados Aula 6 http://www.iseg.utl.pt/~vescaria/mqa/ Tópicos apresentação Análise de dados bivariada: os casos dos testes de proporções para duas amostras independentes e emparelhadas

Leia mais

Prof. Dr. Alfredo J Rodrigues. Departamento de Cirurgia e Anatomia Faculdade de Medicina de Ribeirão Preto Universidade de São Paulo

Prof. Dr. Alfredo J Rodrigues. Departamento de Cirurgia e Anatomia Faculdade de Medicina de Ribeirão Preto Universidade de São Paulo Bioestatística Básica RCA 5804 1. Experimentos no qual o sujeito recebe + de 1 tratamento 2. Alternativas para teste T e Análise de Variância 3. Correlação Prof. Dr. Alfredo J Rodrigues Departamento de

Leia mais

MEDIÇÃO DA QUALIDADE DO VINHO BRANCO NORTE PORTUGUÊS

MEDIÇÃO DA QUALIDADE DO VINHO BRANCO NORTE PORTUGUÊS Universidade Federal do Paraná Departamento de Estatística MEDIÇÃO DA QUALIDADE DO VINHO BRANCO NORTE PORTUGUÊS CE225 - Modelos Lineares Generalizados Francielle Przibiciem de Mattos GRR20124686 Guilherme

Leia mais

I VOLUME. O. INTRODUÇÃO Destinatários desta obra. Objectivos. Concepção Agradecimentos. Exemplos gerais. Advertência.. I.

I VOLUME. O. INTRODUÇÃO Destinatários desta obra. Objectivos. Concepção Agradecimentos. Exemplos gerais. Advertência.. I. índice GERAL I VOLUME Prefácio do Autor à Edição Portuguesa. Introdução à Edição Portuguesa. IX XI O. INTRODUÇÃO Destinatários desta obra. Objectivos. Concepção Agradecimentos. Exemplos gerais. Advertência..

Leia mais

Testes não paramétricos são testes de hipóteses que não requerem pressupostos sobre a forma da distribuição subjacente aos dados.

Testes não paramétricos são testes de hipóteses que não requerem pressupostos sobre a forma da distribuição subjacente aos dados. TESTES NÃO PARAMÉTRICOS Testes não paramétricos são testes de hipóteses que não requerem pressupostos sobre a forma da distribuição subjacente aos dados. Bioestatística, 2007 15 Vantagens dos testes não

Leia mais

POPULAÇÃO X AMOSTRA INTRODUÇÃO À BIOESTATÍSTICA TIPOS DE VARIÁVEIS CLASSIFICAÇÃO DAS VARIÁVEIS CLASSIFICAÇÃO DAS VARIÁVEIS 1) TIPOS DE VARIÁVEIS

POPULAÇÃO X AMOSTRA INTRODUÇÃO À BIOESTATÍSTICA TIPOS DE VARIÁVEIS CLASSIFICAÇÃO DAS VARIÁVEIS CLASSIFICAÇÃO DAS VARIÁVEIS 1) TIPOS DE VARIÁVEIS POPULAÇÃO X AMOSTRA INTRODUÇÃO À BIOESTATÍSTICA População (N) representa o conjunto de todas as unidades experimentais que apresentam características em comum Amostra (n) representa uma parte do todo.

Leia mais

Capacitação em R e RStudio PROJETO DE EXTENSÃO. Software R: capacitação em análise estatística de dados utilizando um software livre.

Capacitação em R e RStudio PROJETO DE EXTENSÃO. Software R: capacitação em análise estatística de dados utilizando um software livre. UFFS Universidade Federal da Fronteira Sul Campus Cerro Largo PROJETO DE EXTENSÃO Software R: capacitação em análise estatística de dados utilizando um software livre Fonte: https://www.r-project.org/

Leia mais

1) Como vou comparar 3 grupos realizo uma Anova one way:

1) Como vou comparar 3 grupos realizo uma Anova one way: Gabarito aula anova e teste não-paramétrico: 1) Como vou comparar 3 grupos realizo uma Anova one way: One-way ANOVA: AREA versus VIRUS Analysis of Variance for AREA Source DF SS MS F P VIRUS 2 215,54 107,77

Leia mais

EXERCÍCIO SOBRE TESTE T

EXERCÍCIO SOBRE TESTE T EXERCÍCIO SOBRE TESTE T 1 Exercício Um estudo para avaliar a influência de um estímulo visual sobre a pressão sistólica em homens foi realizado com 12 indivíduos. Com os dados a seguir definir as hipóteses

Leia mais

TESTES DE NORMALIDADE E SIGNIFICÂNCIA. Profª. Sheila Regina Oro

TESTES DE NORMALIDADE E SIGNIFICÂNCIA. Profª. Sheila Regina Oro TESTES DE NORMALIDADE E SIGNIFICÂNCIA Profª. Sheila Regina Oro A suposição de normalidade dos dados amostrais ou experimentais é uma condição exigida para a realização de muitas inferências válidas a respeito

Leia mais

Introdução 5 PREFÁCIO 15

Introdução 5 PREFÁCIO 15 Introdução 5 ÍNDICE PREFÁCIO 15 INTRODUÇÃO 1. INICIAÇÃO AO SPSS 17 1.1. File 19 1.2. Edit 20 1.3. View 22 1.4. Data 22 1.5. Transform 24 1.5.1. Criar novas variáveis 24 1.5.2. Inversão da ordem das categorias

Leia mais

ANÁLISE DE VARIÂNCIA. y j = µ + τ i + e i j = µ i + e i j

ANÁLISE DE VARIÂNCIA. y j = µ + τ i + e i j = µ i + e i j SUMÁRIO 1 Análise de Variância 1 1.1 O Teste F...................................... 1.2 Verificando as pressuposições do modelo..................... 5 1.2.1 Verificação de Normalidade.........................

Leia mais

Métodos Estatísticos Avançados em Epidemiologia

Métodos Estatísticos Avançados em Epidemiologia 1 / 44 Métodos Estatísticos Avançados em Epidemiologia Análise de Variância - ANOVA Referência: Cap. 12 - Pagano e Gauvreau (2004) - p.254 Enrico A. Colosimo/UFMG Depto. Estatística - ICEx - UFMG 2 / 44

Leia mais

EXERCÍCIOS SOBRE TESTE T

EXERCÍCIOS SOBRE TESTE T EXERCÍCIOS SOBRE TESTE T 1 Exercício Foi realizado um estudo para determinar se havia influência de um gene sobre a resistência a geadas de plantas de uma determinada espécie. Foram produzidas 10 plantas

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ CURSO ESTATÍSTICA CALEB SOUZA GRR DENNIS LEÃO GRR LUAN FIORENTIN GRR

UNIVERSIDADE FEDERAL DO PARANÁ CURSO ESTATÍSTICA CALEB SOUZA GRR DENNIS LEÃO GRR LUAN FIORENTIN GRR UNIVERSIDADE FEDERAL DO PARANÁ CURSO ESTATÍSTICA CALEB SOUZA GRR -20149072 DENNIS LEÃO GRR - 20160239 LUAN FIORENTIN GRR - 20160219 MODELAGEM DA QUANTIDADE DE MATRÍCULAS NO ENSINO REGULAR NO ESTADO DO

Leia mais

Introdução. Amostragem, amostra aleatória simples, tabela de números aleatórios, erros

Introdução. Amostragem, amostra aleatória simples, tabela de números aleatórios, erros Estatística Aplicada 2007/2008 Programa Introdução às probabilidades. Distribuições. Amostragem. Testes de hipóteses. Análise da variância. Estatística não-paramétrica. Testes de ajuste do qui-quadrado.

Leia mais

Aula Prática 02 Estatística Experimental DELINEAMENTO CASUALIZADO EM BLOCOS. *Planejamento do Experimento Delineamento Casualizado em Blocos (DBC);

Aula Prática 02 Estatística Experimental DELINEAMENTO CASUALIZADO EM BLOCOS. *Planejamento do Experimento Delineamento Casualizado em Blocos (DBC); Aula Prática 02 Estatística Experimental DELINEAMENTO CASUALIZADO EM BLOCOS *Planejamento do Experimento Delineamento Casualizado em Blocos (DBC); proc plan; factors blocos=3 ordered parcelas=9 ordered;

Leia mais

Capítulo 6. Experimentos com um Fator de Interesse. Gustavo Mello Reis José Ivo Ribeiro Júnior

Capítulo 6. Experimentos com um Fator de Interesse. Gustavo Mello Reis José Ivo Ribeiro Júnior Capítulo 6 Experimentos com um Fator de Interesse Gustavo Mello Reis José Ivo Ribeiro Júnior Universidade Federal de Viçosa Departamento de Informática Setor de Estatística Viçosa 2007 Capítulo 6 Experimentos

Leia mais

Exame de Recorrência de Métodos Estatísticos. Departamento de Matemática Universidade de Aveiro

Exame de Recorrência de Métodos Estatísticos. Departamento de Matemática Universidade de Aveiro Exame de Recorrência de Métodos Estatísticos Departamento de Matemática Universidade de Aveiro Data: 6/6/6 Duração: 3 horas Nome: N.º: Curso: Regime: Declaro que desisto Classificação: As cotações deste

Leia mais

Escolha dos testes INTRODUÇÃO À BIOESTATÍSTICA QUANTIFICAÇÃO DOS GRUPOS DO ESTUDO PESQUISA INFERÊNCIA ESTATÍSTICA TESTE DE HIPÓTESES E

Escolha dos testes INTRODUÇÃO À BIOESTATÍSTICA QUANTIFICAÇÃO DOS GRUPOS DO ESTUDO PESQUISA INFERÊNCIA ESTATÍSTICA TESTE DE HIPÓTESES E Escolha dos testes INTRODUÇÃO À BIOESTATÍSTICA Determinada a pergunta/ hipótese Recolhidos os dados Análise descritiva = Estatística descritiva QUAIS TESTES ESTATÍSTICOS DEVEM SER REALIZADOS?? PROFESSORA:

Leia mais

b) Variáveis Aleatórias Contínuas

b) Variáveis Aleatórias Contínuas Disciplina: 1171 b) Variáveis Aleatórias Contínuas Prof. a Dr. a Simone Daniela Sartorio de Medeiros DTAiSeR-Ar 1 Uma variável aleatória é contínua (v.a.c.) se seu conjunto de valores é qualquer intervalo

Leia mais

Curso de Especialização em Fisioterapia Traumato-Ortopédica / 2010 NOÇÕES DE STICA

Curso de Especialização em Fisioterapia Traumato-Ortopédica / 2010 NOÇÕES DE STICA Curso de Especialização em Fisioterapia Traumato-Ortopédica / 2010 NOÇÕES DE BIOSTATÍSTICA STICA Prof a. Lilian Pinto da Silva Faculdade de Fisioterapia Universidade Federal de Juiz de Fora [email protected]

Leia mais

Aula 14 Quadrado Latino 13/06/17

Aula 14 Quadrado Latino 13/06/17 Aula 14 Quadrado Latino 13/06/17 Considere um experimento em quadrado latino com linhas e colunas e tratamentos, assim: Obtenção da Análise de Variância Soma de Quadrados: Constante: K = 1 ( x ( ) i,j,k=1

Leia mais

ÍNDICE Janelas Menus Barras de ferramentas Barra de estado Caixas de diálogo

ÍNDICE Janelas Menus Barras de ferramentas Barra de estado Caixas de diálogo XXXXXXXX ÍNDICE INTRODUÇÃO 15 1. VISÃO GERAL DO SPSS PARA WINDOWS 17 1.1. Janelas 17 1.2. Menus 20 1.3. Barras de ferramentas 21 1.4. Barra de estado 21 1.5. Caixas de diálogo 22 2. OPERAÇÕES BÁSICAS 23

Leia mais

Esquema fatorial de tratamentos

Esquema fatorial de tratamentos Esquema fatorial de tratamentos Um experimento foi instalado com o objetivo de estudar a influência do aparelho e do operador dele na medição de alturas de árvores de Eucaliptus saligna aos 7 anos de idade.

Leia mais

Estimação e Testes de Hipóteses

Estimação e Testes de Hipóteses Estimação e Testes de Hipóteses 1 Estatísticas sticas e parâmetros Valores calculados por expressões matemáticas que resumem dados relativos a uma característica mensurável: Parâmetros: medidas numéricas

Leia mais

Testes de Hipóteses. : Existe efeito

Testes de Hipóteses. : Existe efeito Testes de Hipóteses Hipótese Estatística de teste Distribuição da estatística de teste Decisão H 0 : Não existe efeito vs. H 1 : Existe efeito Hipótese nula Hipótese alternativa Varia conforme a natureza

Leia mais

Pesquisa Quantitativa. Comparações de Médias. Pesquisa Quantitativa Roteiro Geral. Roteiro do Módulo. Prof. Lupércio França Bessegato - UFJF 1

Pesquisa Quantitativa. Comparações de Médias. Pesquisa Quantitativa Roteiro Geral. Roteiro do Módulo. Prof. Lupércio França Bessegato - UFJF 1 Pesquisa Quantitativa Comparações de Médias Lupércio França Bessegato Mestrado em Administração/UFJF 1. Introdução 2. Coleta de dados Roteiro Geral 3. Modelos probabilísticos 4. Distribuições amostrais

Leia mais

TRANSFORMAÇÕES. 1 Tornar comparáveis descritores medidos em diferentes unidades

TRANSFORMAÇÕES. 1 Tornar comparáveis descritores medidos em diferentes unidades TRANSFORMAÇÕES Razões para transformar os dados antes das análises: 1 Tornar comparáveis descritores medidos em diferentes unidades Isso é feito através da padronização (Standardization), que significa

Leia mais

Estatística de Teste: Decisão: p α Rejeita-se H 0. Hipóteses: Ǝ i,j σ 1 σ 2 i,j=1,,k. Estatística de Teste: Decisão: p >α Não se rejeita H 0

Estatística de Teste: Decisão: p α Rejeita-se H 0. Hipóteses: Ǝ i,j σ 1 σ 2 i,j=1,,k. Estatística de Teste: Decisão: p >α Não se rejeita H 0 Normalidade: H 0: Y i~n(µ i, σ i) H 1: Y i N(µ i, σ i) (i=1,,k) Estatística de Teste: (p=valor p-value) Se n < 50 Teste Shapiro-Wild Se n > 50 Teste Kolmogorov-Smirnov Homogeneidade p α Rejeita-se H 0

Leia mais

b) Variáveis Aleatórias Contínuas

b) Variáveis Aleatórias Contínuas Disciplina: 221171 b) Variáveis Aleatórias Contínuas Prof. a Dr. a Simone Daniela Sartorio de Medeiros DTAiSeR-Ar 1 Uma variável aleatória é contínua (v.a.c.) se seu conjunto de valores é qualquer intervalo

Leia mais

1. Conceitos básicos de estatística Níveis de medição Medidas características de distribuições univariadas 21

1. Conceitos básicos de estatística Níveis de medição Medidas características de distribuições univariadas 21 OS SABERES INDISPENSÁVEIS 7 Índice Prefácio 13 Capítulo 1 Os Saberes Indispensáveis 1. Conceitos básicos de estatística 17 1.1. Níveis de medição 18 1.2. Medidas características de distribuições univariadas

Leia mais

SUMÁRIO. Prefácio, Espaço amostrai, Definição de probabilidade, Probabilidades finitas dos espaços amostrais fin itos, 20

SUMÁRIO. Prefácio, Espaço amostrai, Definição de probabilidade, Probabilidades finitas dos espaços amostrais fin itos, 20 SUMÁRIO Prefácio, 1 3 1 CÁLCULO DAS PROBABILIDADES, 15 1.1 Introdução, 15 1.2 Caracterização de um experimento aleatório, 15 1.3 Espaço amostrai, 16 1.4 Evento, 17 1.5 Eventos mutuamente exclusivos, 17

Leia mais

Análise Multivariada Aplicada à Contabilidade

Análise Multivariada Aplicada à Contabilidade Mestrado e Doutorado em Controladoria e Contabilidade Análise Multivariada Aplicada à Contabilidade Prof. Dr. Marcelo Botelho da Costa Moraes www.marcelobotelho.com [email protected] Turma: 2º / 2016 1 Agenda

Leia mais

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIENCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE V

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIENCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE V MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIENCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE V DELINEAMENTO EM BLOCOS CASUALIZADOS (DBC) Profª Railene Hérica Carlos Rocha 1. Introdução

Leia mais

ANÁLISE DE VARIÂNCIA

ANÁLISE DE VARIÂNCIA 10 4 ANÁLISE DE VARIÂNCIA Um problema que se apresenta com maior freqüência do que qualquer outro na análise estatística é o de avaliar se duas ou mais amostras diferem significativamente com relação a

Leia mais

Exame Final de Métodos Estatísticos

Exame Final de Métodos Estatísticos Exame Final de Métodos Estatísticos Data: de Junho de 26 Duração: 3h. Nome: Curso: Declaro que desisto N. Mec. Regime: As cotações deste exame encontram-se na seguinte tabela. Responda às questões utilizando

Leia mais

Ajustar Técnica usada na análise dos dados para controlar ou considerar possíveis variáveis de confusão.

Ajustar Técnica usada na análise dos dados para controlar ou considerar possíveis variáveis de confusão. Glossário Ajustar Técnica usada na análise dos dados para controlar ou considerar possíveis variáveis de confusão. Análise de co-variância: Procedimento estatístico utilizado para análise de dados que

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS CONHECIMENTOS ESPECÍFICOS» ESTATÍSTICA EXPERIMENTAL «21. Na construção de uma distribuição para uma amostra, o número de classes depende a) apenas do número de dados. b) somente da amplitude dos dados

Leia mais

1 Introdução aos Métodos Estatísticos para Geografia 1

1 Introdução aos Métodos Estatísticos para Geografia 1 1 Introdução aos Métodos Estatísticos para Geografia 1 1.1 Introdução 1 1.2 O método científico 2 1.3 Abordagens exploratória e confirmatória na geografia 4 1.4 Probabilidade e estatística 4 1.4.1 Probabilidade

Leia mais

Pressuposições à ANOVA

Pressuposições à ANOVA UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Estatística I - UNIR Estatística II Pressuposições à ANOVA Prof. a Renata Gonçalves Aguiar 1 2 A análise de variância

Leia mais

Tópicos Extras 1ª parte. Testes Não Paramétricos, Análise Multivariada, Outras Técnicas

Tópicos Extras 1ª parte. Testes Não Paramétricos, Análise Multivariada, Outras Técnicas Tópicos Extras 1ª parte Testes Não Paramétricos, Análise Multivariada, Outras Técnicas 1 2 Técnicas de dependência 3 4 Situações Comparar 3 tipos de rede de computadores, C1, C2 e C3, em termos do tempo

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS CONHECIMENTOS ESPECÍFICOS 2003 2004 2005 2006 2007 2008 2009 2010 X 39,0 39,5 39,5 39,0 39,5 41,5 42,0 42,0 Y 46,5 65,5 86,0 100,0 121,0 150,5 174,0 203,0 A tabela acima mostra as quantidades, em milhões

Leia mais

Hipótese Testadas. Efeito A. Efeito B. { H o: b j = 0, j = 1, 2,, n B. H 1 : pelo menos um valor de b k 0, k [1; n B ]

Hipótese Testadas. Efeito A. Efeito B. { H o: b j = 0, j = 1, 2,, n B. H 1 : pelo menos um valor de b k 0, k [1; n B ] Aula 13 Experimentos Fatoriais 06/06/017 Considere um DIC com fatores fatores ( A e B ) com n A e n B níveis, e r repetições; Hipótese Testadas Efeito A { H o: a i = 0, i = 1,,, n A. H 1 : pelo menos um

Leia mais

Aula no SAS. Planejamento do Experimento - Delineamento inteiramente casualizado. Saídas

Aula no SAS. Planejamento do Experimento - Delineamento inteiramente casualizado. Saídas Aula no SAS Planejamento do Experimento - Delineamento inteiramente casualizado Saídas title "Antes da Casualização"; data plano; do parc=1 to 20;*DEVE SER MÚLTIPLO DO NÚMERO DE TRATAMENTOS; trat=int((parc-1)/5)+1;*tratamentos+1=5;

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA ANEXO PROGRAMAS DOS CURSOS CURTA DURAÇÃO EM ANÁLISE DE DADOS COM SPSS

ESCOLA SUPERIOR DE TECNOLOGIA ANEXO PROGRAMAS DOS CURSOS CURTA DURAÇÃO EM ANÁLISE DE DADOS COM SPSS ESCOLA SUPERIOR DE TECNOLOGIA ANEXO PROGRAMAS DOS CURSOS CURTA DURAÇÃO EM ANÁLISE DE DADOS COM SPSS ANÁLISE DE DADOS COM SPSS NÍVEL I - INTRODUTÓRIO OBJETIVOS Dotar os formandos de competências que permitam

Leia mais

Mais Informações sobre Itens do Relatório

Mais Informações sobre Itens do Relatório Mais Informações sobre Itens do Relatório Amostra Tabela contendo os valores amostrados a serem utilizados pelo método comparativo (estatística descritiva ou inferencial) Modelos Pesquisados Tabela contendo

Leia mais

Apostila de estatística básica Minitab Organizador: Daniel Magalhães Lima. Autores:

Apostila de estatística básica Minitab Organizador: Daniel Magalhães Lima. Autores: Apostila de estatística básica Minitab Organizador: Daniel Magalhães Lima Autores: Sumário Importando dados... 3 Explorando dados Tendência central, dispersão e gráficos... 3 Teste de normalidade... 3

Leia mais

Filho, não é um bicho: chama-se Estatística!

Filho, não é um bicho: chama-se Estatística! Paulo Jorge Silveira Ferreira Filho, não é um bicho: chama-se Estatística! Estatística aplicada uma abordagem prática FICHA TÉCNICA EDIÇÃO: Paulo Ferreira TÍTULO: Filho, não é um bicho: chama-se Estatística!

Leia mais

Transformação de dados como alternativa a análise variância. univariada

Transformação de dados como alternativa a análise variância. univariada Transformação de dados como alternativa a análise variância 1 Introdução univariada 1 Katia Alves Campos 1 Crysttian Arantes Paixão 2 Augusto Ramalho Morais 3 Normalmente nos experimentos, realizados em

Leia mais

Teste F-parcial 1 / 16

Teste F-parcial 1 / 16 Teste F-parcial Ingredientes A hipótese nula, H 0, define o modelo restrito. A hipótese alternativa, H a : H 0 é falsa, define o modelo irrestrito. SQR r : soma de quadrado dos resíduos associada à estimação

Leia mais

ANÁLISE ESTATÍSTICA com o SPSS Statistics

ANÁLISE ESTATÍSTICA com o SPSS Statistics João Marôco 5 a. Edição ANÁLISE ESTATÍSTICA com o SPSS Statistics ANÁLISE ESTATÍSTICA com o SPSS Statistics 5ª Edição JOÃO MARÔCO É proibida toda e qualquer reprodução desta obra por qualquer meio físico

Leia mais

Comparando Duas Amostras (abordagem não-paramétrica)

Comparando Duas Amostras (abordagem não-paramétrica) Comparando Duas Amostras (abordagem não-paramétrica) Aula de hoje Estatística Não-Paramétrica Parâmetro: é medida usada para descrever uma característica de uma população Ponto estimativa por ponto (média,

Leia mais

Teste F-parcial 1 / 16

Teste F-parcial 1 / 16 Teste F-parcial A hipótese nula, H 0, define o modelo restrito. Ingredientes SQR r : soma de quadrado dos resíduos sob H 0. R 2 r: coeficiente de determinação sob H 0. g: número de restrições a serem testadas

Leia mais

Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste

Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Erica Castilho Rodrigues 2 de Setembro de 2014 Erro Puro 3 Existem dois motivos pelos quais os pontos observados podem não cair na reta

Leia mais

Sumário. CAPÍTULO 1 Conceitos preliminares 1. CAPÍTULO 2 Descrição de dados: análise monovariada 47

Sumário. CAPÍTULO 1 Conceitos preliminares 1. CAPÍTULO 2 Descrição de dados: análise monovariada 47 CAPÍTULO 1 Conceitos preliminares 1 Introdução........................................................1 O que é estatística?.................................................. 4 Papel dos microcomputadores.........................................

Leia mais

Correlação e Regressão

Correlação e Regressão Correlação e Regressão Vamos começar com um exemplo: Temos abaixo uma amostra do tempo de serviço de 10 funcionários de uma companhia de seguros e o número de clientes que cada um possui. Será que existe

Leia mais

Teste de Cochran (Homogeneidade de Variância)

Teste de Cochran (Homogeneidade de Variância) ara o modelo heterocedástico, vamos inicialmente testar as hipóteses Os métodos mais utilizados são os testes de Cochran, Bartlett e de Levene. Teste de Cochran (Homogeneidade de Variância) O teste de

Leia mais

Esquema de distribuição dos tratamentos: Fatorial; Parcelas subdivididas.

Esquema de distribuição dos tratamentos: Fatorial; Parcelas subdivididas. Esquema de distribuição dos tratamentos: Fatorial; Parcelas subdivididas. 1 Experimentos em esquema Fatorial Prof. a Dr. a Simone Daniela Sartorio de Medeiros DTAiSeR-Ar 2 Experimentos em esquema fatorial

Leia mais

Transformações e Ponderação para corrigir violações do modelo

Transformações e Ponderação para corrigir violações do modelo Transformações e Ponderação para corrigir violações do modelo Diagnóstico na análise de regressão Relembrando suposições Os erros do modelo tem média zero e variância constante. Os erros do modelo tem

Leia mais

EXPERIMENTAÇÃO AGRÍCOLA

EXPERIMENTAÇÃO AGRÍCOLA EXPERIMENTAÇÃO AGRÍCOLA DELINEAMENTO INTEIRAMENTE CASUALIZADO (DIC) Eng. Agrônomo: Francisco Bruno Ferreira de Sousa [email protected]/ [email protected] Contato: (99) 99199460 Objetivos: Estudar

Leia mais