Estatística Aplicada II. } Regressão Linear
|
|
|
- Maria Clara Pacheco
- 7 Há anos
- Visualizações:
Transcrição
1 Estatística Aplicada II } Regressão Linear 1
2 Aula de hoje } Tópicos } Regressão Linear } Referência } Barrow, M. Estatística para economia, contabilidade e administração. São Paulo: Ática, 007, Cap. 7 e 8
3 Aula de hoje Objetivos: } Entender a causalidade entre variáveis através da análise de regressão 3
4 Revisão
5 Covariância } Dados n pares de valores (x 1, y 1 )..., (x n, y n ), chamaremos de covariância entre as variáveis X e Y, na população: cov( X, Y) n i = = 1 ( x x)( y y) } Para calcular a covariância na amostra, devemos dividir por n-1 e não por n } É a média dos produtos dos valores centrados das variáveis } Tendo esta definição, podemos escrever o coeficiente de correlação como: corr ( X, Y) = i n cov( X, Y) dp( X ). dp( Y) i 5
6 Os resultados são significantes? Ø H 0 : r = 0 H 1 : r 0 Ø A estatística do teste é: t = r n 1 r Ø A qual tem distribuição t com n- graus de liberdade 6
7 Teste de Hipótese } As etapas do teste são: 1. Escrever as hipóteses alternativas e nulas. Escolher o nível de significância do teste α 3. Calcular a estatística t, conhecida como a estatística do teste 4. Calcular o valor crítico do teste t *, 5. Decidir: Se o valor absoluto de t for maior do que o de t *, rejeitar H 0 com um nível de confiança de 1-α 7
8 Regressão Linear Simples Ø Modelo linear para explicar a variável Y, denominada variável dependente, explicada ou endógena como função da variável X, denominada variável independente, explicativa ou exógena 8
9 Regressão Linear Simples 60 Birth rate Y ˆ = a + bx Growth rate 9
10 Regressão Linear Simples 40 Birth rate error, e Growth rate 10
11 Regressão Linear Simples Ø A relação entre valor observado de Y e valor previsto de Y pelo modelo é dada por: Y = Yˆ + e Y = a + bx + e 11
12 Regressão Linear Simples Ø Os valores de a e b são dados pela minimização da soma do quadrado dos erros. Tem-se: e e b n n XY X X Y ( X ) a Y bx 1
13 Regressão Linear and Simples birth rates Country Birth rate GNP growth Y X Y X XY Brazil Colombia Costa Rica India , Mexico , Peru , Philippines , Senegal , South Korea Sri Lanka Taiwan Thailand Total , ,
14 Regressão Linear Simples 35 TSS component Y i Yˆi Y RSS component 30 3 Growth rate X.8 14
15 Regressão Linear Simples Ø Mensuração da qualidade do ajuste: R RSS TSS Em que: TSS Y Y Y ny ˆ ESS Y Y Y a Y b XY 15
16 Inferência
17 Regressão Linear Simples - Inferência Ø Considere: Y i = a + bx i + e i Ø Utilizamos dados amostrais para calcular a e b. Ø Os valores a e b são estimativas dos verdadeiros parâmetros populacionais alpha e beta. 17
18 Regressão Linear Simples - Inferência Ø Podemos testar hipóteses com relação aos parâmetros populacionais Ø Para isso, precisamos calcular o desvio-padrão associado a cada uma delas. Ø A variância iance de b of é dada is por: given s b s i e ( X X ) 18
19 Regressão Linear Simples - Inferência 19 Ø Em que a variância estimada do erro é dada por: Ø A variância de a é dada por: n ESS n e s i e ) ( 1 X X X n s s i e a
20 Regressão Linear Simples - Inferência Ø Estamos prontos para testar hipóteses com relação aos valores dos parâmetros populacionais Ø Exemplo: H 0 : = 0 H 1 : 0 Ø A estatística do teste é: t b s b ~ tn 0
21 Regressão Linear Simples - Inferência Ø Podemos também criar intervalos de confiança para os parâmetros populacionais. Ø Como exercício, crie o intervalo de confiança de 95% para beta em nosso exemplo. 1
22 Regressão Linear Simples - Inferência Ø Podemos também testar se o valor do verdadeiro R-squared é igual a zero: H 0 : R = 0 H 1 : R > 0 Ø Nesse caso, a estatística do teste é: F R 1 ~ F 1, n 1 R n
23 Regressão Linear Múltipla
24 Regressão Linear Múltipla Ø Se a variável dependente for uma função de k variáveis explicativas, tem-se: Y b 0 b X 1 1 b X b k X k e Ø Como anteriormente, os valores dos parâmetros são estimados através da minimização da soma dos quadrados dos resíduos. 4
25 Regressão Linear Múltipla Ø Exemplo: Demanda por Importações Year Imports GDP GDP deflator Price of imports RPI all items : : : : : :
26 Regressão Linear Múltipla Ø Gráfico das séries em termos reais Real imports Real GDP Real import prices 6
27 Regressão Linear Múltipla Ø Gráfico das importações e PIB, ambas em termos reais Real imports Real GDP 7
28 Regressão Linear Múltipla Ø Gráfico das importações e preços de importados, ambos em termos reais Real imports Import prices 8
29 Regressão Linear Múltipla Ø Os valores dos parâmetros estimados, bem como as informações para testes de hipóteses calculados no lab estão apresentados a seguir: Coefficients Standard Error t Stat P-value Intercept Real GDP Real import prices Ø Adicionalmente, o R-squared reportado foi de
30 Regressão Linear Múltipla Ø O teste de significância do R-squared está sumarizado na tabela a seguir: ANOVA df SS MS F Significance F Regression E-1 Residual Total
31 Regressão Linear Múltipla Ø Estimando-se o modelo em logs, obtem-se: Coefficients Standard Error t Stat P-value Intercept ln GDP ln import prices Ø Com coeficiente de determinação de 0.98, significantemente diferente de zero. 31
Estatística Aplicada II. } Correlação e Regressão
Estatística Aplicada II } Correlação e Regressão 1 Aula de hoje } Tópicos } Correlação e Regressão } Referência } Barrow, M. Estatística para economia, contabilidade e administração. São Paulo: Ática,
Regressão. PRE-01 Probabilidade e Estatística Prof. Marcelo P. Corrêa IRN/Unifei
Regressão PRE-01 Probabilidade e Estatística Prof. Marcelo P. Corrêa IRN/Unifei Regressão Introdução Analisar a relação entre duas variáveis (x,y) através da equação (equação de regressão) e do gráfico
Regressão linear múltipla - Correlação parcial
Regressão linear múltipla - Correlação parcial trigo Matriz de correlações: trigo % matéria orgânica 40 103 32 1 58 192 45 28 50 300 39 5 72 420 46 11 61 510 34 14 69 630 38 2 63 820 32 12 % matéria orgânica
Contabilometria. Aula 9 Regressão Linear Inferências e Grau de Ajustamento
Contabilometria Aula 9 Regressão Linear Inferências e Grau de Ajustamento Interpretação do Intercepto e da Inclinação b 0 é o valor estimado da média de Y quando o valor de X é zero b 1 é a mudança estimada
REGRESSÃO LINEAR Parte I. Flávia F. Feitosa
REGRESSÃO LINEAR Parte I Flávia F. Feitosa BH1350 Métodos e Técnicas de Análise da Informação para o Planejamento Julho de 2015 Onde Estamos Para onde vamos Inferência Esta5s6ca se resumindo a uma equação
Correlação e Regressão Linear
Correlação e Regressão Linear Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais CORRELAÇÃO LINEAR Coeficiente de correlação linear r Mede o grau de relacionamento linear entre valores
Correlação e Regressão
Correlação e Regressão Vamos começar com um exemplo: Temos abaixo uma amostra do tempo de serviço de 10 funcionários de uma companhia de seguros e o número de clientes que cada um possui. Será que existe
Definição Há correlação entre duas variáveis quando os valores de uma variável estão relacionados, de alguma maneira, com os valores da outra variável
Correlação Definição Há correlação entre duas variáveis quando os valores de uma variável estão relacionados, de alguma maneira, com os valores da outra variável Exemplos Perímetro de um quadrado e o tamanho
Modelo de Regressão Múltipla
Modelo de Regressão Múltipla Modelo de Regressão Linear Simples Última aula: Y = α + βx + i i ε i Y é a variável resposta; X é a variável independente; ε representa o erro. 2 Modelo Clássico de Regressão
UNIVERSIDADE FEDERAL DA FRONTEIRA SUL Campus CERRO LARGO. PROJETO DE EXTENSÃO Software R: de dados utilizando um software livre.
UNIVERSIDADE FEDERAL DA FRONTEIRA SUL Campus CERRO LARGO PROJETO DE EXTENSÃO Software R: Capacitação em análise estatística de dados utilizando um software livre. Fonte: https://www.r-project.org/ Módulo
ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc.
ECONOMETRIA Prof. Patricia Maria Bortolon, D. Sc. Cap. 8 Análise de Regressão Múltipla: o Problema da Inferência Fonte: GUJARATI; D. N. Econometria Básica: 4ª Edição. Rio de Janeiro. Elsevier- Campus,
INTRODUÇÃO A ECONOMETRIA
INTRODUÇÃO A ECONOMETRIA Análise de regressão e uso do Eviews Introdução O modelo de regressão linear se utiliza para estudar a relação que existe entre uma variável dependente e uma ou várias variáveis
Gabarito Lista 2 LES0773 Estatística III. Os resultados dessa regressão são apresentados na seguinte tabela:
Gabarito Lista 2 LES0773 Estatística III Exercício 1) Utilizando a ferramenta Análise de Dados e a sua função Regressão, foi realizada uma regressão levando em consideração os gastos com PD como variável
Módulo 16- Análise de Regressão
Módulo 6 Análise de Regressão Módulo 6- Análise de Regressão Situação Problema Um grupo de investidores estrangeiros deseja aumentar suas atividades no Brasil. Considerando a conjuntura econômica de moeda
Regressões: Simples e MúltiplaM. Prof. Dr. Luiz Paulo Fávero 1
Regressões: Simples e MúltiplaM Prof. Dr. Luiz Paulo FáveroF Prof. Dr. Luiz Paulo Fávero 1 1 Técnicas de Dependência Análise de Objetivos 1. Investigação de dependências entre variáveis. 2. Avaliação da
Modelos de Regressão Linear Simples - parte III
1 Modelos de Regressão Linear Simples - parte III Erica Castilho Rodrigues 20 de Setembro de 2016 2 3 4 A variável X é um bom preditor da resposta Y? Quanto da variação da variável resposta é explicada
Análise da Regressão múltipla: Inferência. Aula 4 6 de maio de 2013
Análise da Regressão múltipla: Inferência Revisão da graduação Aula 4 6 de maio de 2013 Hipóteses do modelo linear clássico (MLC) Sabemos que, dadas as hipóteses de Gauss- Markov, MQO é BLUE. Para realizarmos
RESUMO DO CAPÍTULO 3 DO LIVRO DE WOOLDRIDGE ANÁLISE DE REGRESSÃO MÚLTIPLA: ESTIMAÇÃO
RESUMO DO CAPÍTULO 3 DO LIVRO DE WOOLDRIDGE ANÁLISE DE REGRESSÃO MÚLTIPLA: ESTIMAÇÃO Regressão simples: desvantagem de apenas uma variável independente explicando y mantendo ceteris paribus as demais (ou
Capacitação em R e RStudio PROJETO DE EXTENSÃO. Software R: capacitação em análise estatística de dados utilizando um software livre.
UFFS Universidade Federal da Fronteira Sul Campus Cerro Largo PROJETO DE EXTENSÃO Software R: capacitação em análise estatística de dados utilizando um software livre Fonte: https://www.r-project.org/
Capítulo 9 - Regressão Linear Simples (RLS): Notas breves
Capítulo 9 - Regressão Linear Simples RLS: Notas breves Regressão Linear Simples Estrutura formal do modelo de Regressão Linear Simples RLS: Y i = β 0 + β 1 x i + ε i, 1 onde Y i : variável resposta ou
Capítulo 9 - Regressão Linear Simples (RLS): Notas breves
Capítulo 9 - Regressão Linear Simples RLS: Notas breves Regressão Linear Simples Estrutura formal do modelo de Regressão Linear Simples RLS: Y i = β 0 + β 1 x i + ε i, 1 onde Y i : variável resposta ou
Estatística - Análise de Regressão Linear Simples. Professor José Alberto - (11) sosestatistica.com.br
Estatística - Análise de Regressão Linear Simples Professor José Alberto - (11 9.7525-3343 sosestatistica.com.br 1 Estatística - Análise de Regressão Linear Simples 1 MODELO DE REGRESSÃO LINEAR SIMPLES
Prof. Lorí Viali, Dr.
Prof. Lorí Viali, Dr. [email protected] http://www.mat.ufrgs.br/~viali/ Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.
Estatística II Licenciatura em Gestão. Parte I
Estatística II Licenciatura em Gestão 1 o semestre 2015/2016 ER - 03/02/2016 09:00 Nome N o Espaço reservado a classificações A utilização do telemóvel, em qualquer circunstância, é motivo suficiente para
Princípios em Planejamento e Análise de Dados Ecológicos. Regressão linear. Camila de Toledo Castanho
Princípios em Planejamento e Análise de Dados Ecológicos Regressão linear Camila de Toledo Castanho 217 Conteúdo da aula 1. Regressão linear simples: quando usar 2. A reta de regressão linear 3. Teste
ESTATÍSTICA EXPERIMENTAL. ANOVA. Aula 05
ESTATÍSTICA EXPERIMENTAL ANOVA. Aula 05 Introdução A ANOVA ou Análise de Variância é um procedimento usado para comparar a distribuição de três ou mais grupos em amostras independentes. A análise de variância
9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla
9 Correlação e Regressão 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 1 9-1 Aspectos Gerais Dados Emparelhados há uma relação? se há, qual
AULAS 14 E 15 Modelo de regressão simples
1 AULAS 14 E 15 Modelo de regressão simples Ernesto F. L. Amaral 30 de abril e 02 de maio de 2013 Avaliação de Políticas Públicas (DCP 046) Fonte: Wooldridge, Jeffrey M. Introdução à econometria: uma abordagem
Métodos Quantitativos
Métodos Quantitativos Unidade 4. Estatística inferencial Parte II 1 Sumário Seção Slides 4.1 Correlação entre variáveis quantitativas 03 11 4.2 Teste de significância 12 19 4.3 Regressão linear 20 27 4.4
Análise de Regressão EST036
Análise de Regressão EST036 Michel Helcias Montoril Instituto de Ciências Exatas Universidade Federal de Juiz de Fora Regressão sem intercepto; Formas alternativas do modelo de regressão Regressão sem
INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO PORTO Ano lectivo 2009/20010 EXAME: DATA 24 / 02 / NOME DO ALUNO:
INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO PORTO Ano lectivo 2009/20010 Estudos de Mercado EXAME: DATA 24 / 02 / 20010 NOME DO ALUNO: Nº INFORMÁTICO: TURMA: PÁG. 1_ PROFESSOR: ÉPOCA: Grupo I (10
Virgílio A. F. Almeida DCC-UFMG 2005
Virgílio A. F. Almeida DCC-UFMG 005 O que é um bom modelo? Como estimar os parâmetros do modelo Como alocar variações Intervalos de Confiança para Regressões Inspeção Visual ! "# Para dados correlacionados,
Aula 2 Uma breve revisão sobre modelos lineares
Aula Uma breve revisão sobre modelos lineares Processo de ajuste de um modelo de regressão O ajuste de modelos de regressão tem como principais objetivos descrever relações entre variáveis, estimar e testar
AULA 11 - Normalidade e Inferência em Regressão Múltipla - Parte 1
AULA 11 - Normalidade e Inferência em Regressão Múltipla - Parte 1 Susan Schommer Econometria I - IE/UFRJ Distribuições amostrais dos estimadores MQO Nas aulas passadas derivamos o valor esperado e variância
Segundo Trabalho de Econometria 2009
Segundo Trabalho de Econometria 2009 1.. Estimando o modelo por Mínimos Quadrados obtemos: Date: 06/03/09 Time: 14:35 Sample: 1995Q1 2008Q4 Included observations: 56 C 0.781089 0.799772 0.97664 0.3332
Capítulo 3. O Modelo de Regressão Linear Simples: Especificação e Estimação
Capítulo 3 O Modelo de Regressão Linear Simples: Especificação e Estimação Introdução Teoria Econômica Microeconomia: Estudamos modelos de oferta e demanda (quantidades demandadas e oferecidas dependem
PREVISÃO. Prever o que irá. acontecer. boas decisões com impacto no futuro. Informação disponível. -quantitativa: dados.
PREVISÃO O problema: usar a informação disponível para tomar boas decisões com impacto no futuro Informação disponível -qualitativa Prever o que irá acontecer -quantitativa: dados t DEI/FCTUC/PGP/00 1
CORRELAÇÃO. Flávia F. Feitosa
CORRELAÇÃO Flávia F. Feitosa BH1350 Métodos e Técnicas de Análise da Informação para o Planejamento Junho de 2015 Revisão Inferência Estatística: Método científico para tirar conclusões sobre os parâmetros
Renda x Vulnerabilidade Ambiental
Renda x Vulnerabilidade Ambiental ANEXO D ANÁLISE EXPLORATÓRIA E PREPARAÇÃO DOS DADOS Identificamos tendência linear positiva. A correlação entre as variáveis é significativa, apresentando 99% de confiança.
Métodos Quantitativos Aplicados
Métodos Quantitativos Aplicados Aula 10 http://www.iseg.utl.pt/~vescaria/mqa/ Tópicos apresentação Análise Regressão: Avaliação de relações de dependência em que se explica o comportamento de uma/várias
Esse material foi extraído de Barbetta (2007 cap 13)
Esse material foi extraído de Barbetta (2007 cap 13) - Predizer valores de uma variável dependente (Y) em função de uma variável independente (X). - Conhecer o quanto variações de X podem afetar Y. Exemplos
AULA 05 Análise de regressão múltipla: inferência
1 AULA 05 Análise de regressão múltipla: inferência Ernesto F. L. Amaral 19 de julho de 2013 Análise de Regressão Linear (MQ 2013) www.ernestoamaral.com/mq13reg.html Fonte: Wooldridge, Jeffrey M. Introdução
CORRELAÇÃO E REGRESSÃO
CORRELAÇÃO E REGRESSÃO Permite avaliar se existe relação entre o comportamento de duas ou mais variáveis e em que medida se dá tal interação. Gráfico de Dispersão A relação entre duas variáveis pode ser
Análise Multivariada Aplicada à Contabilidade
Mestrado e Doutorado em Controladoria e Contabilidade Análise Multivariada Aplicada à Contabilidade Prof. Dr. Marcelo Botelho da Costa Moraes www.marcelobotelho.com [email protected] Turma: 2º / 2016 1 Agenda
AULA 12 - Normalidade e Inferência em Regressão Múltipla - Parte 2
AULA 12 - Normalidade e Inferência em Regressão Múltipla - Parte 2 Susan Schommer Econometria I - IE/UFRJ Testes de hipóteses sobre combinação linear dos parâmetros Na aula passada testamos hipóteses sobre
Análise da Regressão múltipla: MQO Assintótico y = β 0 + β 1 x 1 + β x +... β k x k + u 3. Propriedades assintóticas Antes, propriedades sobre amostra
Análise da Regressão múltipla: MQO Assintótico Capítulo 5 do Wooldridge Análise da Regressão múltipla: MQO Assintótico y = β 0 + β 1 x 1 + β x +... β k x k + u 3. Propriedades assintóticas Antes, propriedades
Estatística II Licenciatura em Gestão TESTE I
Estatística II Licenciatura em Gestão 1 o semestre 2015/2016 14/01/2016 09:00 Nome N o Espaço reservado a classificações A utilização do telemóvel, em qualquer circunstância, é motivo suficiente para a
Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste
Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Erica Castilho Rodrigues 2 de Setembro de 2014 Erro Puro 3 Existem dois motivos pelos quais os pontos observados podem não cair na reta
AULA 09 Regressão. Ernesto F. L. Amaral. 17 de setembro de 2012
1 AULA 09 Regressão Ernesto F. L. Amaral 17 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario F. 2008. Introdução à
Variável dependente Variável independente Coeficiente de regressão Relação causa-efeito
Unidade IV - Regressão Regressões Lineares Modelo de Regressão Linear Simples Terminologia Variável dependente Variável independente Coeficiente de regressão Relação causa-efeito Regressão correlação Diferença
AULA 12 - Normalidade e Inferência em Regressão Múltipla - Parte 2
AULA 12 - Normalidade e Inferência em Regressão Múltipla - Parte 2 Susan Schommer Econometria I - IE/UFRJ Testes de hipóteses sobre combinação linear dos parâmetros Na aula passada testamos hipóteses sobre
Regressão linear simples
Regressão linear simples Universidade Estadual de Santa Cruz Ivan Bezerra Allaman Introdução Foi visto na aula anterior que o coeficiente de correlação de Pearson é utilizado para mensurar o grau de associação
Cap. 13 Correlação e Regressão
Estatística Aplicada às Ciências Sociais Sexta Edição Pedro Alberto Barbetta Florianópolis: Editora da UFSC, 2006 Cap. 13 Correlação e Regressão Correlação X e Y variáveis quantitativas X Y Correlação
ANÁLISE ESTATÍSTICA DA RELAÇÃO ENTRE A ATITUDE E O DESEMPENHO DOS ALUNOS
ANÁLISE ESTATÍSTICA DA RELAÇÃO ENTRE A ATITUDE E O DESEMPENHO DOS ALUNOS Nível de significância No processo de tomada de decisão sobre uma das hipóteses levantadas num estudo, deve-se antes de tudo definir
Análise de Regressão Prof. MSc. Danilo Scorzoni Ré FMU Estatística Aplicada
Aula 2 Regressão Linear Simples Análise de Regressão Prof. MSc. Danilo Scorzoni Ré FMU Estatística Aplicada Conceitos Gerais A análise de regressão é utilizada para explicar ou modelar a relação entre
Delineamento e Análise Experimental Aula 4
Aula 4 Castro Soares de Oliveira ANOVA Significativa Quando a aplicação da análise de variância conduz à rejeição da hipótese nula, temos evidência de que existem diferenças entre as médias populacionais.
Noções sobre Regressão
Noções sobre Regressão Nos interessa estudar como uma variável varia em função de outra. Por exemplo, considere a questão de demanda e preço de bens. Quando se estuda a variação de uma variável Y em função
Hipóteses do modelo linear clássico (CLM) Análise da Regressão múltipla: Inferência. Hipóteses do CLM (cont.) O teste t. Distribuição normal amostral
9/03/0 Hipótes do modelo linear clássico (CLM) Análi da Regressão múltipla: Inferência Sabemos que, dadas as hipótes de Gauss- Markov, MQO é BLUE Para realizarmos os testes de hipótes clássicos, precisamos
ECONOMETRIA I. I (12 valores)
Faculdade de Economia Universidade Nova de Lisboa ECONOMETRIA I Exame de 2ª Época 26 de Janeiro de 2005 Duração: 2 horas I (12 valores) ATENÇÃO: Para as 10 primeiras questões deste grupo existem 4 opções
Métodos Empíricos de Pesquisa I. } Análise Bidimensional
Métodos Empíricos de Pesquisa I } Análise Bidimensional 1 Aula de hoje } Temas } Associação entre variáveis } Qualitativas e Quantitativas } Covariância: conceitos e propriedades } Coeficiente de correlação
Estatística Aplicada I. } Análise Bidimensional
Estatística Aplicada I } Análise Bidimensional 1 Aula de hoje } Temas } Associação entre variáveis } Qualitativas e Quantitativas } Covariância: conceitos e propriedades } Coeficiente de correlação } Observações
AULAS 14 E 15 Modelo de regressão simples
1 AULAS 14 E 15 Modelo de regressão simples Ernesto F. L. Amaral 18 e 23 de outubro de 2012 Avaliação de Políticas Públicas (DCP 046) Fonte: Wooldridge, Jeffrey M. Introdução à econometria: uma abordagem
Análise da Regressão. Prof. Dr. Alberto Franke (48)
Análise da Regressão Prof. Dr. Alberto Franke (48) 91471041 O que é Análise da Regressão? Análise da regressão é uma metodologia estatística que utiliza a relação entre duas ou mais variáveis quantitativas
b) Teste a hipótese de efeito significante do tamanho da população sobre a venda do produto, na presença de renda per capita
Exemplo 1 (continuação a Estime por intervalo de 95% de confiança, o aumento do número médio de lotes vendidos devido a 1000 pessoas a mais na população, mantendo a renda per capita fixa b Teste a hipótese
Seleção de Variáveis e Construindo o Modelo
Seleção de Variáveis e Construindo o Modelo Seleção de modelos candidatos A idéia é selecionar um conjunto menor de variáveis explanatórias de acordo com algum(s) critério(s), e assim selecionar o modelo
Métodos Numéricos e Estatísticos Parte II-Métodos Estatísticos
Métodos Numéricos e Estatísticos Parte II-Métodos Estatísticos Lic. Eng. Biomédica e Bioengenharia-2009/2010 Modelos de regressão É usual estarmos interessados em estabelecer uma relação entre uma variável
1 semestre de 2014 Gabarito Lista de exercícios 3 - Estatística Descritiva III C A S A
Exercício 1. (1,0 ponto). A tabela a seguir mostra o aproveitamento conjunto em Física e Matemática para os alunos do ensino médio de uma escola. Notas Notas Notas Física/Matemática Altas Regulares Baixas
i j i i Y X X X i j i i i
Mario de Andrade Lira Junior lira.pro.br\wordpress lira.pro.br\wordpress Diferença Regressão - equação ligando duas ou mais variáveis Correlação medida do grau de ligação entre duas variáveis Usos Regressão
Hoje vamos analisar duas variáveis quantitativas conjuntamente com o objetivo de verificar se existe alguma relação entre elas.
Correlação e Regressão Hoje vamos analisar duas variáveis quantitativas conjuntamente com o objetivo de verificar se existe alguma relação entre elas. Vamos 1. definir uma medida de associação entre duas
Estatística Aplicada ao Serviço Social
Estatística Aplicada ao Serviço Social Módulo 7: Correlação e Regressão Linear Simples Introdução Coeficientes de Correlação entre duas Variáveis Coeficiente de Correlação Linear Introdução. Regressão
AGOSTO 2017 INTERPRETAÇÃO DE RESULTADOS ESTATÍSTICOS EM MODELOS DE REGRESSÃO MÚLTIPLA
Sérgio Antão Paiva AGOSTO 2017 INTERPRETAÇÃO DE RESULTADOS ESTATÍSTICOS EM MODELOS DE REGRESSÃO MÚLTIPLA ENFOQUE DA COMPARAÇÃO Princípio da semelhança: numa mesma data, dois bens semelhantes, em mercados
Introdução ao modelo de Regressão Linear
Introdução ao modelo de Regressão Linear Prof. Gilberto Rodrigues Liska 8 de Novembro de 2017 Material de Apoio e-mail: [email protected] Local: Sala dos professores (junto ao administrativo)
ECONOMETRIA. Prof. Danilo Monte-Mor
ECONOMETRIA Prof. Danilo Monte-Mor Econometria (Levine 2008, Cap. 13) ECONOMETRIA Aplicação da estatística matemática aos dados econômicos para dar suporte empírico aos modelos construídos pela economia
TÉCNICAS EXPERIMENTAIS APLICADAS EM CIÊNCIA DO SOLO
TÉCNICAS EXPERIMENTAIS APLICADAS EM CIÊNCIA DO SOLO Mario de Andrade Lira Junior lira.pro.br\wordpress REGRESSÃO X CORRELAÇÃO Diferença Regressão - equação ligando duas ou mais variáveis Correlação medida
VERIFICAÇÃO DOS RECURSOS NECESSÁRIOS. Capítulo 1 VARIÁVEIS E AMOSTRAS 1
PREFÁCIO VERIFICAÇÃO DOS RECURSOS NECESSÁRIOS xiii DO EXCEL... xv Capítulo 1 VARIÁVEIS E AMOSTRAS 1 VARIÁ VEIS 4 NÚMERO DE VARIÁVEIS 5 CLASSIFICAÇÃO DAS VARIÁVEIS 6 ESCALA DE MEDIÇÃO DAS VARIÁVEIS 7 POPULAÇÃO
Análise de regressão linear simples. Diagrama de dispersão
Introdução Análise de regressão linear simples Departamento de Matemática Escola Superior de Tecnologia de Viseu A análise de regressão estuda o relacionamento entre uma variável chamada a variável dependente
ANÁLISE DE REGRESSÃO
ANÁLISE DE REGRESSÃO Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 09 de janeiro de 2017 Introdução A análise de regressão consiste na obtenção de uma equação
Econometria I Lista 4: Inferência
Econometria I Lista 4: Inferência Professora: Fabiana Fontes Rocha Monitora: Camila Steffens 07 de maio de 2018 Instruções: Objetivos com a lista: estruturação do conteúdo e compreensão da matemática e
AULAS 17 E 18 Análise de regressão múltipla: estimação
1 AULAS 17 E 18 Análise de regressão múltipla: estimação Ernesto F. L. Amaral 22 e 24 de outubro de 2013 Avaliação de Políticas Públicas (DCP 046) Fonte: Cohen, Ernesto, e Rolando Franco. 2000. Avaliação
Disciplina de Modelos Lineares Professora Ariane Ferreira
Disciplina de Modelos Lineares 2012-2 Regressão Logística Professora Ariane Ferreira O modelo de regressão logístico é semelhante ao modelo de regressão linear. No entanto, no modelo logístico a variável
Econometria I Lista 2: modelo de regressão linear clássico e regressão simples
Econometria I Lista 2: modelo de regressão linear clássico e regressão simples Professora: Fabiana Fontes Rocha Monitora: Camila Steffens 19 de março de 2018 Instruções: Objetivos com a lista: estruturação
AULA 03 Análise de regressão múltipla: estimação
1 AULA 03 Análise de regressão múltipla: estimação Ernesto F. L. Amaral 17 de julho de 2013 Análise de Regressão Linear (MQ 2013) www.ernestoamaral.com/mq13reg.html Fonte: Cohen, Ernesto, e Rolando Franco.
Regressão Linear Simples
Regressão Linear Simples Capítulo 16, Estatística Básica (Bussab&Morettin, 8a Edição) 10a AULA 18/05/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues 10a aula (18/05/2015) MAE229 1 / 38 Introdução
Teste F-parcial 1 / 16
Teste F-parcial A hipótese nula, H 0, define o modelo restrito. Ingredientes SQR r : soma de quadrado dos resíduos sob H 0. R 2 r: coeficiente de determinação sob H 0. g: número de restrições a serem testadas
Variância pop. * conhecida Teste t Paramétrico Quantitativa Distribuição normal Wilcoxon (teste dos sinais, Wilcoxon p/ 1 amostra)
Testes de Tendência Central (média, mediana, proporção) Classificação Variável 1 Variável 2 Núm ero Gru pos Dependência Teste Z Paramétrico Quantitativa - 1 - Premissas Variância pop. * conhecida Teste
EXPERIMENTAÇÃO ZOOTÉCNICA. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari
EXPERIMENTAÇÃO ZOOTÉCNICA Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari [email protected] TESTES PARA COMPARAÇÃO DE MÉDIAS O teste F permite tirar conclusões muito gerais relacionadas com os
Análise de Regressão Linear Simples e
Análise de Regressão Linear Simples e Múltipla Carla Henriques Departamento de Matemática Escola Superior de Tecnologia de Viseu Introdução A análise de regressão estuda o relacionamento entre uma variável
RESPOSTAS - PROVA ESTATÍSTICA AGENTE PF 2018
RESPOSTAS - PROVA ESTATÍSTICA AGENTE PF 018 Determinado órgão governamental estimou que a probabilidade p de um ex-condenado voltar a ser condenado por algum crime no prazo de 5 anos, contados a partir
Na aula do dia 24 de outubro analisamos duas variáveis quantitativas conjuntamente com o objetivo de verificar se existe alguma relação entre elas.
Regressão Múltipla Na aula do dia 24 de outubro analisamos duas variáveis quantitativas conjuntamente com o objetivo de verificar se existe alguma relação entre elas. 1. definimos uma medida de associação
