Teste de Cochran (Homogeneidade de Variância)
|
|
|
- Lorenzo Fidalgo Gama
- 8 Há anos
- Visualizações:
Transcrição
1 ara o modelo heterocedástico, vamos inicialmente testar as hipóteses Os métodos mais utilizados são os testes de Cochran, Bartlett e de Levene. Teste de Cochran (Homogeneidade de Variância) O teste de Cochran compara a maior variância com as demais. Para aplicarmos o teste de Cochran, vamos assumir que o experimento é balanceado e seguir as seguintes etapas: Etapa 1 - Calcular a Estatística em que k: representa o número de níveis do fator; s 2 i: representa a variância amostral. n: representa o número de medidas em cada nível do fator. Etapa 2 - Comparar com valor tabelado. Exemplo : Um laboratório de metrologia contratou um novo metrologista que passou por diversos treinamentos para integrar a equipe. Antes de liberarmos o metrologista para realizar o procedimento de calibração, realizamos um
2 teste para comparar a variabilidade das medições do metrologista novato com os demais metrologistas do laboratório. Em um experimento completamente aleatorizado, um bloco padrão de 50mm foi medido 5 vezes por cada metrologista. As medições estão na tabela a seguir. Metrologistas João Novato Moacir Roberto Medida 1 50, ,007 50, ,0073 Medida 2 50, , , ,0074 Medida 3 50, , , ,0073 Medida 4 50, , , ,0072 Medida 5 50, , , ,0072 Média 50, , , ,00728 Desvio Padrão 0, , , , Variância 0, , , , Neste caso, temos como objetivo comparar a variabilidade encontrada entre os diversos metrologistas. Observamos que. Logo (Tabela C, para de significância) =0,629. Portanto, como, a variância do metrologista Novato não é homogênea em relação a dos demais metrologistas. Número Tamanho do grupo (réplicas)
3 de Grupos ,975 0,939 0,906 0, ,967 0,871 0,798 0,746 0, ,906 0,768 0,684 0,629 0,69 5 0,841 0,684 0,598 0,544 0, ,781 0,616 0,532 0,48 0, ,727 0,561 0,48 0,431 0, ,68 0,516 0,438 0,391 0,3 Tabela C: Valor tabelado para nível de significância 5%. Teste de Bartlett A estatística do teste proposta por Bartlett é dada por em que
4 Sob (igualdade das variâncias) sabemos que tem distribuição assintótica qui-quadrado com graus de liberdade. Desta forma, rejeitamos se no qual representa o quantil da distribuição qui-quadrado com (k-1) graus de liberdade. Além disso, o P-valor é calculado por > O teste de Bartlett é sensível em relação a hipótese de normalidade dos dados. Se rejeitarmos a hipótese de normalidade, é melhor utilizarmos o teste proposto por Levene. Porém, se a hipótese de normalidade não for violada, o teste proposto por Bartlett tem um comportamento melhor que o teste proposto por Levene. Exemplo : Aplicar o teste de Bartlett para os dados do Exemplo 1.1. Fator Resistencia_da_Fibra
5 clique aqui para efetuar o download dos dados utilizados nesse exemplo As variâncias amostrais são
6 Então, temos que Logo,
7 Temos também que Então, a estatística do teste Como são iguais., não rejeitamos a hipótese de que todas as variância O p-valor para o teste de Bartlett é Conclusão: Como o p-valor está acima de 5% não rejeitamos a hipótese. Resultados desse exemplo obtidos com o software Action:
8 Para entender como executar essa função do Software Action, você pode consultar o manual do usuário.
9 Teste de Levene Este procedimento consiste em fazer uma transformação dos dados originais e aplicar aos dados transformados o teste da ANOVA. Levene (1960) propôs a seguinte transformação: onde : representa os dados após transformação; : representa os dados originais; e : representa a média do nível, para os dados originais. Uma transformação (robusta) alternativa considerada para o procedimento de Levene, proposto por Brown (1974), é substituir a média do nível pela mediana. Para obter a mediana devemos, em primeiro lugar, ordenar os dados do menor para o maior valor. Se o número de dados for ímpar, a mediana será o dado central. Se o número de dados for par, a mediana será a média aritmética dos dois dados centrais. Com isso, a expressão a seguir é substituída por em que : representa os dados após transformação; : representa os dados originais; e : representa a mediana do nível, para os dados originais. Com isso, temos a seguinte estatística:
10 em que, e Após a transformação dos dados originais pela expressão ( ), aplicamos o teste da ANOVA. Se a estatística F for significativa rejeitamos a hipótese de igualdade das variâncias. Teste de Levene para os dados do Exemplo 1. Usando a expressão ( ), obtemos a seguinte tabela, com os dados transformados. Algodão % Resistência da Fibra Tabela: Dados transformados para a resistência da fibra. Fator Resistência da
11 Fibra
12 clique aqui para efetuar o download dos dados utilizados nesse exemplo A soma de quadrados é dada por: Conclusão: Como o p-valor é maior que 5%, não temos evidências para rejeitar a hipótese de igualdade de variâncias. Resultados desse exemplo obtidos com o software Action: Tabela: Análise de Variância para os dados transformados.
13
Análise da Variância. Prof. Dr. Alberto Franke (48)
Análise da Variância Prof. Dr. Alberto Franke (48) 91471041 Análise da variância Até aqui, a metodologia do teste de hipóteses foi utilizada para tirar conclusões sobre possíveis diferenças entre os parâmetros
ANÁLISE DE VARIÂNCIA. y j = µ + τ i + e i j = µ i + e i j
SUMÁRIO 1 Análise de Variância 1 1.1 O Teste F...................................... 1.2 Verificando as pressuposições do modelo..................... 5 1.2.1 Verificação de Normalidade.........................
TESTE t-student TESTE IGUALDADE DE VARIÂNCIAS
UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS FACULDADE DE ESTATÍSTICA TESTE t-student TESTE IGUALDADE DE VARIÂNCIAS BELÉM 2014 TAIS MEDEIROS SILVA 201107840019 TESTE t-student TESTE
ANÁLISE DE VARIÂNCIA - ANOVA. Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM
ANÁLISE DE VARIÂNCIA - ANOVA Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM UM EXEMPLO DE APLICAÇÃO Digamos que temos 6 métodos de ensino aplicados a 30 crianças
Métodos Estatísticos Avançados em Epidemiologia
1 / 44 Métodos Estatísticos Avançados em Epidemiologia Análise de Variância - ANOVA Referência: Cap. 12 - Pagano e Gauvreau (2004) - p.254 Enrico A. Colosimo/UFMG Depto. Estatística - ICEx - UFMG 2 / 44
Delineamento e Análise Experimental Aula 3
Aula 3 Castro Soares de Oliveira Teste de hipótese Teste de hipótese é uma metodologia estatística que permite tomar decisões sobre uma ou mais populações baseando-se no conhecimento de informações da
5. Carta de controle e homogeneidade de variância
5. Carta de controle e homogeneidade de variância O desenvolvimento deste estudo faz menção a dois conceitos estatísticos: as cartas de controle, de amplo uso em controle estatístico de processo, e a homogeneidade
Tópicos Extras 1ª parte. Testes Não Paramétricos, Análise Multivariada, Outras Técnicas
Tópicos Extras 1ª parte Testes Não Paramétricos, Análise Multivariada, Outras Técnicas 1 2 Técnicas de dependência 3 4 Situações Comparar 3 tipos de rede de computadores, C1, C2 e C3, em termos do tempo
Verificando as pressuposições do modelo estatístico
Verificando as pressuposições do modelo estatístico Prof. a Dr. a Simone Daniela Sartorio de Medeiros DTAiSeR-Ar 1 As pressuposições do modelo estatístico: 1) os efeitos do modelo estatístico devem ser
EXPERIMENTAÇÃO AGRÍCOLA. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari
EXPERIMENTAÇÃO AGRÍCOLA Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari [email protected] INTRODUÇÃO Um dos principais objetivos da estatística é a tomada de decisões a respeito da população, com
Medidas de Dispersão ou variabilidade
Medidas de Dispersão ou variabilidade A média - ainda que considerada como um número que tem a faculdade de representar uma série de valores - não pode, por si mesma, destacar o grau de homogeneidade ou
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIENCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE V
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIENCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE V DELINEAMENTO EM BLOCOS CASUALIZADOS (DBC) Profª Railene Hérica Carlos Rocha 1. Introdução
SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB
Governo do Estado do Rio Grande do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO
Bioexperimentação. Prof. Dr. Iron Macêdo Dantas
Governo do Estado do Rio Grande do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO
Métodos Quantitativos Aplicados
Métodos Quantitativos Aplicados Aula 6 http://www.iseg.utl.pt/~vescaria/mqa/ Tópicos apresentação Análise de dados bivariada: os casos dos testes de proporções para duas amostras independentes e emparelhadas
DELINEAMENTO EM BLOCOS AO ACASO
DELINEAMENTO EM BLOCOS AO ACASO Sempre que não houver condições experimentais homogêneas, devemos utilizar o principio do controle local, instalando Blocos, casualizando os tratamentos, igualmente repetidos.
DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA)
1. Sabe-se que o nível de significância é a probabilidade de cometermos um determinado tipo de erro quando da realização de um teste de hipóteses. Então: a) A escolha ideal seria um nível de significância
ESTATÍSTICA Distribuições qui-quadrado, t de Student e F de Snedecor Lucas Schmidt
ESTATÍSTICA Distribuições qui-quadrado, t de Student e F de Snedecor Lucas Schmidt [email protected] Estimação de parâmetros Média Variância Proporção Estimação de parâmetros Média: " estimador
CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO
CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO Ana Paula Araujo Correa Eder Queiroz Newton Trevisan DEFINIÇÃO É um teste de hipóteses que se destina a encontrar um valor da dispersão para duas variáveis
Escolha dos testes INTRODUÇÃO À BIOESTATÍSTICA QUANTIFICAÇÃO DOS GRUPOS DO ESTUDO PESQUISA INFERÊNCIA ESTATÍSTICA TESTE DE HIPÓTESES E
Escolha dos testes INTRODUÇÃO À BIOESTATÍSTICA Determinada a pergunta/ hipótese Recolhidos os dados Análise descritiva = Estatística descritiva QUAIS TESTES ESTATÍSTICOS DEVEM SER REALIZADOS?? PROFESSORA:
Variância pop. * conhecida Teste t Paramétrico Quantitativa Distribuição normal Wilcoxon (teste dos sinais, Wilcoxon p/ 1 amostra)
Testes de Tendência Central (média, mediana, proporção) Classificação Variável 1 Variável 2 Núm ero Gru pos Dependência Teste Z Paramétrico Quantitativa - 1 - Premissas Variância pop. * conhecida Teste
Estimação e Testes de Hipóteses
Estimação e Testes de Hipóteses 1 Estatísticas sticas e parâmetros Valores calculados por expressões matemáticas que resumem dados relativos a uma característica mensurável: Parâmetros: medidas numéricas
EXPERIMENTAÇÃO AGRÍCOLA
EXPERIMENTAÇÃO AGRÍCOLA DELINEAMENTO INTEIRAMENTE CASUALIZADO (DIC) Eng. Agrônomo: Francisco Bruno Ferreira de Sousa [email protected]/ [email protected] Contato: (99) 99199460 Objetivos: Estudar
ESTATÍSTICA EXPERIMENTAL. ANOVA. Aula 05
ESTATÍSTICA EXPERIMENTAL ANOVA. Aula 05 Introdução A ANOVA ou Análise de Variância é um procedimento usado para comparar a distribuição de três ou mais grupos em amostras independentes. A análise de variância
3.1 - Medidas de Posição Medidas de Dispersão Quantis Empiricos Box-plots Graficos de simetria 3.
3 - MEDIDAS RESUMO 3.1 - Medidas de Posição 3.2 - Medidas de Dispersão 3.3 - Quantis Empiricos 3.4 - Box-plots 3.5 - Graficos de simetria 3.6 - Transformações 1/17 3.1 - Medidas de Posição Muitas vezes
Métodos Estatísticos Avançados em Epidemiologia
Métodos Estatísticos Avançados em Epidemiologia Análise de Variância - ANOVA Cap. 12 - Pagano e Gauvreau (2004) - p.254 Enrico A. Colosimo/UFMG Depto. Estatística - ICEx - UFMG 1 / 39 Introdução Existem
DPS1037 SISTEMAS DA QUALIDADE II ENGENHARIA DE PRODUÇÃO CT/UFSM
Morgana Pizzolato, Dr a. Aula 20 Introdução à otimização experimental e experimentos de um fator DPS1037 SISTEMAS DA QUALIDADE II ENGENHARIA DE PRODUÇÃO CT/UFSM TÓPICOS DESTA AULA Projetos de Experimentos
1 Teoria da Decisão Estatística
1 Teoria da Decisão Estatística 1.1 Teste de Hipótese É uma metodologia estatística que permite tomar decisão sobre uma ou mais populações baseando no conhecimento de informações da amostra. Ao tentarmos
Capítulo 11 Análise da Variância. Statistics for Managers Using Microsoft Excel, 5e 2008 Prentice-Hall, Inc. Chap 11-1
Capítulo 11 Análise da Variância Statistics for Managers Using Microsoft Excel, 5e 2008 Prentice-Hall, Inc. Chap 11-1 Objetivos do Aprendizado Neste capítulo você aprenderá: Os conceitos básicos da modelagem
BIOESTATÍSTICA. Parte 5 Testes de Hipóteses
BIOESTATÍSTICA Parte 5 Testes de Hipóteses Aulas Teóricas de 05/05/2011 a 19/05/2011 5.1. Conceito de erro, estatística de teste, região de rejeição, nível de significância, valor de prova, potência do
ÍNDICE. Variáveis, Populações e Amostras. Estatística Descritiva PREFÁCIO 15 NOTA À 3ª EDIÇÃO 17 COMO USAR ESTE LIVRO? 21 CAPÍTULO 1 CAPÍTULO 2
COMO USAR ESTE LIVRO ÍNDICE PREFÁCIO 15 NOTA À 3ª EDIÇÃO 17 COMO USAR ESTE LIVRO? 21 CAPÍTULO 1 Variáveis, Populações e Amostras 1.1. VARIÁVEIS ESTATÍSTICAS E ESCALAS DE MEDIDA 27 1.2. POPULAÇÃO VS. AMOSTRA
Introdução à Bioestatística Turma Nutrição Aula 3 Análise Descritiva: Medidas de Tendência Central Medidas de Variabilidade
Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Introdução à Bioestatística Turma Nutrição Aula 3 Análise Descritiva: Medidas de Tendência Central Medidas
Métodos Quantitativos II
Métodos Quantitativos II MEDIDAS DE VARIABILIDADE O que significa Variabilidade? As medidas de tendência central nos dão uma ideia da concentração dos dados em torno de um valor. Entretanto, é preciso
ESTATÍSTICA EXPERIMENTAL
ESTATÍSTICA EXPERIMENTAL ESTUDO DE VARIABILIDADE DOS DADOS EXPERIMENTAIS Prof. Miguel Toledo del Pino, Eng. Agrícola (Dr.) INTRODUÇÃO Realizamos experimentos para compararmos os efeitos de tratamentos
- Testes Qui-quadrado - Aderência e Independência
- Testes Qui-quadrado - Aderência e Independência 1 1. Testes de Aderência Objetivo: Testar a adequabilidade de um modelo probabilístico a um conjunto de dados observados Exemplo 1: Segundo Mendel (geneticista
POPULAÇÃO X AMOSTRA INTRODUÇÃO À BIOESTATÍSTICA TIPOS DE VARIÁVEIS CLASSIFICAÇÃO DAS VARIÁVEIS CLASSIFICAÇÃO DAS VARIÁVEIS 1) TIPOS DE VARIÁVEIS
POPULAÇÃO X AMOSTRA INTRODUÇÃO À BIOESTATÍSTICA População (N) representa o conjunto de todas as unidades experimentais que apresentam características em comum Amostra (n) representa uma parte do todo.
Especialização em Engenharia de Processos e de Sistemas de Produção
Especialização em Engenharia de Processos e de Sistemas de Produção Projetos de Experimento e Confiabilidade de Sistemas da Produção Prof. Claudio Luis C. Frankenberg 2ª parte Experimentos inteiramente
Lucas Santana da Cunha de outubro de 2018 Londrina
e Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 17 de outubro de 2018 Londrina 1 / 31 Obtenção de uma amostra Há basicamente duas formas de se obter dados para uma pesquisa
1) A variância de um conjunto de dados é 16. O desvio padrão será: 1.1 DESVIO MÉDIO ABSOLUTO (Dm) Distribuição de Dados não- Agrupados
RESUMO É de extrema importância para a análise dos dados, verificar o comportamento dos valores tabelados em relação à média. Isto é, estudar a dispersão dos dados em relação à média. No estudo dessa dispersão
Unidade IV Inferência estatística
6//5 Unidade IV Inferência estatística 4.. Introdução e histórico 4.. Conceitos fundamentais 4.3. Distribuições amostrais e Teorema central do limite 4.4. Estimação de parâmetros 4.5. Testes de hipóteses
TESTE DE KOLMOGOROV-SMIRNOV. Professor Ewaldo Santana Universidade Estadual do Maranhão - UEMA
TESTE DE KOLMOGOROV-SMIRNOV Professor Ewaldo Santana Universidade Estadual do Maranhão - UEMA Conteúdo 2 Ewaldo Santana Introdução 3 Ewaldo Santana Introdução Testes estatísticos paramétricos, tais como
ANÁLISE DE VARIÂNCIA DE UM CRITÉRIO (DIC)
ANÁLISE DE VARIÂNCIA DE UM CRITÉRIO (DIC) Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 11 de dezembro de 2017 Uma análise de variância expressa uma medida
Inferência Estatística Básica. Teste de Hipóteses para uma média populacional Cálculo do Valor p
Inferência Estatística Básica Teste de Hipóteses para uma média populacional Cálculo do Valor p Exemplo 1 Um restaurante compra frangos abatidos inteiros com peso médio de 3 Kg há vários anos de um mesmo
Professora Ana Hermínia Andrade. Período
Teste de Hipóteses Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2016.1 Teste de Hipóteses O Teste de Hipóteses
ANOVA - parte I Conceitos Básicos
ANOVA - parte I Conceitos Básicos Erica Castilho Rodrigues 9 de Agosto de 2011 Referências: Noções de Probabilidade e Estatística - Pedroso e Lima (Capítulo 11). Textos avulsos. Introdução 3 Introdução
INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... ANÁLISE DE VARIÂNCIA. Departamento de Matemática ESTV.
INTRODUÇÃO Exemplos Para curar uma certa doença existem quatro tratamentos possíveis: A, B, C e D. Pretende-se saber se existem diferenças significativas nos tratamentos no que diz respeito ao tempo necessário
EXPERIMENTAÇÃO ZOOTÉCNICA. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari
EXPERIMENTAÇÃO ZOOTÉCNICA Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari [email protected] INTRODUÇÃO Um dos principais objetivos da estatística é a tomada de decisões a respeito da população,
MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel
MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS Professor: Rodrigo A. Scarpel [email protected] www.mec.ita.br/~rodrigo Programa do curso: Semana Conteúdo 1 Apresentação da disciplina. Princípios de modelos lineares
Princípios de Bioestatística
Princípios de Bioestatística Análise de Variância Enrico A. Colosimo Departamento de Estatística Universidade Federal de Minas Gerais http://www.est.ufmg.br/~enricoc 2011 1 / 25 Introdução Existem muitas
Profa. Janaina Fracaro Engenharia Mecânica 2015
Profa. Janaina Fracaro Engenharia Mecânica 2015 Medidas de Posição ou tendência central Buscam identificar valores característicos de uma relação de valores medidos. Média Aritmética: EX: Suponha que a
Estatística. Nos exercícios que se seguem, e caso seja necessário, considere que os pressupostos necessários à aplicação da ANOVA são verificados.
INSTITUTO SUPERIOR POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA Ano Lectivo 007/008 Estatística Ficha n.º Nos exercícios que se seguem, e caso seja necessário, considere que os pressupostos necessários
Estimação parâmetros e teste de hipóteses. Prof. Dr. Alberto Franke (48)
Estimação parâmetros e teste de hipóteses Prof. Dr. Alberto Franke (48) 91471041 Intervalo de confiança para média É um intervalo em que haja probabilidade do verdadeiro valor desconhecido do parâmetro
Análise Multivariada Aplicada à Contabilidade
Mestrado e Doutorado em Controladoria e Contabilidade Análise Multivariada Aplicada à Contabilidade Prof. Dr. Marcelo Botelho da Costa Moraes www.marcelobotelho.com [email protected] Turma: 2º / 2016 1 Agenda
EXPERIMENTAÇÃO ZOOTÉCNICA. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari
EXPERIMENTAÇÃO ZOOTÉCNICA Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari [email protected] INTRODUÇÃO Um dos principais objetivos da estatística é a tomada de decisões a respeito da população,
TESTE T PARA POPULAÇÕES INDEPENDENTES ISABELA GOMES DA SILVA ISABELLA NAOMI FURUIE MARIA JÚLIA JORGE MAURO
TESTE T PARA POPULAÇÕES INDEPENDENTES ISABELA GOMES DA SILVA ISABELLA NAOMI FURUIE MARIA JÚLIA JORGE MAURO DISTRIBUIÇÃO T DE STUDENT Distribuição para uma amostra n retirada de uma população com distribuição
EXPERIMENTAÇÃO ZOOTÉCNICA. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari
EXPERIMENTAÇÃO ZOOTÉCNICA Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari [email protected] TESTES PARA COMPARAÇÃO DE MÉDIAS O teste F permite tirar conclusões muito gerais relacionadas com os
Inferência a partir de duas amostras
Inferência a partir de duas amostras Inferência a partir de duas amostras. Inferência sobre duas médias: amostras dependentes. Inferência sobre duas médias: amostras grandes e independêntes 3. Comparação
Testes de Hipóteses sobre a média: Várias Amostras
Testes de Hipóteses sobre a média: Várias Amostras Na aula de hoje veremos como comparar mais de duas populações, baseados em dados fornecidos por amostras dessas populações. A Análise de Variância (ANOVA)
Testes de hipóteses Paramétricos
Testes de hipóteses Paramétricos Modelos de análise de variância com um factor Teste de Bartlett Teste de comparações múltiplas de Scheffé Rita Brandão (Univ. Açores) Testes de hipóteses Paramétricos 1
Planejamento de Experimentos Introdução - Teste t
1/22 Planejamento de Experimentos Introdução - Teste t Enrico A. Colosimo/UFMG http://www.est.ufmg.br/ enricoc/ Depto. Estatística - ICEx - UFMG 2/22 Introdução - Planejamento de Experimentos Experimento:
Probabilidade e Estatística
Probabilidade e Estatística Aula 9 Fundamentos de Testes de Hipóteses Leitura: Devore, Capítulo 8 Chap 9-1 Objetivos Neste capítulo, vamos aprender: Os princípios básicos de testes de hipóteses Estabelecer
Conceitos Básicos Teste t Teste F. Teste de Hipóteses. Joel M. Corrêa da Rosa
2011 O 1. Formular duas hipóteses sobre um valor que é desconhecido na população. 2. Fixar um nível de significância 3. Escolher a Estatística do Teste 4. Calcular o p-valor 5. Tomar a decisão mediante
CONHECIMENTOS ESPECÍFICOS
fonte de graus de soma de quadrado variação liberdade quadrados médio teste F regressão 1 1,4 1,4 46,2 resíduo 28 0,8 0,03 total 2,2 A tabela de análise de variância (ANOVA) ilustrada acima resulta de
Inferência para duas populações
Inferência para duas populações Capítulo 13, Estatística Básica (Bussab&Morettin, 8a Edição) 7a AULA 27/04/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues 7a aula (27/04/2015) MAE229 1 / 27 1.
Análise da Regressão múltipla: MQO Assintótico y = β 0 + β 1 x 1 + β x +... β k x k + u 3. Propriedades assintóticas Antes, propriedades sobre amostra
Análise da Regressão múltipla: MQO Assintótico Capítulo 5 do Wooldridge Análise da Regressão múltipla: MQO Assintótico y = β 0 + β 1 x 1 + β x +... β k x k + u 3. Propriedades assintóticas Antes, propriedades
- Testes Qui-quadrado - Aderência e Independência
- Testes Qui-quadrado - Aderência e Independência 1 1. Testes de Aderência Objetivo: Testar a adequabilidade de um modelo probabilístico a um conjunto de dados observados Exemplo 1: Segundo Mendel (geneticista
Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo
Testes de Hipóteses Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução e notação Em geral, intervalos de confiança são a forma mais
MAE0229 Introdução à Probabilidade e Estatística II
Exercício A fim de comparar os salários médios anuais de executivos e executivas de uma determinada cidade, amostras aleatórias de n = 26 executivos e n 2 = 24 executivas foram coletadas obtendose os valores
Medidas Descritivas de Posição, Tendência Central e Variabilidade
Medidas Descritivas de Posição, Tendência Central e Variabilidade Prof. Gilberto Rodrigues Liska UNIPAMPA 29 de Agosto de 2017 Material de Apoio e-mail: [email protected] Local: Sala dos professores
Teste Anova. Prof. David Prata Novembro de 2016
Teste Anova Prof. David Prata Novembro de 2016 Tipo de Variável Introduzimos o processo geral de teste de hipótese. É hora de aprender a testar a sua própria hipótese. Você sempre terá que interpretar
Modelos de Análise de Variância
Modelos de Análise de Variância Delineamento Completamente Aleatorizado: k tratamentos, r réplicas (balanceado) yi iid ~ N ; i i Normalidade Variância constante ( homocedasticidade ) Independência Análise
Análise de Variância com mais de duas variáveis independentes (mais de dois fatores) Na aula do dia 17 de outubro (aula #08) introduzimos
Análise de Variância com mais de duas variáveis independentes (mais de dois fatores) Na aula do dia 17 de outubro (aula #08) introduzimos a técnica de Análise de variância (ANOVA) a um fator, que resulta
12/06/14. Estatística Descritiva. Estatística Descritiva. Medidas de tendência central. Medidas de dispersão. Separatrizes. Resumindo numericamente
Resumindo numericamente Para resumir numericamente dados quantitativos o objetivo é escolher medidas apropriadas de locação (``qual o tamanho dos números envolvidos?'') e de dispersão (``quanta variação
TESTES NÃO-PARAMÉTRICOS
Les-0773: ESTATÍSTICA APLICADA III TESTES NÃO-PARAMÉTRICOS AULA 2 19/05/17 Prof a Lilian M. Lima Cunha Maio de 2017 REVISÃO... Medida de posição central (ou tendência central): Média Média simples: soma
CAPÍTULO 4 DESCRIÇÃO E EXPLORAÇÃO DOS DADOS 2ª parte
CAPÍTULO 4 DESCRIÇÃO E EXPLORAÇÃO DOS DADOS 2ª parte 4.3 Medidas de posição 4.4 Medidas de dispersão 4.5 Separatrizes Prof. franke 2 Vimos que a informação contida num conjunto de dados pode ser resumida
AULA 12 - Normalidade e Inferência em Regressão Múltipla - Parte 2
AULA 12 - Normalidade e Inferência em Regressão Múltipla - Parte 2 Susan Schommer Econometria I - IE/UFRJ Testes de hipóteses sobre combinação linear dos parâmetros Na aula passada testamos hipóteses sobre
Análise Descritiva de Dados
Análise Descritiva de Dados Resumindo os dados de variáveis quantitativas Síntese Numérica Descrição e Apresentação de Dados Dados 37 39 34 34 30 35 38 32 32 30 46 36 40 31 39 33 33 35 29 27 39 Ferramentas
Apostila de estatística básica Minitab Organizador: Daniel Magalhães Lima. Autores:
Apostila de estatística básica Minitab Organizador: Daniel Magalhães Lima Autores: Sumário Importando dados... 3 Explorando dados Tendência central, dispersão e gráficos... 3 Teste de normalidade... 3
Testes de Hipóteses para. uma Única Amostra. Objetivos de Aprendizagem. 9.1 Teste de Hipóteses. UFMG-ICEx-EST-027/031 07/06/ :07
-027/031 07/06/2018 10:07 9 ESQUEMA DO CAPÍTULO 9.1 TESTE DE HIPÓTESES 9.2 TESTES PARA A MÉDIA DE UMA DISTRIBUIÇÃO NORMAL, VARIÂNCIA CONHECIDA 9.3 TESTES PARA A MÉDIA DE UMA DISTRIBUIÇÃO NORMAL, VARIÂNCIA
MEDIDAS DE DISPERSÃO. Os dados a seguir referem-se ao índice pluviométrico de três cidades no Estado de São Paulo, em 3 diferentes ocasiões
MEDIDAS DE DISPERSÃO Os dados a seguir referem-se ao índice pluviométrico de três cidades no Estado de São Paulo, em 3 diferentes ocasiões Cidade A: 185, 185, 185 x 185mm Cidade B: 18, 184, 189 x 185mm
ANÁLISE ESTATÍSTICA DA RELAÇÃO ENTRE A ATITUDE E O DESEMPENHO DOS ALUNOS
ANÁLISE ESTATÍSTICA DA RELAÇÃO ENTRE A ATITUDE E O DESEMPENHO DOS ALUNOS Nível de significância No processo de tomada de decisão sobre uma das hipóteses levantadas num estudo, deve-se antes de tudo definir
Delineamento e Análise Experimental Aula 4
Aula 4 Castro Soares de Oliveira ANOVA Significativa Quando a aplicação da análise de variância conduz à rejeição da hipótese nula, temos evidência de que existem diferenças entre as médias populacionais.
Testes de Hipóteses: Duas Amostras
Testes de Hipóteses: Duas Amostras Na aula de hoje veremos como comparar duas populações P 1 e P 2, baseados em dados fornecidos por amostras dessas populações. Grande parte das técnicas usadas em Estatística
Lucas Santana da Cunha de outubro de 2018 Londrina
e Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 22 de outubro de 2018 Londrina 1 / 24 Obtenção de uma amostra Princípios básicos da experimentação Há basicamente duas
Delineamento e Análise Experimental Aula 6. Anderson Castro Soares de Oliveira
Aula 6 Castro Soares de Oliveira Transformação de dados A análise dos resultados de um experimento é boa quando as pressuposições do modelo são atendidas: Os erros do modelo tem média zero e variância
MAE0317 PLANEJAMENTO E PESQUISA I Projeto: A PRODUÇÃO DE CERVEJA PRODUZINDO CONHECIMENTO. Roteiro para a Análise dos Dados
MAE0317 PLANEJAMENTO E PESQUISA I Projeto: A PRODUÇÃO DE CERVEJA PRODUZINDO CONHECIMENTO Roteiro para a Análise dos Dados Considere os bancos de dados juízesbd.csv e beerbd_15.csv disponíveis na página
AULA 07 Inferência a Partir de Duas Amostras
1 AULA 07 Inferência a Partir de Duas Amostras Ernesto F. L. Amaral 10 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola,
Mas, para começar a aplicar métodos estatísticos, é preciso conhecer alguns conceitos básicos.
Na Criptologia, assim como em outras ciências, são realizados estudos experimentais ou obser vacionais que resultam numa coleção de dados numéricos. O propósito da investigação é responder uma questão
