Aula 7. Testes de Hipóteses Paramétricos (II)
|
|
|
- Sabina Coradelli Carvalho
- 8 Há anos
- Visualizações:
Transcrição
1 Aula 7. Testes de Hipóteses Paramétricos (II) Métodos Estadísticos 008 Universidade de Averio Profª Gladys Castillo Jordán
2 IC e TH para comparação de valores médios µ X e µ Y de duas populações Normais. Amostras independentes Temos duas amostras aleatórias X 1,, X n e Y 1,, Y m independentes e provenientes de duas populações Normais N(µ X, σ X ) e N(µ Y, σ Y ) Caso 1: variâncias conhecidas Estatística do Teste de Hipóteses IC para µ 1 µ a grau de confiança 1-α Caso : variâncias desconhecidas mas iguais Estatística do Teste de Hipóteses IC para µ x µ y a grau de confiança 1-α onde
3 IC e TH para comparação de valores médios µ X e µ Y de duas populações Normais. Amostras independentes Caso 1: variâncias conhecidas = 0 vs. H 1 0 = 0 vs. H 1 < 0 = 0 vs. H 1 > 0 teste bilateral teste unilateral (inferior) teste unilateral (superior) Estatística do Teste: T = RC α para teste bilateral f T (x) Região de Rejeição (Região Crítica (RC) : se H 1 0 RC α = { t R : t > z 1-α/ } se H 1 < 0 RC α = { t R : t < z α } α RC 1 α RC α se H 1 > 0 RC α = { t R : t > z α } - z α/ z α/ + 3
4 TH para comparação de valores médios µ X e µ Y de duas populações Normais. Amostras independentes Caso : variâncias desconhecidas mas iguais = 0 vs. H 1 0 teste bilateral = 0 vs. H 1 < 0 = 0 vs. H 1 > 0 teste unilateral (inferior) teste unilateral (superior) Estatística do Teste: T = Região de Rejeição (Região Crítica (RC) : se H 1 0 RC α = { t R : t > t } 1-α/, (n+m-) se H 1 < 0 RC α = { t R : t < t } α, (n+m-) se H 1 > 0 RC α = { t R : t > t } 1-α, (n+m-) 4
5 Procedimentos Existem 3 procedimentos para realizar um teste de hipótese ao nível de significância α : 1. Com base na região crítica RC Rejeitar H se o valor t 0 obs encontra-se na RC (t obs - o valor da estatística do teste para os dados observados). Através do p-value Rejeitar se p-value α 3. Através de intervalos de confiança (válido apenas para testes bilaterais) Rejeitar H se o valor do parâmetro especificado em 0 ao intervalo de confiança não pertencer 5
6 IC e TH para comparação de valores médios µ X e µ Y de duas populações Normais. Amostras independentes Caso : variâncias desconhecidas mas iguais Exemplo 4.10, pag 179 O melhor amigo de Rocha trabalha numa fábrica de componentes de automóveis. A linha de produção dos discos de travão possui 8 máquinas numeradas de 1 a 8. Pretende-se saber se há evidencias para afirmar que as máquinas com numeração inferior ou igual a 4 produzem discos de diâmetro médio significativamente diferente dos restantes. Os diâmetros de uma amostra de discos de travão aí produzidos encontram-se no ficheiro Travões.sav. X diâmetro de disco de travão produzido nas máquinas 1-4 X ~ N( µ, σ ) X X Y diâmetro de disco de travão produzido nas máquinas 5-8 Y ~ N( µ, σ ) Y Y Para testar se as máquinas com numeração inferior ou igual a 4 produzem discos de diâmetro médio significativamente diferente dos restantes podemos implementar um teste de hipótese para comparação de valores médios de duas amostras independentes = 0 vs. H 1 0 = µ Y vs. H 1 µ Y 6
7 Procedimento usando SPSS Analyze Compare Means Independent Samples T Test Caso : variâncias desconhecidas mas iguais Exemplo 4.10, pag 179 Os dados das duas amostras (ou grupos) devem estar dispostos numa só coluna devendo existir uma outra coluna que identifique a amostra (neste caso a coluna maquina ) 7
8 Procedimento usando SPSS Analyze Compare Means Independent Samples T Test Exemplo 4.10, pag 179 Os grupos podem ser discriminados por um cut point Usando como cut-point máquina =5 podemos dividir a amostra dos diâmetros em duas amostras independentes 8
9 Procedimento usando SPSS Analyze Compare Means Independent Samples T Test 1. Todas as observações são independentes e apresentam-se numa escala de razões ou intervalos Os diâmetros são representados numa escala de razões e admite-se que a recolha de observações foi feita em condições de independência e igualdade de condições. Ambas as amostras provêm de populações normalmente distribuídas Construir QQ-plot para cada amostra 3. Existe homogeneidade de variâncias Usar teste de Levene (fornecido pelo próprio SPSS) Exemplo 4.10, pag 179 Para poder realizar este teste temos de validar as hipóteses inerentes: H : σ = σ vs. H : σ σ 0 X Y 1 X Y 9
10 Procedimento usando SPSS Analyze Compare Means Independent Samples T Test Exemplo 4.10, pag 179 Construir QQ-plot para cada amostra dividendo os dados em grupos Os QQ-plots construídos com base nas diferenças (x i -3) parecem confirmar a distribuição Normal como subjacente aos dados 10
11 Procedimento usando SPSS Analyze Compare Means Independent Samples T Test Exemplo 4.10, pag 179 Teste bilateral = µ Y vs. H 1 : µ x µ Y Grau de Confiança: 95% Nível de Significância: α = 0.05 Resultados para o teste de Levene Resultados para o T teste O SPSS fornece dois conjuntos de resultados: um assumindo a igualdade de variâncias e outro que admite a não igualdade de variância Para o teste de Levene: (igualdade das variâncias?) p-value=0.067 > α= 0.05 não rejeitar a hipótese nula considerar iguais variâncias Para o T teste (igualdade das médias?) p-value=0.688 > α = 0.05 não rejeitar a hipótese nula considerar iguais médias CONCLUIR: considerar o diâmetro médio dos dois grupos iguais 11
12 IC e TH para comparação de valores médios µ X e µ Y de duas populações Normais. Amostras emparelhadas 1. Temos duas amostras emparelhadas X 1,, X n e Y 1,, Y m provenientes de duas populações Normais N(µ X, σ X ) e N(µ Y, σ Y ) Amostras emparelhadas: se pares de observações (x i, y i ) são dependentes sendo todos os restantes pares (x i, y j ), i j independentes. A amostra de diferenças D i = X i Y i, i =1,, n constitui uma amostra aleatória de observações registadas numa escala de razões ou intervalos : µ D = 0 vs. H 1 : µ D 0 : µ D = 0 vs. H 1 : µ D < 0 teste bilateral teste unilateral (inferior) : µ D = 0 vs. H 1 : µ D > 0 teste unilateral (superior) Estatística do Teste de Hipóteses IC para µ X µ y a grau de confiança 1-α sendo S cd o desvio padrão amostral corrigido das diferenças D i = X i -Y i 1
13 IC e TH para comparação de valores médios µ X e µ Y de duas populações Normais. Amostras emparelhadas Exemplo 4.14, pag 184 A empresa onde o Rocha trabalha lançou recentemente no mercado uma dieta de emagrecimento e pretende fazer o controlo do peso dos seus seguidores. Para tal procedeu-se à recolha dos pesos de 16 indivíduos escolhidos aleatoriamente entre os seus seguidores, obtidos no início e após a dieta. Pretende-se obter um intervalo de confiança a 99% para a diferença dos pesos médios antes e depois da dieta bem como testar se a diferença dos pesos médios (peso inicial- peso final) é positiva. Os dados sobre os pesos inicias e finais encontram-se no ficheiro EstudoDieta.sav. Para poder construir o IC e o TH temos de validar as hipóteses inerentes: 1. Amostras emparelhadas? SIM, o mesmo indivíduo dá origem a duas observações: peso inicial e peso final X peso inicial de um indivíduo, Y peso final de um indivíduo D = X Y diferença entre peso inicial e peso final. Amostras aleatórias de observações registadas numa escala de razões? As amostras são aleatórias pois os indivíduos foram escolhidos aleatoriamente As observações se registam numa escala de razões pois são medidas de pesos 3. A população da diferença D pode se considerar Normal? Construir o QQ-plot para as diferenças 13
14 Procedimento usando SPSS Analyze Descriptive Statistics QQ-plot Construir o QQ-plot para a variável diferença Exemplo 4.14, pag
15 Procedimento usando SPSS Analyze Descriptive Statistics QQ-plot Exemplo 4.14, pag 184 Dado o reduzido número de pontos no gráfico torna-se difícil concluir quanto à normalidade. No obstante, iremos admitir a distribuição Normal como subjacente às diferenças 15
16 Procedimento usando SPSS Analyze Compare Means Paired Samples T Test Exemplo 4.10, pag 179 Paired Variables: pesoi --pesof Teste unilateral à direita : µ D = 0 vs. H 1 : µ D > 0 Grau de Confiança: 99% Nível de Significância: α = 0.01 Para obter o p-value unilateral devemos dividir o p-value bilateral por pois as amostras apontam no sentido da hipótese alternativa (a média das diferenças é 3.66 > 0) p-value unilateral = 0 / = 0 < α = 0.01 rejeitar a hipótese nula para q.q. nível de significância O intervalo de confiança a 99%: (.69, 4.6) CONCLUIR: a diferença de pesos médios antes e depois da dieta se pode considerar positiva 16
17 Referências Livro: Grande Maratona de Estatística no SPSS Andreia Hall, Cláudia Neves e António Pereira Capítulo 4.. Testes de Hipóteses Paramétricos Acetatos: Testes de Hipóteses II Andreia Hall URL: 17
Aula 7. Testes de Hipóteses Paramétricos (II)
Aula 7. Testes de Hipóteses Paramétricos (II) Métodos Estadísticos 008 Universidade de Averio Profª Gladys Castillo Jordán IC e TH para comparação de valores médios µ X e µ Y de duas populações Normais.
Aula 8. Teste Binomial a uma proporção p
Aula 8. Teste Binomial a uma proporção p Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán Teste Binomial a uma Proporção p Seja p ˆ = X n a proporção de indivíduos com uma
Aula 6. Testes de Hipóteses Paramétricos (I)
Aula 6. Testes de Hipóteses Paramétricos (I) Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán Teste de Hipóteses Procedimento estatístico que averigua se os dados sustentam
Aula 8. Teste Binomial a uma proporção p
Aula 8. Teste Binomial a uma proporção p Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán Teste Binomial a uma Proporção p Seja p ˆ = X n a proporção de indivíduos com uma
TESTES DE HIPÓTESES - Generalidades
TESTES DE HIPÓTESES - Generalidades Uma hipótese estatística é uma conjectura sobre uma característica da população. Um teste de hipóteses é um procedimento estatístico que averigua se os dados sustentam
Inferência para duas populações
Inferência para duas populações Capítulo 13, Estatística Básica (Bussab&Morettin, 8a Edição) 7a AULA 27/04/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues 7a aula (27/04/2015) MAE229 1 / 27 1.
X e Y independentes. n + 1 m
DEPARTAMENTO DE ESTATÍSTICA / CCEN / UFPA Disciplina: Inferência I Prof: Regina Tavares 5.0. TESTE DE HIPÓTESES PARA DUAS POPULAÇÕES 5.0.. Duas Populações Normais independentes : X, X 2,, X n uma a.a.
Case Processing Summary
17. O ficheiro Banco.sav encerra informação relativa a 474 empregados contratados por um banco, entre 1969 e 1971. Este banco esteve envolvido num processo judicial no âmbito da Igualdade de Oportunidade
TESTES DE HIPÓTESES - Generalidades
TESTES DE HIPÓTESES - Generalidades Uma hipótese estatística é uma conjectura sobre uma característica da população. Um teste de hipóteses é um procedimento estatístico que averigua se os dados sustentam
Estimação e Testes de Hipóteses
Estimação e Testes de Hipóteses 1 Estatísticas sticas e parâmetros Valores calculados por expressões matemáticas que resumem dados relativos a uma característica mensurável: Parâmetros: medidas numéricas
Inferência a partir de duas amostras
Inferência a partir de duas amostras Inferência a partir de duas amostras. Inferência sobre duas médias: amostras dependentes. Inferência sobre duas médias: amostras grandes e independêntes 3. Comparação
BIOESTATÍSTICA. Parte 5 Testes de Hipóteses
BIOESTATÍSTICA Parte 5 Testes de Hipóteses Aulas Teóricas de 05/05/2011 a 19/05/2011 5.1. Conceito de erro, estatística de teste, região de rejeição, nível de significância, valor de prova, potência do
7. Testes de Hipóteses
7. Testes de Hipóteses Suponha que você é o encarregado de regular o engarrafamento automatizado de leite numa determinada agroindústria. Sabe-se que as máquinas foram reguladas para engarrafar em média,
Teste de Hipóteses Paramétricos
Teste de Hipóteses Paramétricos Fundamentos de um teste de hipóteses Como construir testes de hipóteses para uma média. Como construir testes de hipóteses para uma proporção. Como construir testes de hipóteses
AULA 05 Teste de Hipótese
1 AULA 05 Teste de Hipótese Ernesto F. L. Amaral 03 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario F. 2008. Introdução
Introdução em Probabilidade e Estatística II
Introdução em Probabilidade e Estatística II Lista 7 Exercicio Em estudo genético um gene A foi destacado para detectar uma doença. Se dita que em pessoas doentes (pacientes) este gene mostra atividade
Teste de Hipóteses. Enrico A. Colosimo/UFMG enricoc/ Depto. Estatística - ICEx - UFMG 1/24
1/24 Introdução à Bioestatística Teste de Hipóteses Enrico A. Colosimo/UFMG http://www.est.ufmg.br/ enricoc/ Depto. Estatística - ICEx - UFMG 2/24 Exemplo A concentração de certa substância no sangue entre
Testes de Hipóteses: Média e proporção
Testes de Hipóteses: Média e proporção Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 12 de setembro de 2018 Londrina 1 / 27 Viu-se a construção de intervalos de confiança
AULA 04 Teste de hipótese
1 AULA 04 Teste de hipótese Ernesto F. L. Amaral 03 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal
TESTE DE HIPÓTESE. Introdução
TESTE DE HIPÓTESE Introdução O teste de hipótese estatística objetiva decidir se uma afirmação sobre uma população, usualmente um parâmetro desta, é, ou não, apoiada pela evidência obtida dos dados amostrais.
MAE Introdução à Probabilidade e Estatística II Resolução Lista 4
MAE 9 - Introdução à Probabilidade e Estatística II Resolução Lista 4 Professor: Pedro Morettin e Profa. Chang Chian Exercício 1 Antes de testar se a produtividade média dos operários do período diurno
Carlos Antonio Filho
Estatística II - Seção 04 Carlos Antonio Filho ESAGS 2 o semestre de 2017 Carlos Antonio Filho (ESAGS) Estatística II - Seção 04 2 o semestre de 2017 1 / 137 Comparação de médias de duas populações Vamos
Capítulo 4 Inferência Estatística
Capítulo 4 Inferência Estatística Slide 1 Resenha Intervalo de Confiança para uma proporção Intervalo de Confiança para o valor médio de uma variável aleatória Intervalo de Confiança para a diferença de
AULA 07 Inferência a Partir de Duas Amostras
1 AULA 07 Inferência a Partir de Duas Amostras Ernesto F. L. Amaral 10 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola,
TESTES DE HIPÓTESES. Lucas Santana da Cunha Universidade Estadual de Londrina
TESTES DE HIPÓTESES Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 26 de setembro de 2016 Introdução Viu-se a construção de intervalos
Exame de Recorrência de Métodos Estatísticos. Departamento de Matemática Universidade de Aveiro
Exame de Recorrência de Métodos Estatísticos Departamento de Matemática Universidade de Aveiro Data: 6/6/6 Duração: 3 horas Nome: N.º: Curso: Regime: Declaro que desisto Classificação: As cotações deste
mat.ufrgs..ufrgs.br br/~viali/ mat.ufrgs..ufrgs.br
Prof. Lorí Viali, Dr. http://www. ://www.mat mat.ufrgs..ufrgs.br br/~viali/ viali@mat mat.ufrgs..ufrgs.br Média Uma amostra Proporção Variância Dependentes Diferença de médias m Duas amostras Independentes
7 Teste de Hipóteses
7 Teste de Hipóteses 7-1 Aspectos Gerais 7-2 Fundamentos do Teste de Hipóteses 7-3 Teste de uma Afirmação sobre a Média: Grandes Amostras 7-4 Teste de uma Afirmação sobre a Média : Pequenas Amostras 7-5
Testes de Hipótese para uma única Amostra - parte II
Testes de Hipótese para uma única Amostra - parte II 01 de Julho de 2014 Objetivos Ao final deste capítulo você deve ser capaz de: Testar hipóteses para média de uma população. Serão usadas as distribuições
MAE Introdução à Probabilidade e Estatística II Resolução Lista 5
MAE 229 - Introdução à Probabilidade e Estatística II Resolução Lista 5 Professor: Pedro Morettin e Profa. Chang Chian Exercício 1 (a) De uma forma geral, o desvio padrão é usado para medir a dispersão
Estimação parâmetros e teste de hipóteses. Prof. Dr. Alberto Franke (48)
Estimação parâmetros e teste de hipóteses Prof. Dr. Alberto Franke (48) 91471041 Intervalo de confiança para média É um intervalo em que haja probabilidade do verdadeiro valor desconhecido do parâmetro
Testes de Hipótese para uma única Amostra - parte II
Testes de Hipótese para uma única Amostra - parte II 2012/02 1 Teste para média com variância conhecida 2 3 Objetivos Ao final deste capítulo você deve ser capaz de: Testar hipóteses para média de uma
CE-003: Estatística II - Turma: K/O, 2 a Prova (22/06/2016)
CE-003: Estatística II - Turma: K/O, 2 a Prova (22/06/2016) GRR: Nome: Turma: 1. Calcule as medidas descritivas pedidas para o conjunto de dados, supondo que eles representam uma amostra. 83, 92, 100,
PHD 5742 Estatística Aplicada ao Gerenciamento dos Recursos Hídricos. 6 a aula Testes de Hipóteses
PHD 5742 Estatística Aplicada ao Gerenciamento dos Recursos Hídricos 6 a aula Testes de Hipóteses Mario Thadeu Leme de Barros Luís Antonio Villaça de Garcia Abril / 2007 Estatística Aplicada ao Gerenciamento
INTERVALOS DE CONFIANÇA: DIFERENÇA ENTRE DUAS MÉDIAS
INTERVALOS DE CONFIANÇA: DIFERENÇA ENTRE DUAS MÉDIAS Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 09 de outubro de 2017 Há situações em que o interesse do
Enrico A. Colosimo Depto. Estatística UFMG
Bioestatística F Conceitos de Teste de Hipóteses Enrico A. Colosimo Depto. Estatística UFMG http://www.est.ufmg.br/~enricoc/ f(x).4.35.3.25.2.15.1.5 Tabela Normal Padronizada Distribuicao Gaussiana com
Testes de Hipótese PARA COMPUTAÇÃO
Testes de Hipótese MONITORIA DE ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO Testes de Hipóteses Um teste de hipótese é uma técnica de análise usada para estimar se uma hipótese sobre a população está correta,
DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA)
1. Sabe-se que o nível de significância é a probabilidade de cometermos um determinado tipo de erro quando da realização de um teste de hipóteses. Então: a) A escolha ideal seria um nível de significância
Professora Ana Hermínia Andrade. Período
Teste de Hipóteses Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2016.1 Teste de Hipóteses O Teste de Hipóteses
Testes de Hipóteses para duas médias
Testes de Hipóteses para duas médias Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 19 e 24 de setembro de 2018 Londrina 1 / 17 Tipos de Hipóteses Há muitos problemas em
TESTES DE HIPÓTESES PARA DIFERENÇA DE DUAS MÉDIAS
TESTES DE HIPÓTESES PARA DIFERENÇA DE DUAS MÉDIAS Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 23 de outubro de 2017 Introdução Tipos de Hipóteses Há muitos
1 Teoria da Decisão Estatística
1 Teoria da Decisão Estatística 1.1 Teste de Hipótese É uma metodologia estatística que permite tomar decisão sobre uma ou mais populações baseando no conhecimento de informações da amostra. Ao tentarmos
Teste de Hipótese. Capítulo 8 Triola, 10 a. Ed. (Capítulo 7 Triola, 9 a. Ed.) 1 Visão Geral. 2 Fundamentos do teste de hipótese
Teste de Hipótese Capítulo 8 Triola, 10 a. Ed. (Capítulo 7 Triola, 9 a. Ed.) 1 Visão Geral 2 Fundamentos do teste de hipótese z 3 Teste de uma afirmativa sobre uma Proporção z 4 Teste de uma afirmativa
Princípios de Bioestatística Teste de Hipóteses
1/36 Princípios de Bioestatística Teste de Hipóteses Enrico A. Colosimo/UFMG http://www.est.ufmg.br/ enricoc/ Depto. Estatística - ICEx - UFMG Tabela 2/36 3/36 Exemplo A concentração de certa substância
Testes de Hipóteses Paramétricos
Testes de Hipóteses Paramétricos Carla Henriques Departamento de Matemática Escola Superior de Tecnologia de Viseu Introdução Exemplos Testar se mais de metade da população irá consumir um novo produto
Testes de Hipóteses Paramétricos
Testes de Hipóteses Paramétricos Departamento de Matemática Escola Superior de Tecnologia de Viseu (DepMAT ESTV) Testes de Hipóteses Paramétricos 1 / 41 Introdução. Hipóteses Estatísticas. Erro Tipo I
Teste de hipóteses Página 1 de 8. Teste de hipóteses
Teste de hipóteses Página 1 de 8 Teste de hipóteses O teste de hipóteses serve para verificar se uma dada amostra é ou não compatível com a população de onde foi tirada a amostra. Um teste de hipóteses
INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... ANÁLISE DE VARIÂNCIA. Departamento de Matemática ESTV.
INTRODUÇÃO Exemplos Para curar uma certa doença existem quatro tratamentos possíveis: A, B, C e D. Pretende-se saber se existem diferenças significativas nos tratamentos no que diz respeito ao tempo necessário
Testes de hipóteses. Wagner H. Bonat Fernando P. Mayer Elias T. Krainski
Testes de hipóteses Wagner H. Bonat Fernando P. Mayer Elias T. Krainski Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação 07/06/2018 WB, FM, EK ( LEG/DEST/UFPR
Aula 6. Testes de Hipóteses Paramétricos (I) Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán. Teste de Hipóteses
Aula 6. Testes de Hipóteses Paramétricos (I) Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán Teste de Hipóteses Procedimento estatístico que averigua se os dados sustentam
AULA 11 Teste de Hipótese
1 AULA 11 Teste de Hipótese Ernesto F. L. Amaral 20 de setembro de 2012 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro: LTC. Capítulo
6. NOÇÕES DE INFERÊNCIA ESTATÍSTICA
6. NOÇÕES DE INFERÊNCIA ESTATÍSTICA 2019 Problemas de inferência Inferir significa fazer afirmações sobre algo desconhecido. A inferência estatística tem como objetivo fazer afirmações sobre uma característica
Testes de Hipóteses para. uma Única Amostra. Objetivos de Aprendizagem. 9.1 Teste de Hipóteses. UFMG-ICEx-EST-027/031 07/06/ :07
-027/031 07/06/2018 10:07 9 ESQUEMA DO CAPÍTULO 9.1 TESTE DE HIPÓTESES 9.2 TESTES PARA A MÉDIA DE UMA DISTRIBUIÇÃO NORMAL, VARIÂNCIA CONHECIDA 9.3 TESTES PARA A MÉDIA DE UMA DISTRIBUIÇÃO NORMAL, VARIÂNCIA
Teste para a Média Populacional com Variância Conhecida
Teste para a Média Populacional com Variância Conhecida Quando o desvio padrão σ for conhecido, a estatística do teste é: x µ z obs = σ n onde: x é a média amostral; µ é a média populacional testada (sob
Stela Adami Vayego DEST/UFPR. Resumo 11 - Testes de Hipóteses
Resumo - Testes de Hipóteses.. Introdução Como para a estimação, o propósito dos testes de hipóteses é ajudar o pesquisador a tomar uma decisão referente a uma população, examinando uma amostra (a menos
Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança
Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://páginapessoal.utfpr.edu.br/ngsilva Estimação de Parâmetros Intervalo de Confiança Introdução A inferência estatística é o processo
Parte 8 Testes de hipóteses Comparação de dois grupos
Parte 8 Testes de hipóteses Comparação de dois grupos Um objetivo frequente em estudos de diferentes áreas é a comparação de dois ou mais grupos (ou populações). Alguns exemplos: o Comparação dos salários
TESTES DE HIPÓTESES. HIPÓTESES: São suposições que fazemos para testar a fixação de decisões, que poderão ser verdadeiras ou não.
TESTES DE HIPÓTESES HIPÓTESES: São suposições que fazemos para testar a fixação de decisões, que poderão ser verdadeiras ou não. HIPÓTESES ESTATÍSTICA: Hipótese Nula (H 0 ): a ser validada pelo teste.
Estatística Aplicada. Teste de hipóteses ou teste de significância Cap. 11
Estatística Aplicada Teste de hipóteses ou teste de significância Cap. 11 Conceito Objetivo: decidir se uma afirmação sobre um parâmetro populacional é verdadeira a partir de informações obtidas de uma
Teste Mann-Whitney. Contrapartida não-paramétrica para. Teste-t para amostras independentes
Teste Mann-Whitney Contrapartida não-paramétrica para Teste-t para amostras independentes Teste Mann-Whitney pequenas amostras independentes 1. Testes para Duas Populações, X e Y, Independentes. Corresponde
TESTES DE HIPÓTESES. Conceitos, Testes de 1 proporção, Testes de 1 média
TESTES DE HIPÓTESES Conceitos, Testes de 1 proporção, Testes de 1 média 1 Testes de Hipóteses População Conjectura (hipótese) sobre o comportamento de variáveis Amostra Decisão sobre a admissibilidade
Intervalos de Confiança - Amostras Pequenas
Intervalos de Confiança - Amostras Pequenas Teste de Hipóteses para uma Média Jorge M. V. Capela, Marisa V. Capela, Instituto de Química - UNESP Araraquara, SP [email protected] Araraquara, SP - 2016
Capítulo 11 Análise da Variância. Statistics for Managers Using Microsoft Excel, 5e 2008 Prentice-Hall, Inc. Chap 11-1
Capítulo 11 Análise da Variância Statistics for Managers Using Microsoft Excel, 5e 2008 Prentice-Hall, Inc. Chap 11-1 Objetivos do Aprendizado Neste capítulo você aprenderá: Os conceitos básicos da modelagem
Estatística. Nos exercícios que se seguem, e caso seja necessário, considere que os pressupostos necessários à aplicação da ANOVA são verificados.
INSTITUTO SUPERIOR POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA Ano Lectivo 007/008 Estatística Ficha n.º Nos exercícios que se seguem, e caso seja necessário, considere que os pressupostos necessários
Testes de Hipóteses II
Testes de Hipóteses II Capítulo 12, Estatística Básica (Bussab&Morettin, 8a Edição) 6a AULA 06/04/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues 5a aula (06/04/2015) MAE229 1 / 23 1. Teste para
Inferência estatística
Inferência estatística Susana Barbosa Mestrado em Ciências Geofísicas 2013-2014 Inferência estatística Obtenção de conclusões sobre propriedades da população a partir das propriedades de uma amostra aleatória
1. (a) Lembre-se que a média de uma variável aleatória discreta é uma média ponderada de seus valores, com as probabilidades sendo os pesos.
GET00172 - Fundamentos de Estatística Aplicada Gabarito da Lista de Exercícios Inferência rofa. Ana Maria Farias 1. a Lembre-se que a média de uma variável aleatória discreta é uma média ponderada de seus
Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo
Testes de Hipóteses Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução e notação Em geral, intervalos de confiança são a forma mais
Prof. a Dr. a Simone Daniela Sartorio de Medeiros. DTAiSeR-Ar
Teste de hipótese para a média de populações normais Prof. a Dr. a Simone Daniela Sartorio de Medeiros DTAiSeR-Ar Teste de hipóteses para média de populações normais Objetivo: avaliar afirmações sobre
ANÁLISE DOS RESÍDUOS. Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos:
ANÁLISE DOS RESÍDUOS Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos: seguem uma distribuição normal; têm média zero; têm variância σ 2 constante
Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística. Princípios de Bioestatística.
Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Inferência Estatística: Inferência Básica Princípios de Bioestatística decidindo na presença de incerteza Aula
Escolha dos testes INTRODUÇÃO À BIOESTATÍSTICA QUANTIFICAÇÃO DOS GRUPOS DO ESTUDO PESQUISA INFERÊNCIA ESTATÍSTICA TESTE DE HIPÓTESES E
Escolha dos testes INTRODUÇÃO À BIOESTATÍSTICA Determinada a pergunta/ hipótese Recolhidos os dados Análise descritiva = Estatística descritiva QUAIS TESTES ESTATÍSTICOS DEVEM SER REALIZADOS?? PROFESSORA:
Prof. Lorí Viali, Dr. Mat2282 Análise Estatística Não Paramétrica
Prof. Lorí Viali, Dr. http://www.pucrs.br/~viali/ [email protected] Objetivos Testar o valor hipotético de um parâmetro (testes paramétricos) ou de relacionamentos ou modelos (testes não paramétricos). Envolvem
Capítulo 6 Estatística não-paramétrica
Capítulo 6 Estatística não-paramétrica Slide 1 Teste de ajustamento do Qui-quadrado Testes de independência e de homogeneidade do Qui-quadrado Testes dos sinais e de Wilcoxon Teste de Mann-Whitney Teste
Aula 5. Teste de Hipóteses II. Capítulo 12, Bussab&Morettin Estatística Básica 7ª Edição
Aula 5. Teste de Hipóteses II. Capítulo 12, Bussab&Morettin Estatística Básica 7ª Edição Procedimento teste de hipótese para proporção. Resumo. (1) Estabelecer as hipóteses: H: p = p 0 contra uma das alternativas
FOLHA 3 - Inferência
Instituto Politécnico de Leiria Escola Superior de Tecnologia e Gestão Componente Prática de Estatística Aplicada Contabilidade e Finanças FOLHA 3 - Inferência 1. O conteúdo (em litros) de garrafas de
Exame Final de Métodos Estatísticos
Exame Final de Métodos Estatísticos Data: de Junho de 26 Duração: 3h. Nome: Curso: Declaro que desisto N. Mec. Regime: As cotações deste exame encontram-se na seguinte tabela. Responda às questões utilizando
ESCOLA SUPERIOR DE TECNOLOGIA
Departamento Matemática Curso Engenharia do Ambiente 2º Semestre 1º Folha Nº 5: Testes Paramétricos Probabilidades e Estatística 1. O director comercial de uma cadeia de lojas pretende comparar duas técnicas
Teste de Hipótese e Intervalo de Confiança
Teste de Hipótese e Intervalo de Confiança Suponha que estamos interessados em investigar o tamanho da ruptura em um músculo do ombro... para determinar o tamanho exato da ruptura, é necessário um exame
Bioestatística e Computação I
Bioestatística e Computação I Inferência por Teste de Hipótese Maria Virginia P Dutra Eloane G Ramos Vania Matos Fonseca Pós Graduação em Saúde da Mulher e da Criança IFF FIOCRUZ Baseado nas aulas de M.
Testes de hipóteses com duas amostras CURSO DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA. Módulo: ESTIMATIVA E TESTE DE HIPÓTESE.
CURSO DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA Módulo: ESTIMATIVA E TESTE DE HIPÓTESE slide Testes de hipóteses com duas amostras slide Larson/Farber 4th ed Descrição - Testar a diferença entre médias
Delineamento e Análise Experimental Aula 3
Aula 3 Castro Soares de Oliveira Teste de hipótese Teste de hipótese é uma metodologia estatística que permite tomar decisões sobre uma ou mais populações baseando-se no conhecimento de informações da
Capítulo 9 - Regressão Linear Simples (RLS): Notas breves
Capítulo 9 - Regressão Linear Simples RLS: Notas breves Regressão Linear Simples Estrutura formal do modelo de Regressão Linear Simples RLS: Y i = β 0 + β 1 x i + ε i, 1 onde Y i : variável resposta ou
Unidade IV Inferência estatística
6//5 Unidade IV Inferência estatística 4.. Introdução e histórico 4.. Conceitos fundamentais 4.3. Distribuições amostrais e Teorema central do limite 4.4. Estimação de parâmetros 4.5. Testes de hipóteses
Análise de Aderência e de Associação
Análise de Aderência e de Associação Capítulo 14, Estatística Básica (Bussab & Morettin, 8a Edição) Capítulo 8, Introdução Computacional à Probabilidade e Estatística (Pedrosa & Gama, Porto Editora) 8a
6. NOÇÕES DE INFERÊNCIA ESTATÍSTICA
6. NOÇÕES DE INFERÊNCIA ESTATÍSTICA 214 Problemas de inferência Inferir significa fazer afirmações sobre algo desconhecido. A inferência estatística tem como objetivo fazer afirmações sobre uma característica
Planejamento de Experimentos Introdução - Teste t
1/22 Planejamento de Experimentos Introdução - Teste t Enrico A. Colosimo/UFMG http://www.est.ufmg.br/ enricoc/ Depto. Estatística - ICEx - UFMG 2/22 Introdução - Planejamento de Experimentos Experimento:
Testes de hipóteses Paramétricos
Testes de hipóteses Paramétricos Modelos de análise de variância com um factor Teste de Bartlett Teste de comparações múltiplas de Scheffé Rita Brandão (Univ. Açores) Testes de hipóteses Paramétricos 1
Teste de hipóteses. Estatística Aplicada Larson Farber
7 Teste de hipóteses Estatística Aplicada Larson Farber Seção 7.1 Introdução ao teste de hipóteses Uma hipótese estatística é uma alegação sobre uma população. A hipótese nula H 0 contém uma alternativa
TOMADA DE DECISÃO PARA DUAS AMOSTRAS INTRODUÇÃO ROTEIRO. Estatística Aplicada à Engenharia 1 INFERÊNCIA SOBRE A DIFERENÇA DE MÉDIAS
ROTEIRO. Introdução. Inferência sobre as médias de duas populações com variâncias conhecidas TOMADA DE DECISÃO PARA DUAS AMOSTRAS 3. Inferência sobre as médias de duas populações com variâncias desconhecidas
Testes t para comparação de médias de dois grupos independentes
Testes t para comparação de médias de dois grupos independentes Acadêmicas do curso de Zootecnia - Aline Cristina Berbet Lopes Amanda da Cruz Leinioski Larissa Ceccon Universidade Federal do Paraná UFPR/2015
(a) Teste e IC para Duas Variâncias. (b) Teste para médias. Duas Amostras de Teste T e IC
Exercício 1 Contexto: amostras independentes de populações normais (a) Teste e IC para Duas Variâncias Método Hipótese nula Variância(Primeiro) / Variância(Segundo) = 1 Hipótese alternativa Variância(Primeiro)
Testes de Hipóteses. : Existe efeito
Testes de Hipóteses Hipótese Estatística de teste Distribuição da estatística de teste Decisão H 0 : Não existe efeito vs. H 1 : Existe efeito Hipótese nula Hipótese alternativa Varia conforme a natureza
