Testes de hipóteses Paramétricos
|
|
|
- Vinícius Salazar de Sintra
- 9 Há anos
- Visualizações:
Transcrição
1 Testes de hipóteses Paramétricos Modelos de análise de variância com um factor Teste de Bartlett Teste de comparações múltiplas de Scheffé Rita Brandão (Univ. Açores) Testes de hipóteses Paramétricos 1 / 18
2 Análise de Variância:Introdução A análise de variância simples paramétrica (ANOVA) é uma extensão do teste para a diferença de médias aplicado a mais de duas amostras independentes. Pretende-se analisar o comportamento de uma variável (quantitativa)- variável dependente ou variável a explicar - em função de outra variável (qualitativa) -variável independente ou explicativa, permitindo comparar médias, em mais de dois grupos distintos e independentes, de uma mesma variável quantitativa. Rita Brandão (Univ. Açores) Testes de hipóteses Paramétricos 2 / 18
3 Nesta situação temos: X 11, X 12,..., X 1n1 X 21, X 22,..., X 2n2 X k1, X k2,..., X knk k grupos (tratamentos). O grupo i tem n i observações N = k i=1 n i é o número total de observações X ij representa a j-ésima observação do i-ésimo grupo Rita Brandão (Univ. Açores) Testes de hipóteses Paramétricos 3 / 18
4 O modelo ANOVA pressupõe que cada observação pode ser modelada pela expressão onde Notas: X ij = µ i + ɛ ij = µ + τ i + ɛ ij, i = 1,..., k; j = 1,..., n i µ i representa a média do grupo i µ representa a média de todos os grupos τ i representa a diferença entre a média total e a média do grupo i ɛ ij representa o erro aleatório da observação (i, j) Para que τ i represente o desvio do grupo i à média total µ os valores de τ i devem verificar k i=1 τ i = 0 Neste modelo assume-se que os erros ɛ ij Gau(0, σ 2 ) Rita Brandão (Univ. Açores) Testes de hipóteses Paramétricos 4 / 18
5 Hipóteses: Nota: H 0 : µ 1 = µ 2 =... = µ k = µ H 1 : µ i µ pelo menos para um valor de i ( i, j : µ i µ j, i j, i, j = 1,..., k) Se H 0 for válida os grupos têm todos a mesma média µ e cada observação não é mais do que uma variável com distribuição Gau(µ, σ 2 ). Representemos por n i X i = 1 X ij, n i j=1 a média das observações do grupo i X = 1 k n i X ij, a média de todas as observações N i=1 j=1 Rita Brandão (Univ. Açores) Testes de hipóteses Paramétricos 5 / 18
6 Ou seja, O método da análise de variância paramétrica baseia-se na estimação da variação ou variabilidade total (TSS) de um conjunto de observações, decompondo-a em duas componentes independentes: variabilidade devida às diferenças entre grupos (SST-Sum of Squares Treatment ou BSS-Between Sum of Squares); variabilidade dos erros ɛ ij dentro de cada grupo (SSE-Sum of Squares Error ou WSS-Within Sum of Squares) k n i (X ij X ) 2 = i=1 j=1 k k n i ( X i X n i ) 2 + (X ij X i ) 2 i=1 i=1 j=1 Rita Brandão (Univ. Açores) Testes de hipóteses Paramétricos 6 / 18
7 Simbolicamente, TSS = SST + SSE onde TSS = k n i (X ij X ) 2 -soma dos quadrados total i=1 j=1 SST = k n i ( X i X ) 2 i=1 -soma dos quadrados entre grupos SSE = k n i (X ij X i ) 2 -soma dos quadrados dentro de cada grupo i=1 j=1 Rita Brandão (Univ. Açores) Testes de hipóteses Paramétricos 7 / 18
8 Definindo, verifica-se que: MST = SST k 1 e MSE = SSE N k, MSE é um estimador centrado de σ 2 independentemente de H 0 sob H 0, MST também é um estimador centrado de σ 2 A ideia de base da ANOVA é que: se H 0 for verdadeira MST e MSE devem ser próximos (porque estimam a mesma quantidade) e, portanto, a sua razão deve ser próxima da unidade se H 1 for verdadeira MST terá um valor inflacionado e ao dividir por MSE tenderá a produzir um valor significativamente superior à unidade Rita Brandão (Univ. Açores) Testes de hipóteses Paramétricos 8 / 18
9 Estatística de Teste: F = MST MSE F k 1,N k Critério de Rejeição: Rejeita-se H 0 ao nível de significância α quando F > F k 1,N k;1 α Rita Brandão (Univ. Açores) Testes de hipóteses Paramétricos 9 / 18
10 Tipicamente uma ANOVA de efeitos fixos é resumida numa tabela do seguinte tipo: Quadro ANOVA Soma de Graus de Média dos Fonte de variação Quadrados Liberdade Quadrados F p-value MST Entre grupos SST k 1 MST MSE Dentro dos grupos SSE N k MSE Total TSS N 1 Rita Brandão (Univ. Açores) Testes de hipóteses Paramétricos 10 / 18
11 Exercício (7.4) O tempo médio despendido a atender os pacientes por três psicólogos cĺınicos foi registado no quadro seguinte: Psicólogo Tempo da consulta (min) Pretendemos saber se o tempo médio despendido a atender os pacientes é igual nos três psicólogos cĺınicos? Rita Brandão (Univ. Açores) Testes de hipóteses Paramétricos 11 / 18
12 Exercício (7.5) De um estudo de mercado, cujo objectivo principal era detectar as diferenças de comportamento dos leitores de três semanários (Expresso, Sol e Semanário), retiraram-se os seguintes resultados relativos ao tempo de leitura (em minutos) de cada leitor. Semanários Observações Expresso Sol Semanário Pretende-se saber se, nas populações onde se retiraram estas amostras (leitores do Expresso, Sol e do Semanário), os tempos médios de leitura de jornal são idênticos ou não. Rita Brandão (Univ. Açores) Testes de hipóteses Paramétricos 12 / 18
13 Teste de Bartlett (homocedasticidade) Na aplicação da ANOVA assume-se que as variâncias entre os vários grupos é igual. Para testar a validade desta hipótese utiliza-se o teste de Bartlett. Hipóteses: Estatística de Teste: sendo H 0 : σ 2 1 = σ2 2 =... = σ2 k H 1 : i, j : σ 2 i σ 2 j (i j, i, j = 1,..., k) B = 1 C C = 1 + { (N k) ln S 2 k } (n i 1) ln Si 2 i=1 { k 1 1 3(k 1) n i 1 1 }, N k i=1 Rita Brandão (Univ. Açores) Testes de hipóteses Paramétricos 13 / 18
14 Teste de Bartlett (homocedasticidade) Nota: S 2 i = 1 n i 1 S 2 = 1 N k n i j=1 (X ij X i ) 2 - variância da amostra i k (n i 1)Si 2 - variância total i=1 Verifica-se facilmente que S 2 = MSE Quando os grupos populacionais seguem uma distribuição gaussiana e para n i 6 B χ 2 k 1 Critério de Rejeição: Rejeita-se H 0 ao nível de significância α quando B χ 2 k 1;1 α Rita Brandão (Univ. Açores) Testes de hipóteses Paramétricos 14 / 18
15 Teste de Bartlett (homocedasticidade) Nota: O teste de Bartlett é muito sensível ao facto das variáveis serem gaussianas. Caso haja dúvidas sobre esta situação é aconselhável o uso do teste de Levene. Exercício (7.6) Tendo em conta os dados do exercício 7.4 poder-se-á admitir que a variabilidade dos tempos de consulta é idêntica para os três psicólogos (α = 0.05)? Rita Brandão (Univ. Açores) Testes de hipóteses Paramétricos 15 / 18
16 Teste de comparações múltiplas de Scheffé Quais a médias significativamente diferentes entre si? Para responder a esta questão vamos utilizar o teste de Scheffé Hipóteses: H 0 : µ i = µ j H 1 : µ i µ j, i j Estatística de Teste: T S = X i X j S 2( 1 n i + 1 ) n j (k 1)F k 1,N k Rita Brandão (Univ. Açores) Testes de hipóteses Paramétricos 16 / 18
17 Teste de comparações múltiplas de Scheffé Critério de Rejeição: Rejeita-se H 0 ao nível de significância α quando T S > (k 1)F k 1,N k;1 α ou ainda quando X i X j > S 2 ( 1ni + 1nj ) (k 1)F k 1,N k;1 α Rita Brandão (Univ. Açores) Testes de hipóteses Paramétricos 17 / 18
18 Teste de comparações múltiplas de Scheffé Exercício (7.7) Relativamente ao exercício 7.5, identifique os pares de médias diferentes, usando o teste de Scheffé. Rita Brandão (Univ. Açores) Testes de hipóteses Paramétricos 18 / 18
INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... ANÁLISE DE VARIÂNCIA. Departamento de Matemática ESTV.
INTRODUÇÃO Exemplos Para curar uma certa doença existem quatro tratamentos possíveis: A, B, C e D. Pretende-se saber se existem diferenças significativas nos tratamentos no que diz respeito ao tempo necessário
Métodos Estatísticos Avançados em Epidemiologia
1 / 44 Métodos Estatísticos Avançados em Epidemiologia Análise de Variância - ANOVA Referência: Cap. 12 - Pagano e Gauvreau (2004) - p.254 Enrico A. Colosimo/UFMG Depto. Estatística - ICEx - UFMG 2 / 44
Tópicos Extras 1ª parte. Testes Não Paramétricos, Análise Multivariada, Outras Técnicas
Tópicos Extras 1ª parte Testes Não Paramétricos, Análise Multivariada, Outras Técnicas 1 2 Técnicas de dependência 3 4 Situações Comparar 3 tipos de rede de computadores, C1, C2 e C3, em termos do tempo
Inferência para várias populações normais análise de variância (ANOVA)
Inferência para várias populações normais análise de variância (ANOVA) Capítulo 15, Estatística Básica (Bussab&Morettin, 8a Edição) 9a AULA 11/05/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues
ANÁLISE DE VARIÂNCIA DE UM CRITÉRIO (DIC)
ANÁLISE DE VARIÂNCIA DE UM CRITÉRIO (DIC) Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 11 de dezembro de 2017 Uma análise de variância expressa uma medida
BIOESTATÍSTICA. Parte 5 Testes de Hipóteses
BIOESTATÍSTICA Parte 5 Testes de Hipóteses Aulas Teóricas de 05/05/2011 a 19/05/2011 5.1. Conceito de erro, estatística de teste, região de rejeição, nível de significância, valor de prova, potência do
Delineamento e Análise Experimental Aula 3
Aula 3 Castro Soares de Oliveira Teste de hipótese Teste de hipótese é uma metodologia estatística que permite tomar decisões sobre uma ou mais populações baseando-se no conhecimento de informações da
Estatística. Nos exercícios que se seguem, e caso seja necessário, considere que os pressupostos necessários à aplicação da ANOVA são verificados.
INSTITUTO SUPERIOR POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA Ano Lectivo 007/008 Estatística Ficha n.º Nos exercícios que se seguem, e caso seja necessário, considere que os pressupostos necessários
DELINEAMENTO INTEIRAMENTE CASUALIZADO. Profª. Sheila Regina Oro
DELINEAMENTO INTEIRAMENTE CASUALIZADO Profª. Sheila Regina Oro Delineamento experimental Para planejar um experimento é preciso definir os tratamentos em comparação e a maneira de designar os tratamentos
Planejamento de Experimentos Experimento com um fator aleatório
1 / 12 Planejamento de Experimentos Experimento com um fator aleatório Enrico A. Colosimo/UFMG Depto. Estatística - ICEx - UFMG 2 / 12 Modelo Estatístico para Efeitos Fixos Y ij = µ + τ i + ɛ ij em que
ISCTE Instituto Superior de Ciências do Trabalho e da Empresa
ISCTE Instituto Superior de Ciências do Trabalho e da Empresa Licenciatura em Gestão Exame de 2ª Época de Estatística II Duração: 2h +30m Nota: Não são prestados esclarecimentos durante a prova! Só é permitida
Lucas Santana da Cunha de outubro de 2018 Londrina
e Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 17 de outubro de 2018 Londrina 1 / 31 Obtenção de uma amostra Há basicamente duas formas de se obter dados para uma pesquisa
ESTATÍSTICA Distribuições qui-quadrado, t de Student e F de Snedecor Lucas Schmidt
ESTATÍSTICA Distribuições qui-quadrado, t de Student e F de Snedecor Lucas Schmidt [email protected] Estimação de parâmetros Média Variância Proporção Estimação de parâmetros Média: " estimador
Princípios de Bioestatística
Princípios de Bioestatística Análise de Variância Enrico A. Colosimo Departamento de Estatística Universidade Federal de Minas Gerais http://www.est.ufmg.br/~enricoc 2011 1 / 25 Introdução Existem muitas
Apontamentos de Introdução às Probabilidades e à Estatística
i Índice 7. Estimação 1 7.1. Estimação pontual 1 7.1.1. Propriedades dos estimadores 1 7.1.2. Métodos de estimação 4 7.1.2.1. Método dos momentos 4 7.1.2.2. Método da máxima verosimilhança 5 7.1.3. Exemplos
Análise Multivariada Aplicada à Contabilidade
Mestrado e Doutorado em Controladoria e Contabilidade Análise Multivariada Aplicada à Contabilidade Prof. Dr. Marcelo Botelho da Costa Moraes www.marcelobotelho.com [email protected] Turma: 2º / 2016 1 Agenda
DELINEAMENTO EM BLOCOS CASUALIZADOS COM REPETIÇÕES. Profª. Sheila Regina Oro
DELINEAMENTO EM BLOCOS CASUALIZADOS COM REPETIÇÕES Profª. Sheila Regina Oro Delineamento em Blocos Casualizados com Repetições (DBCr) Utilizado quando temos mais de uma repetição de cada tratamento dentro
Métodos Quantitativos Aplicados
Métodos Quantitativos Aplicados Aula 6 http://www.iseg.utl.pt/~vescaria/mqa/ Tópicos apresentação Análise de dados bivariada: os casos dos testes de proporções para duas amostras independentes e emparelhadas
Cap. 9 Comparação entre tratamentos
Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 004 Cap. 9 Comparação entre tratamentos APOIO: Fundação de Apoio
ANÁLISE DE VARIÂNCIA - ANOVA. Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM
ANÁLISE DE VARIÂNCIA - ANOVA Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM UM EXEMPLO DE APLICAÇÃO Digamos que temos 6 métodos de ensino aplicados a 30 crianças
Modelo de Regressão Múltipla
Modelo de Regressão Múltipla Modelo de Regressão Linear Simples Última aula: Y = α + βx + i i ε i Y é a variável resposta; X é a variável independente; ε representa o erro. 2 Modelo Clássico de Regressão
Análise de Variância a um factor
1 Análise de Variância a um factor Análise de experiências com vários grupos de observações classificados através de um só factor (por exemplo grupos de indivíduos sujeitos a diferentes tratamentos para
DELINEAMENTO EM BLOCOS AO ACASO
DELINEAMENTO EM BLOCOS AO ACASO Sempre que não houver condições experimentais homogêneas, devemos utilizar o principio do controle local, instalando Blocos, casualizando os tratamentos, igualmente repetidos.
Métodos Numéricos e Estatísticos Parte II-Métodos Estatísticos
Métodos Numéricos e Estatísticos Parte II-Métodos Estatísticos Lic. Eng. Biomédica e Bioengenharia-2009/2010 Modelos de regressão É usual estarmos interessados em estabelecer uma relação entre uma variável
Variância pop. * conhecida Teste t Paramétrico Quantitativa Distribuição normal Wilcoxon (teste dos sinais, Wilcoxon p/ 1 amostra)
Testes de Tendência Central (média, mediana, proporção) Classificação Variável 1 Variável 2 Núm ero Gru pos Dependência Teste Z Paramétrico Quantitativa - 1 - Premissas Variância pop. * conhecida Teste
Aula 7. Testes de Hipóteses Paramétricos (II)
Aula 7. Testes de Hipóteses Paramétricos (II) Métodos Estadísticos 008 Universidade de Averio Profª Gladys Castillo Jordán IC e TH para comparação de valores médios µ X e µ Y de duas populações Normais.
Aula 7. Testes de Hipóteses Paramétricos (II)
Aula 7. Testes de Hipóteses Paramétricos (II) Métodos Estadísticos 008 Universidade de Averio Profª Gladys Castillo Jordán IC e TH para comparação de valores médios µ X e µ Y de duas populações Normais.
Capítulo 9 - Regressão Linear Simples (RLS): Notas breves
Capítulo 9 - Regressão Linear Simples RLS: Notas breves Regressão Linear Simples Estrutura formal do modelo de Regressão Linear Simples RLS: Y i = β 0 + β 1 x i + ε i, 1 onde Y i : variável resposta ou
Lucas Santana da Cunha de outubro de 2018 Londrina
e Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 22 de outubro de 2018 Londrina 1 / 24 Obtenção de uma amostra Princípios básicos da experimentação Há basicamente duas
Correlação e Regressão
Correlação e Regressão Vamos começar com um exemplo: Temos abaixo uma amostra do tempo de serviço de 10 funcionários de uma companhia de seguros e o número de clientes que cada um possui. Será que existe
Análise Multivariada Aplicada à Contabilidade
Mestrado e Doutorado em Controladoria e Contabilidade Análise Multivariada Aplicada à Contabilidade Prof. Dr. Marcelo Botelho da Costa Moraes www.marcelobotelho.com [email protected] Turma: 2º / 2016 1 Agenda
Estimação e Testes de Hipóteses
Estimação e Testes de Hipóteses 1 Estatísticas sticas e parâmetros Valores calculados por expressões matemáticas que resumem dados relativos a uma característica mensurável: Parâmetros: medidas numéricas
Análise de variância (ANOVA)
Análise de variância (ANOVA) Universidade Estadual de Santa Cruz Ivan Bezerra Allaman CRONOGRAMA 1. História 2. Concepção da ideia 3. Formalização da ideia e o surgimento da distribuição F 4. Hipóteses
Aula 2 Uma breve revisão sobre modelos lineares
Aula Uma breve revisão sobre modelos lineares Processo de ajuste de um modelo de regressão O ajuste de modelos de regressão tem como principais objetivos descrever relações entre variáveis, estimar e testar
Planejamento de Experimentos Introdução - Teste t
1/22 Planejamento de Experimentos Introdução - Teste t Enrico A. Colosimo/UFMG http://www.est.ufmg.br/ enricoc/ Depto. Estatística - ICEx - UFMG 2/22 Introdução - Planejamento de Experimentos Experimento:
PROBABILIDADE E ESTATÍSTICA INFERÊNCIA ESTATÍSTICA Parte II
PROBABILIDADE E ESTATÍSTICA INFERÊNCIA ESTATÍSTICA Parte II Prof.ª Sheila Regina Oro Projeto Recursos Educacionais Digitais Autores: Bruno Baierle e Maurício Furigo TESTE PARA UMA PROPORÇÃO H0: p = p 0
Estatística Aplicada
INSTITUTO SUPERIOR POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA Ano Lectivo 006/007 Estatística Aplicada Ficha n.º Nos exercícios que se seguem, e caso seja necessário, considere que os pressupostos
Mario de Andrade Lira Junior lira.pro.br\wordpress
Mario de Andrade Lira Junior lira.pro.br\wordpress lira.pro.br\wordpress autorais. 27/04/2009 1 Modelo simplificação da realidade Linear formato de reta Generalizado não específico Cada delineamento experimental
Escolha dos testes INTRODUÇÃO À BIOESTATÍSTICA QUANTIFICAÇÃO DOS GRUPOS DO ESTUDO PESQUISA INFERÊNCIA ESTATÍSTICA TESTE DE HIPÓTESES E
Escolha dos testes INTRODUÇÃO À BIOESTATÍSTICA Determinada a pergunta/ hipótese Recolhidos os dados Análise descritiva = Estatística descritiva QUAIS TESTES ESTATÍSTICOS DEVEM SER REALIZADOS?? PROFESSORA:
Capítulo 4 Inferência Estatística
Capítulo 4 Inferência Estatística Slide 1 Resenha Intervalo de Confiança para uma proporção Intervalo de Confiança para o valor médio de uma variável aleatória Intervalo de Confiança para a diferença de
Estatística de Teste: Decisão: p α Rejeita-se H 0. Hipóteses: Ǝ i,j σ 1 σ 2 i,j=1,,k. Estatística de Teste: Decisão: p >α Não se rejeita H 0
Normalidade: H 0: Y i~n(µ i, σ i) H 1: Y i N(µ i, σ i) (i=1,,k) Estatística de Teste: (p=valor p-value) Se n < 50 Teste Shapiro-Wild Se n > 50 Teste Kolmogorov-Smirnov Homogeneidade p α Rejeita-se H 0
5. Carta de controle e homogeneidade de variância
5. Carta de controle e homogeneidade de variância O desenvolvimento deste estudo faz menção a dois conceitos estatísticos: as cartas de controle, de amplo uso em controle estatístico de processo, e a homogeneidade
TESTE DE MANN-WHITNEY
TESTE DE MANN-WHITNEY A importância deste teste é ser a alternativa não paramétrica ao teste t para a diferença de médias. Sejam (X,X,...,X n ) e (Y,Y,...,Y m ) duas amostras independentes, de tamanhos
TESTES NÃO-PARAMÉTRICOS
Les-0773: ESTATÍSTICA APLICADA III TESTES NÃO-PARAMÉTRICOS AULA 2 19/05/17 Prof a Lilian M. Lima Cunha Maio de 2017 REVISÃO... Medida de posição central (ou tendência central): Média Média simples: soma
DELINEAMENTO EM QUADRADO LATINO (DQL)
DQL DELINEAMENTO EM QUADRADO LATINO (DQL) Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha Universidade Estadual de Londrina Departamento de Estatística 08 de julho de 2017 DQL Na Seção anterior
Análise de regressão linear simples. Diagrama de dispersão
Introdução Análise de regressão linear simples Departamento de Matemática Escola Superior de Tecnologia de Viseu A análise de regressão estuda o relacionamento entre uma variável chamada a variável dependente
Análise de Regressão Linear Simples e
Análise de Regressão Linear Simples e Múltipla Carla Henriques Departamento de Matemática Escola Superior de Tecnologia de Viseu Introdução A análise de regressão estuda o relacionamento entre uma variável
Capítulo 6 Estatística não-paramétrica
Capítulo 6 Estatística não-paramétrica Slide 1 Teste de ajustamento do Qui-quadrado Testes de independência e de homogeneidade do Qui-quadrado Algumas considerações Slide 2 As secções deste capítulo referem-se
Análise da Regressão múltipla: MQO Assintótico y = β 0 + β 1 x 1 + β x +... β k x k + u 3. Propriedades assintóticas Antes, propriedades sobre amostra
Análise da Regressão múltipla: MQO Assintótico Capítulo 5 do Wooldridge Análise da Regressão múltipla: MQO Assintótico y = β 0 + β 1 x 1 + β x +... β k x k + u 3. Propriedades assintóticas Antes, propriedades
5.3 Experimentos fatoriais a dois fatores. Ambos os fatores são supostos fixos e os efeitos de tratamento são definidos como desvios da média tal que
5. Experimentos Fatoriais 5.3 Experimentos fatoriais a dois fatores. Modelo de Efeitos Y ijk = µ+τ i +β j +(τβ) ij +ɛ ijk, i = 1, 2,..., a j = 1, 2,..., b k = 1, 2,..., n Ambos os fatores são supostos
POPULAÇÃO X AMOSTRA INTRODUÇÃO À BIOESTATÍSTICA TIPOS DE VARIÁVEIS CLASSIFICAÇÃO DAS VARIÁVEIS CLASSIFICAÇÃO DAS VARIÁVEIS 1) TIPOS DE VARIÁVEIS
POPULAÇÃO X AMOSTRA INTRODUÇÃO À BIOESTATÍSTICA População (N) representa o conjunto de todas as unidades experimentais que apresentam características em comum Amostra (n) representa uma parte do todo.
Delineamento em Quadrado Latino (DQL)
Delineamento em Quadrado Latino () Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha 14 de março de 2019 Londrina Na Seção anterior introduziu-se o delineamento em blocos ao acaso como um delineamento
Métodos Quantitativos em Medicina. Prof. Neli Ortega
Métodos Quantitativos em Medicina Teste de Hipótese Estatística t-student ula 7 Teste de Hipóteses - Estatística do teste estatística do teste de hipótese depende da distribuição da variável na população
MAE0229 Introdução à Probabilidade e Estatística II
Exercício A fim de comparar os salários médios anuais de executivos e executivas de uma determinada cidade, amostras aleatórias de n = 26 executivos e n 2 = 24 executivas foram coletadas obtendose os valores
EXPERIMENTAÇÃO AGRÁRIA
EXPERIMENTAÇÃO AGRÁRIA Tema : Delineamentos experimentais básicos (DCC/DBCC/DQL) Delineamento Completamente 1. Quando usar? Casualizado (DCC) Este delineamento é usado quando as unidades experimentais
Capítulo 9 - Regressão Linear Simples (RLS): Notas breves
Capítulo 9 - Regressão Linear Simples RLS: Notas breves Regressão Linear Simples Estrutura formal do modelo de Regressão Linear Simples RLS: Y i = β 0 + β 1 x i + ε i, 1 onde Y i : variável resposta ou
Teste de hipótese de variância e Análise de Variância (ANOVA)
Teste de hipótese de variância e Análise de Variância (ANOVA) Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais Testes sobre variâncias Problema: queremos saber se há diferenças estatisticamente
Estatística descritiva
Estatística descritiva Para que serve a estatística? Qual o seu principal objectivo? obter conclusões sobre a população usando uma amostra? População Amostragem Amostra Uma ou mais variáveis (X) são observadas
Esse material foi extraído de Barbetta (2007 cap 13)
Esse material foi extraído de Barbetta (2007 cap 13) - Predizer valores de uma variável dependente (Y) em função de uma variável independente (X). - Conhecer o quanto variações de X podem afetar Y. Exemplos
Delineamento e Análise Experimental Aula 4
Aula 4 Castro Soares de Oliveira ANOVA Significativa Quando a aplicação da análise de variância conduz à rejeição da hipótese nula, temos evidência de que existem diferenças entre as médias populacionais.
QMRE = n (p+1) R 2. 1 R 2 (p,n (p+1)), sob H 0.
INSTITUTO SUPERIOR DE AGRONOMIA ESTATÍSTICA E DELINEAMENTO 4 de Janeiro, 205 SEGUNDO TESTE 204-5 Uma resolução possível I. O valor R 2 =0.528 significa que esta regressão linear múltipla explica quase
ANOVA - parte I Conceitos Básicos
ANOVA - parte I Conceitos Básicos Erica Castilho Rodrigues 9 de Agosto de 2011 Referências: Noções de Probabilidade e Estatística - Pedroso e Lima (Capítulo 11). Textos avulsos. Introdução 3 Introdução
Estatística aplicada a ensaios clínicos
Estatística aplicada a ensaios clínicos RAL - 5838 Luís Vicente Garcia [email protected] Faculdade de Medicina de Ribeirão Preto Estatística aplicada a ensaios clínicos aula 12 1 grupo 2 grupos > 2
Análise de Dados Longitudinais Aula
1/35 Análise de Dados Longitudinais Aula 08.08.2018 José Luiz Padilha da Silva - UFPR www.docs.ufpr.br/ jlpadilha 2/35 Sumário 1 Revisão para dados transversais 2 Como analisar dados longitudinais 3 Perspectiva
INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE SAÚDE ESTATÍSTICA. Cursos: Licenciatura em Enfermagem
INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE SAÚDE ESTATÍSTICA Cursos: Licenciatura em Enfermagem Teste Final o Ano/3 o Semestre 007/08 Data: a feira, 9 de Novembro de 007 Duração: 4h às h Instruções:.
Testes de Hipóteses para. uma Única Amostra. Objetivos de Aprendizagem. 9.1 Teste de Hipóteses. UFMG-ICEx-EST-027/031 07/06/ :07
-027/031 07/06/2018 10:07 9 ESQUEMA DO CAPÍTULO 9.1 TESTE DE HIPÓTESES 9.2 TESTES PARA A MÉDIA DE UMA DISTRIBUIÇÃO NORMAL, VARIÂNCIA CONHECIDA 9.3 TESTES PARA A MÉDIA DE UMA DISTRIBUIÇÃO NORMAL, VARIÂNCIA
Razão para rejeitar H 0
Processo do teste de hipótese Hipótese de pesquisa: a idade média da população é 5 H : μ = 5 H 1 : μ 5 É X = improvável se μ =5? População Selecionar amostra aleatória Sim: Rejeite Ho Para definir pouco
PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) EXPERIMENTOS COM DOIS FATORES E O PLANEJAMENTO FATORIAL
PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) EXPERIMENTOS COM DOIS FATORES E O PLANEJAMENTO FATORIAL Dr Sivaldo Leite Correia CONCEITOS E DEFINIÇÕES FUNDAMENTAIS Muitos experimentos são realizados visando
Stela Adami Vayego Estatística II CE003/DEST/UFPR
Resumo 1 Teste de hipóteses não paramétricos Os métodos não-paramétricos fazem poucas suposições sobre a natureza das distribuições dos dados. Não exige que as distribuições nas populações sejam normais,
Estatística Aplicada II. } Regressão Linear
Estatística Aplicada II } Regressão Linear 1 Aula de hoje } Tópicos } Regressão Linear } Referência } Barrow, M. Estatística para economia, contabilidade e administração. São Paulo: Ática, 007, Cap. 7
Capítulo 6 Estatística não-paramétrica
Capítulo 6 Estatística não-paramétrica Slide 1 Teste de ajustamento do Qui-quadrado Testes de independência e de homogeneidade do Qui-quadrado Testes dos sinais e de Wilcoxon Teste de Mann-Whitney Teste
Testes t para comparação de médias de dois grupos independentes
Testes t para comparação de médias de dois grupos independentes Acadêmicas do curso de Zootecnia - Aline Cristina Berbet Lopes Amanda da Cruz Leinioski Larissa Ceccon Universidade Federal do Paraná UFPR/2015
Estatística II Licenciatura em Gestão TESTE I
Estatística II Licenciatura em Gestão 1 o semestre 2015/2016 14/01/2016 09:00 Nome N o Espaço reservado a classificações A utilização do telemóvel, em qualquer circunstância, é motivo suficiente para a
MOQ 13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel
MOQ 13 PROBABILIDADE E ESTATÍSTICA Professor: Rodrigo A. Scarpel [email protected] www.mec.ita.br/~rodrigo Programa do curso: Semanas 1 3 4 5 6 7 8 9 10 11 1 13 14 15 e 16 Introdução à probabilidade (eventos,
Teste de Cochran (Homogeneidade de Variância)
ara o modelo heterocedástico, vamos inicialmente testar as hipóteses Os métodos mais utilizados são os testes de Cochran, Bartlett e de Levene. Teste de Cochran (Homogeneidade de Variância) O teste de
TESTE DE COMPARAÇÃO MÚLTIPLA
SUMÁRIO 1 TESTE DE COMPARAÇÃO MÚLTIPLA Quando a aplicação da análise de variância conduz à rejeição da hipótese nula, temos evidência de que existem diferenças entre as médias populacionais. Mas, entre
Testes de Hipóteses sobre a média: Várias Amostras
Testes de Hipóteses sobre a média: Várias Amostras Na aula de hoje veremos como comparar mais de duas populações, baseados em dados fornecidos por amostras dessas populações. A Análise de Variância (ANOVA)
PHD 5742 Estatística Aplicada ao Gerenciamento dos Recursos Hídricos. 6 a aula Testes de Hipóteses
PHD 5742 Estatística Aplicada ao Gerenciamento dos Recursos Hídricos 6 a aula Testes de Hipóteses Mario Thadeu Leme de Barros Luís Antonio Villaça de Garcia Abril / 2007 Estatística Aplicada ao Gerenciamento
Análise de Dados Longitudinais Modelos de Regressão - Perspecitva Histórica
1/41 Análise de Dados Longitudinais Modelos de Regressão - Perspecitva Histórica Enrico A. Colosimo/UFMG http://www.est.ufmg.br/ enricoc/ Revisão para Dados Transversais 1 Características Informações amostrais
Testes de Hipóteses Paramétricos
Testes de Hipóteses Paramétricos Departamento de Matemática Escola Superior de Tecnologia de Viseu (DepMAT ESTV) Testes de Hipóteses Paramétricos 1 / 41 Introdução. Hipóteses Estatísticas. Erro Tipo I
Testes de Hipóteses Paramétricos
Testes de Hipóteses Paramétricos Carla Henriques Departamento de Matemática Escola Superior de Tecnologia de Viseu Introdução Exemplos Testar se mais de metade da população irá consumir um novo produto
Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança
Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://páginapessoal.utfpr.edu.br/ngsilva Estimação de Parâmetros Intervalo de Confiança Introdução A inferência estatística é o processo
Estatística - Análise de Regressão Linear Simples. Professor José Alberto - (11) sosestatistica.com.br
Estatística - Análise de Regressão Linear Simples Professor José Alberto - (11 9.7525-3343 sosestatistica.com.br 1 Estatística - Análise de Regressão Linear Simples 1 MODELO DE REGRESSÃO LINEAR SIMPLES
Teste de Hipóteses Paramétricos
Teste de Hipóteses Paramétricos Fundamentos de um teste de hipóteses Como construir testes de hipóteses para uma média. Como construir testes de hipóteses para uma proporção. Como construir testes de hipóteses
ANÁLISE DE VARIÂNCIA. y j = µ + τ i + e i j = µ i + e i j
SUMÁRIO 1 Análise de Variância 1 1.1 O Teste F...................................... 1.2 Verificando as pressuposições do modelo..................... 5 1.2.1 Verificação de Normalidade.........................
Estatística Aplicada II. } Correlação e Regressão
Estatística Aplicada II } Correlação e Regressão 1 Aula de hoje } Tópicos } Correlação e Regressão } Referência } Barrow, M. Estatística para economia, contabilidade e administração. São Paulo: Ática,
Exame de Recorrência de Métodos Estatísticos. Departamento de Matemática Universidade de Aveiro
Exame de Recorrência de Métodos Estatísticos Departamento de Matemática Universidade de Aveiro Data: 6/6/6 Duração: 3 horas Nome: N.º: Curso: Regime: Declaro que desisto Classificação: As cotações deste
