CORRELAÇÃO. Flávia F. Feitosa

Tamanho: px
Começar a partir da página:

Download "CORRELAÇÃO. Flávia F. Feitosa"

Transcrição

1 CORRELAÇÃO Flávia F. Feitosa BH1350 Métodos e Técnicas de Análise da Informação para o Planejamento Junho de 2015

2 Revisão Inferência Estatística: Método científico para tirar conclusões sobre os parâmetros da população a partir da coleta, tratamento e análise dos dados de uma amostra recolhida dessa população. Estatísticas da Amostra para Estimar Parâmetros da População Inferência Estatística se resumindo a uma equação: Saída i = (Modelo i ) + erro i

3 Média como um modelo estatístico Uma representação simplificada de uma característica do mundo real: A média do consumo per capita de água na Região Sudeste A altura média dos edifícios em São Caetano O PIB médio dos municípios localizados no arco do desmatamento

4 Domicílio Este modelo é preciso? O quão diferente nossos dados reais são do modelo criado? Nr. de habitantes Desvios (erro do modelo) Média (2,6) Conceitos: - Variância - Desvio Padrão

5 Médias iguais, mas desvios padrão diferentes Nr. de habitantes Nr. de habitantes Domicílio Média com boa aderência aos dados Domicílio Média com pobre aderência aos dados

6 Renda per Capita (R$) Para além de Médias Modelos Lineares São modelos baseados sobre uma linha reta, utilizados para representar a relação entre variáveis Ou seja, geralmente estamos tentando resumir as RELAÇÕES observadas a partir de nossos dados observados em termos de uma linha reta. RELAÇÃO ENTRE CONSUMO DE ÁGUA E RENDA Consumo de Água per Capita (m3/dia/ano)

7 CORRELAÇÃO É uma medida do relacionamento linear entre duas variáveis Duas variáveis podem estar: (a) Positivamente relacionadas quando maior a renda, maior o consumo de água (b) Negativamente relacionadas quanto maior a renda, menor o consumo de água (c) Não há relação entre as variáveis

8 Diagrama de Dispersão Representando Relacionamentos Graficamente DIAGRAMA DE DISPERSÃO: Gráfico que coloca o escore de cada observação em uma variável contra seu escore em outra

9 Diagrama de Dispersão Importante começar por ele! Nos diz se a relação entre variáveis é linear, se existem peculiaridades nos dados que valem a pena observar (outliers) e dá uma ideia da força do relacionamento entre as variáveis. Exemplo de Correlação Não-Linear: Renda e proporção de domicílios próprios.

10 Diagrama de Dispersão

11 Como medimos relacionamentos? Veremos duas medidas para expressar estatisticamente os relacionamentos entre variáveis: 1. Covariância 2. Coeficientes de correlação

12 COVARIÂNCIA Uma maneira de verificar de duas variáveis estão associadas é ver se elas variam conjuntamente. Ou seja, ver se as mudanças em uma variável correspondem a mudanças similares na outra variável RELEMBRANDO O CONCEITO DE VARIÂNCIA:

13 COVARIÂNCIA Em outras palavras: Quando uma variável se desvia de sua média, esperamos que a outra variável se desvie da sua média de maneira similar (ou de maneira diretamente oposta). RELEMBRANDO O CONCEITO DE VARIÂNCIA:

14 Padrão similar nas diferenças de ambas as variáveis Renda per capita / Consumo de água per capita (Renda) (Consumo) Municípios

15 Como calcular a semelhança entre o padrão das diferenças das 2 variáveis? Multiplicando a diferença de uma variável pela diferença correspondente da segunda variável! Se ambos os erros são positivos ou negativos, isso nos dará um valor positivo (desvios na mesma direção) Se um erro for positivo e outro negativo, isso nos dará um valor negativo (desvios em direções opostas) COVARIÂNCIA

16 Covariância Média das Diferenças Combinadas É uma medida de como duas variáveis variam conjuntamente. Se a covariância entre duas variáveis é igual a zero, significa que elas são independentes. COVARIÂNCIA

17 (Renda) Renda per capita / Consumo de água per capita (Consumo) Municípios

18 Covariância Covariância Positiva: Quando uma variável se desvia da média, a outra variável se desvia na mesma direção. Covariância Negativa: Quando uma variável se desvia da média, a outra variável se desvia na direção oposta. COVARIÂNCIA

19 Covariância UM PROBLEMA!!! A covariância depende das escalas de medida. Não é uma medida padronizada. Ou seja, não podemos dizer se a covariância é particularmente grande ou pequena em relação a outro conjunto de dados a não ser que ambos os conjuntos fossem mensurados nas mesmas medidas.

20 Padronização & Coeficiente de Correlação Para superar o problema da dependência das escalas de medida, precisamos converter a variância em um conjunto padrão de unidades Padronização Precisamos de uma unidade de medida na qual qualquer escala de mensuração possa ser convertida Unidades de Desvio Padrão (medida da média dos desvios a partir da média)

21 Padronização & Coeficiente de Correlação O COEFICIENTE DE CORRELAÇÃO é uma covariância padronizada COEFICIENTE DE CORRELAÇÃO DE PEARSON

22 Coeficiente de Correlação Padronizando a covariância, encontramos um valor que deve estar entre -1 e +1 r = +1 duas variáveis estão perfeitamente correlacionadas de forma positiva (se uma aumenta, a outra aumenta proporcionalmente) r = -1 relacionamento negativo perfeito (se uma aumenta, a outra diminui em valor proporcional r = 0 indica ausência de relacionamento linear

23 Mas Como saber se a correlação não se deve a um erro amostral, ao acaso? Como saber se a correlação é estatisticamente significativa? Uma breve revisão sobre TESTES DE HIPÓTESE

24 Para testar a significância de uma medida de correlação, estabelecemos uma hipótese (nula) de nenhuma correlação existe na população. HIPÓTESES Hipótese Experimental (H1) Geralmente corresponde a uma previsão feita pela pesquisador (existe uma correlação na população) Hipótese Nula (H0) O efeito previsto não existe (não existe uma correlação na população) Tornou-se convenção na análise estatística iniciar o estudo pelo teste da hipótese nula.

25 Para confirmar ou rejeitar nossas hipóteses: Calculamos a probabilidade de que o efeito observado (no nosso caso, a correlação) ocorreu por acaso: À medida que a probabilidade do acaso diminui, confirmamos que a hipótese experimental é correta e que a hipótese nula pode ser rejeitada.

26 E quando podemos considerar que um resultado é genuíno, ou seja, não é fruto do acaso? Há sempre um risco de considerarmos um efeito verdadeiro, quando, de fato, não o é (ERRO TIPO I). Para Ronald Fisher, somente quando a probabilidade de algo acontecer por acaso é igual ou menor a 5% (<0,05), podemos aceitar que é um resultado estatisticamente significativo. O valor da probabilidade de cometer um erro do tipo I num teste de hipóteses é conhecido como NÍVEL DE SIGNIFICÂNCIA e é representado pela letra α Os níveis de significância mais utilizados são de 5%, 1% e 0,1%

27 Estatísticas teste Para estabelecer se um modelo (no caso, a medida de correlação) é uma representação razoável do que está acontecendo, geralmente calculamos uma ESTATÍSTICA TESTE É uma estatística que tem propriedades conhecidas, já sabemos a frequência com que diferentes valores desta estatística ocorrem. Sabemos suas distribuições e isso nos permite, uma vez calculada a estatística teste, calcular um valor tão grande como o que temos. Se temos uma estatística teste de 100, por exemplo, poderíamos então calcular a probabilidade de obter um valor tão grande.

28 Estatísticas teste Existem várias estatísticas testes (t, F ). Entretanto, a maioria delas representa o seguinte: A forma exata desta equação muda de teste pra teste. Se nosso modelo é bom, esperamos que a variância explicada por ele seja maior do que a variância que ele não pode explicar.

29 Estatísticas teste Quanto maior a estatística teste, menor a probabilidade de que nossos resultados sejam fruto do acaso. Quando esta probabilidade cai para abaixo de 0,05 (Critério de Fisher), aceitamos isso como uma confiança suficiente para assumir que a estatística teste é assim grande porque nosso modelo explica um montante suficiente de variações para refletir o que realmente está acontecendo no mundo real (a população)

30 Estatísticas teste Quanto maior a estatística teste, menor a probabilidade de que nossos resultados sejam fruto do acaso. Ou seja, Rejeitamos nossa hipótese nula e aceitamos nossa hipótese experimental

31 Teste de Significância do r de Pearson Para testar a significância do r, calculamos uma estatística teste conhecida como razão t, com graus de liberdade igual a N-2. Olhar na tabela o valor crítico de t, com graus de liberdade N-2 e α=0,05 Se t calculado > t crítico, podemos rejeitar a hipótese nula de que ρ=0.

32 Teste de Significância do r de Pearson Para testar a significância do r, calculamos uma estatística teste conhecida como razão t, com graus de liberdade igual a N-2. O que o modelo explica N maior, estatística maior O que o modelo NÃO explica Olhar na tabela o valor crítico de t, com graus de liberdade N-2 e α=0,05 Se t calculado > t crítico, podemos rejeitar a hipótese nula de que ρ=0.

33 Testes Uni e Bilaterais Hipótese Direcional: Existe uma correlação populacional positiva TESTE DE HIPÓTESE UNILATERAL Hipótese Não Direcional: Existe uma correlação populacional positiva ou negativa TESTE DE HIPÓTESE BILATERAL

34 Testes Uni e Bilaterais Valor-p (p-value): Probabilidade de se obter uma estatística teste igual ou mais extrema que aquela observada em uma amostra, sob hipótese nula. Ou seja, podese rejeitar a hipótese nula a 5% caso o valor-p seja menor do que 0,05. Valor-p nível de significância (α). O nível de significância é estabelecido antes da coleta dos dados. Já o valor-p é obtido de uma amostra.

35 Passo-a-Passo: Teste de Hipótese 1. Escolhemos as hipóteses nula (Ho) e alternativa (H1) 2. Decidimos qual será a estatística utilizada para testar a hipótese nula (no nosso exemplo, a estatística t) 3. Estipulamos o nível de significância (α), ou seja, um valor para o erro do tipo I. Com este valor, construímos a região crítica, que servirá de regra para rejeitar ou não a hipótese nula. 4. Calculamos o valor da estatística teste 5. Quanto o valor calculado da estatística NÃO pertence à região crítica estabelecida pelo nível de significância, NÃO rejeitamos a hipótese nula. Caso contrário, rejeitamos a hipótese nula.

36 Exigências para o uso do coeficiente de correlação r de Pearson 1. Relação Linear entre X e Y 2. Dados intervalares 3. Amostragem Aleatória (assim podemos aplicar o teste de significância) 4. Características normalmente distribuídas (importante quando se testa significância em amostras pequenas - N<30)

37 Um alerta sobre interpretação: CAUSALIDADE Coeficientes de correlação NÃO dão indicação da causalidade 1. O problema da terceira variável Em qualquer correlação bivariada, a causalidade entre duas variáveis não pode ser dada por certo, porque podem ter outras variáveis, medidas ou não, afetando os resultados

38

39 Um alerta sobre interpretação: CAUSALIDADE Coeficientes de correlação NÃO dão indicação da causalidade 2. Direção da causalidade Coeficientes de correlação nada dizem sobre qual variável causa a alteração na outra. Mesmo se pudéssemos ignorar o problema da terceira variável, e pudéssemos assumir que as duas variáveis correlacionadas eram as únicas importantes, o coeficiente de correlação não indica em qual direção a causalidade opera.

40 Para diversão Spurious Correlation

41

42 Utilizando o R 2 para Interpretação Embora não possamos tirar conclusões diretas sobre causalidade, podemos levar o coeficiente de correlação um passo a frente elevando-o ao quadrado Coeficiente de Determinação, R 2 O Coeficiente de Determinação é uma medida da quantidade de variação em uma variável que é explicada pela outra. Quanto da variabilidade do consumo de água per capita pode ser explicada pela renda per capita?

43 CORRELAÇÃO BIVARIADA Coeficientes 1. COEFICIENTE DE CORRELAÇÃO DE PEARSON 2. COEFICIENTE DE CORRELAÇÃO DE SPEARMAN NÃO PARAMÉTRICO Pode ser usada quando dados violarem suposições paramétricas, tais como dados não normais, dados ordinais. 3. TAU DE KENDALL NÃO PARAMÉTRICO. Adequado para conjunto pequeno de dados com grande nr. de escores empatados

44 CORRELAÇÃO PARCIAL Até o momento tratamos da CORRELAÇÃO BIVARIADA: correlação entre 2 variáveis. Exemplos: coeficiente de correlação de Pearson (r) e o de Spearman Mas Nossa interpretação da relação entre duas variáveis muda de alguma maneira ao olharmos para o contexto mais amplo de outros fatores relacionados???

45 CORRELAÇÃO PARCIAL Em muitos casos, é importante ver o relacionamento entre duas variáveis quando o efeito de outras variáveis são constantes. CORRELAÇÃO PARCIAL: determina o relacionamento entre variáveis controlando o efeito de uma ou mais variáveis.

46 Análise de Correlação no SPSS

47 Diagrama de Dispersão 1. No SPSS, abra o arquivo Agua2010_SNIS.sav 2. Vá em Gráficos > Interativo > Diagrama de Dispersão (Graphs > Interactive > Scatterplot ) Selecione as variáveis do seu interesse

48 Diagrama de Dispersão Como é o relacionamento entre as variáveis selecionadas? - Linear? - Forte/Fraco? - Positivo/Negativo?

49 Diagrama de Dispersão

50 Correlação no SPSS Analisar > Correlacionar > Bivariada (Analyse > Correlate > Bivariate )

51 Correlação no SPSS

52 ATIVIDADE 4 1. Considerando o conteúdo ministrado nas aulas anteriores: 1.1 Por que utilizamos amostras? 1.2 Como podemos saber se uma média é representativa dos nossos dados? 1.3 Quais as características de uma distribuição normal? 1.4 Qual a diferença entre uma distribuição de frequência e uma distribuição de probabilidade? 1.5 O que é uma distribuição normal padrão? Como ela pode nos ser útil?

53 ATIVIDADE 4 1. Considerando o conteúdo ministrado nas aulas anteriores: 1.6 O que é um escore-z (valor padronizado)? Como se calcula? 1.7 Em uma distribuição normal padrão, por que costuma-se dar atenção aos valores 1,96 ; 2,58 e 3,29? 1.8 Qual a diferença entre desvio padrão e erro padrão? 1.9 O que é um intervalo de confiança? 1.10 Como interpreto um intervalo de confiança de 95%?

54 ATIVIDADE 4 2. Utilizando os dados do seu trabalho de curso, conduza as seguintes análises no SPSS: 2.1 Construa e interprete diagrama(s) de dispersão a partir de variáveis de interesse. 2.2 Calcule e interprete a correlação entre variáveis de interesse. É significativa? O que isso significa? O Item (2) deverá ser compreendido como uma versão preliminar de parte do trabalho final da disciplina. Lembrese de Caprichar!!! Interprete!!! Aproveite para entender melhor o problema investigado. Entrega no Tidia 30/06

REGRESSÃO LINEAR Parte I. Flávia F. Feitosa

REGRESSÃO LINEAR Parte I. Flávia F. Feitosa REGRESSÃO LINEAR Parte I Flávia F. Feitosa BH1350 Métodos e Técnicas de Análise da Informação para o Planejamento Julho de 2015 Onde Estamos Para onde vamos Inferência Esta5s6ca se resumindo a uma equação

Leia mais

Inferência Estatística: Conceitos Básicos I

Inferência Estatística: Conceitos Básicos I Inferência Estatística: Conceitos Básicos I Introdução, Medidas de Tendência Central, Medidas de Variabilidade, Distribuições de Frequência e Probabilidade Flávia F. Feitosa BH1350 Métodos e Técnicas de

Leia mais

1 Que é Estatística?, 1. 2 Séries Estatísticas, 9. 3 Medidas Descritivas, 27

1 Que é Estatística?, 1. 2 Séries Estatísticas, 9. 3 Medidas Descritivas, 27 Prefácio, xiii 1 Que é Estatística?, 1 1.1 Introdução, 1 1.2 Desenvolvimento da estatística, 1 1.2.1 Estatística descritiva, 2 1.2.2 Estatística inferencial, 2 1.3 Sobre os softwares estatísticos, 2 1.4

Leia mais

Correlação e Regressão

Correlação e Regressão Correlação e Regressão Vamos começar com um exemplo: Temos abaixo uma amostra do tempo de serviço de 10 funcionários de uma companhia de seguros e o número de clientes que cada um possui. Será que existe

Leia mais

AULA 05 Teste de Hipótese

AULA 05 Teste de Hipótese 1 AULA 05 Teste de Hipótese Ernesto F. L. Amaral 03 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario F. 2008. Introdução

Leia mais

AULA 06 Correlação. Ernesto F. L. Amaral. 04 de outubro de 2013

AULA 06 Correlação. Ernesto F. L. Amaral. 04 de outubro de 2013 1 AULA 06 Correlação Ernesto F. L. Amaral 04 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de

Leia mais

1. Conceitos básicos de estatística Níveis de medição Medidas características de distribuições univariadas 21

1. Conceitos básicos de estatística Níveis de medição Medidas características de distribuições univariadas 21 OS SABERES INDISPENSÁVEIS 7 Índice Prefácio 13 Capítulo 1 Os Saberes Indispensáveis 1. Conceitos básicos de estatística 17 1.1. Níveis de medição 18 1.2. Medidas características de distribuições univariadas

Leia mais

9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla

9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 9 Correlação e Regressão 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 1 9-1 Aspectos Gerais Dados Emparelhados há uma relação? se há, qual

Leia mais

AULA 04 Teste de hipótese

AULA 04 Teste de hipótese 1 AULA 04 Teste de hipótese Ernesto F. L. Amaral 03 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal

Leia mais

7 Teste de Hipóteses

7 Teste de Hipóteses 7 Teste de Hipóteses 7-1 Aspectos Gerais 7-2 Fundamentos do Teste de Hipóteses 7-3 Teste de uma Afirmação sobre a Média: Grandes Amostras 7-4 Teste de uma Afirmação sobre a Média : Pequenas Amostras 7-5

Leia mais

Inferência Estatística: Conceitos Básicos II

Inferência Estatística: Conceitos Básicos II Inferência Estatística: Conceitos Básicos II Distribuição Amostral e Teorema do Limite Central Análise Exploratória de dados no SPSS Flávia F. Feitosa BH1350 Métodos e Técnicas de Análise da Informação

Leia mais

AULA 09 Regressão. Ernesto F. L. Amaral. 17 de setembro de 2012

AULA 09 Regressão. Ernesto F. L. Amaral. 17 de setembro de 2012 1 AULA 09 Regressão Ernesto F. L. Amaral 17 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario F. 2008. Introdução à

Leia mais

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja:

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja: Pessoal, trago a vocês a resolução da prova de Estatística do concurso para Auditor Fiscal aplicada pela FCC. Foram 10 questões de estatística! Não identifiquei possibilidade para recursos. Considero a

Leia mais

ANÁLISE ESTATÍSTICA DA RELAÇÃO ENTRE A ATITUDE E O DESEMPENHO DOS ALUNOS

ANÁLISE ESTATÍSTICA DA RELAÇÃO ENTRE A ATITUDE E O DESEMPENHO DOS ALUNOS ANÁLISE ESTATÍSTICA DA RELAÇÃO ENTRE A ATITUDE E O DESEMPENHO DOS ALUNOS Nível de significância No processo de tomada de decisão sobre uma das hipóteses levantadas num estudo, deve-se antes de tudo definir

Leia mais

Caros Alunos, segue a resolução das questões de Estatística aplicadas na prova para o cargo de Auditor Fiscal da Receita Municipal de Teresina.

Caros Alunos, segue a resolução das questões de Estatística aplicadas na prova para o cargo de Auditor Fiscal da Receita Municipal de Teresina. Caros Alunos, segue a resolução das questões de Estatística aplicadas na prova para o cargo de Auditor Fiscal da Receita Municipal de Teresina. De forma geral, a prova manteve o padrão das questões da

Leia mais

Contabilometria. Aula 9 Regressão Linear Inferências e Grau de Ajustamento

Contabilometria. Aula 9 Regressão Linear Inferências e Grau de Ajustamento Contabilometria Aula 9 Regressão Linear Inferências e Grau de Ajustamento Interpretação do Intercepto e da Inclinação b 0 é o valor estimado da média de Y quando o valor de X é zero b 1 é a mudança estimada

Leia mais

Sumário. CAPÍTULO 1 Conceitos preliminares 1. CAPÍTULO 2 Descrição de dados: análise monovariada 47

Sumário. CAPÍTULO 1 Conceitos preliminares 1. CAPÍTULO 2 Descrição de dados: análise monovariada 47 CAPÍTULO 1 Conceitos preliminares 1 Introdução........................................................1 O que é estatística?.................................................. 4 Papel dos microcomputadores.........................................

Leia mais

Estatística aplicada a ensaios clínicos

Estatística aplicada a ensaios clínicos Estatística aplicada a ensaios clínicos RAL - 5838 Luís Vicente Garcia [email protected] Faculdade de Medicina de Ribeirão Preto Estatística aplicada a ensaios clínicos aula 8 amostragem amostragem

Leia mais

Variância pop. * conhecida Teste t Paramétrico Quantitativa Distribuição normal Wilcoxon (teste dos sinais, Wilcoxon p/ 1 amostra)

Variância pop. * conhecida Teste t Paramétrico Quantitativa Distribuição normal Wilcoxon (teste dos sinais, Wilcoxon p/ 1 amostra) Testes de Tendência Central (média, mediana, proporção) Classificação Variável 1 Variável 2 Núm ero Gru pos Dependência Teste Z Paramétrico Quantitativa - 1 - Premissas Variância pop. * conhecida Teste

Leia mais

Modelos de Regressão Linear Simples - parte III

Modelos de Regressão Linear Simples - parte III 1 Modelos de Regressão Linear Simples - parte III Erica Castilho Rodrigues 20 de Setembro de 2016 2 3 4 A variável X é um bom preditor da resposta Y? Quanto da variação da variável resposta é explicada

Leia mais

Testes de Hipótese para uma única Amostra - parte I

Testes de Hipótese para uma única Amostra - parte I Testes de Hipótese para uma única Amostra - parte I 26 de Junho de 2014 Objetivos Ao final deste capítulo você deve ser capaz de: Estruturar problemas de engenharia como testes de hipótese. Entender os

Leia mais

Intervalos de Confiança

Intervalos de Confiança Intervalos de Confiança INTERVALOS DE CONFIANÇA.1 Conceitos básicos.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição numérica de

Leia mais

AULA 07 Inferência a Partir de Duas Amostras

AULA 07 Inferência a Partir de Duas Amostras 1 AULA 07 Inferência a Partir de Duas Amostras Ernesto F. L. Amaral 10 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola,

Leia mais

Estatística Aplicada II. } Regressão Linear

Estatística Aplicada II. } Regressão Linear Estatística Aplicada II } Regressão Linear 1 Aula de hoje } Tópicos } Regressão Linear } Referência } Barrow, M. Estatística para economia, contabilidade e administração. São Paulo: Ática, 007, Cap. 7

Leia mais

Ajustar Técnica usada na análise dos dados para controlar ou considerar possíveis variáveis de confusão.

Ajustar Técnica usada na análise dos dados para controlar ou considerar possíveis variáveis de confusão. Glossário Ajustar Técnica usada na análise dos dados para controlar ou considerar possíveis variáveis de confusão. Análise de co-variância: Procedimento estatístico utilizado para análise de dados que

Leia mais

Modelos de Regressão Linear Simples parte I

Modelos de Regressão Linear Simples parte I Modelos de Regressão Linear Simples parte I Erica Castilho Rodrigues 27 de Setembro de 2017 1 2 Objetivos Ao final deste capítulo você deve ser capaz de: Usar modelos de regressão para construir modelos

Leia mais

Modelos de Regressão Linear Simples - parte I

Modelos de Regressão Linear Simples - parte I Modelos de Regressão Linear Simples - parte I Erica Castilho Rodrigues 19 de Agosto de 2014 Introdução 3 Objetivos Ao final deste capítulo você deve ser capaz de: Usar modelos de regressão para construir

Leia mais

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA)

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA) 1. Sabe-se que o nível de significância é a probabilidade de cometermos um determinado tipo de erro quando da realização de um teste de hipóteses. Então: a) A escolha ideal seria um nível de significância

Leia mais

Regressão linear simples

Regressão linear simples Regressão linear simples Universidade Estadual de Santa Cruz Ivan Bezerra Allaman Introdução Foi visto na aula anterior que o coeficiente de correlação de Pearson é utilizado para mensurar o grau de associação

Leia mais

AULA 11 - Normalidade e Inferência em Regressão Múltipla - Parte 1

AULA 11 - Normalidade e Inferência em Regressão Múltipla - Parte 1 AULA 11 - Normalidade e Inferência em Regressão Múltipla - Parte 1 Susan Schommer Econometria I - IE/UFRJ Distribuições amostrais dos estimadores MQO Nas aulas passadas derivamos o valor esperado e variância

Leia mais

Resolução da Prova de Matemática Financeira e Estatística do ISS Teresina, aplicada em 28/08/2016.

Resolução da Prova de Matemática Financeira e Estatística do ISS Teresina, aplicada em 28/08/2016. de Matemática Financeira e Estatística do ISS Teresina, aplicada em 8/08/016. 11 - (ISS Teresina 016 / FCC) Joana aplicou todo seu capital, durante 6 meses, em bancos ( e Y). No Banco, ela aplicou 37,5%

Leia mais

INFERÊNCIA ESTATÍSTICA. ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p

INFERÊNCIA ESTATÍSTICA. ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p INFERÊNCIA ESTATÍSTICA ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p Objetivo Estimar uma proporção p (desconhecida) de elementos em uma população, apresentando certa característica de interesse, a partir

Leia mais

A UTILIZAÇÃO DE MÉTODOS ESTATÍSTICOS NO PLANEJAMENTO E ANÁLISE DE ESTUDOS EXPERIMENTAIS EM ENGENHARIA DE SOFTWARE (FONTE:

A UTILIZAÇÃO DE MÉTODOS ESTATÍSTICOS NO PLANEJAMENTO E ANÁLISE DE ESTUDOS EXPERIMENTAIS EM ENGENHARIA DE SOFTWARE (FONTE: A UTILIZAÇÃO DE MÉTODOS ESTATÍSTICOS NO PLANEJAMENTO E ANÁLISE DE ESTUDOS EXPERIMENTAIS EM ENGENHARIA DE SOFTWARE (FONTE: ESELAW 09 MARCOS ANTÔNIO P. & GUILHERME H. TRAVASSOS) 1 Aluna: Luana Peixoto Annibal

Leia mais

Testes de Hipótese PARA COMPUTAÇÃO

Testes de Hipótese PARA COMPUTAÇÃO Testes de Hipótese MONITORIA DE ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO Testes de Hipóteses Um teste de hipótese é uma técnica de análise usada para estimar se uma hipótese sobre a população está correta,

Leia mais

Análise da Regressão. Prof. Dr. Alberto Franke (48)

Análise da Regressão. Prof. Dr. Alberto Franke (48) Análise da Regressão Prof. Dr. Alberto Franke (48) 91471041 O que é Análise da Regressão? Análise da regressão é uma metodologia estatística que utiliza a relação entre duas ou mais variáveis quantitativas

Leia mais

1 Probabilidade - Modelos Probabilísticos

1 Probabilidade - Modelos Probabilísticos 1 Probabilidade - Modelos Probabilísticos Modelos probabilísticos devem, de alguma forma, 1. identificar o conjunto de resultados possíveis do fenômeno aleatório, que costumamos chamar de espaço amostral,

Leia mais

ESTATÍSTICA INFERENCIAL. Prof. Dr. Guanis de Barros Vilela Junior

ESTATÍSTICA INFERENCIAL. Prof. Dr. Guanis de Barros Vilela Junior ESTATÍSTICA INFERENCIAL Prof. Dr. Guanis de Barros Vilela Junior As Hipóteses A Hipótese Nula (H 0 ) é, em geral, uma afirmação conservadora sobre uma situação da pesquisa. Por exemplo, se você quer testar

Leia mais

Estimação e Testes de Hipóteses

Estimação e Testes de Hipóteses Estimação e Testes de Hipóteses 1 Estatísticas sticas e parâmetros Valores calculados por expressões matemáticas que resumem dados relativos a uma característica mensurável: Parâmetros: medidas numéricas

Leia mais

1 Teoria da Decisão Estatística

1 Teoria da Decisão Estatística 1 Teoria da Decisão Estatística 1.1 Teste de Hipótese É uma metodologia estatística que permite tomar decisão sobre uma ou mais populações baseando no conhecimento de informações da amostra. Ao tentarmos

Leia mais

Regressão. PRE-01 Probabilidade e Estatística Prof. Marcelo P. Corrêa IRN/Unifei

Regressão. PRE-01 Probabilidade e Estatística Prof. Marcelo P. Corrêa IRN/Unifei Regressão PRE-01 Probabilidade e Estatística Prof. Marcelo P. Corrêa IRN/Unifei Regressão Introdução Analisar a relação entre duas variáveis (x,y) através da equação (equação de regressão) e do gráfico

Leia mais

Teste de Hipótese e Intervalo de Confiança

Teste de Hipótese e Intervalo de Confiança Teste de Hipótese e Intervalo de Confiança Suponha que estamos interessados em investigar o tamanho da ruptura em um músculo do ombro... para determinar o tamanho exato da ruptura, é necessário um exame

Leia mais

Cap. 8 - Intervalos Estatísticos para uma Única Amostra

Cap. 8 - Intervalos Estatísticos para uma Única Amostra Intervalos Estatísticos para ESQUEMA DO CAPÍTULO 8.1 INTRODUÇÃO 8.2 INTERVALO DE CONFIANÇA PARA A MÉDIA DE UMA DISTRIBUIÇÃO NORMAL, VARIÂNCIA CONHECIDA 8.3 INTERVALO DE CONFIANÇA PARA A MÉDIA DE UMA DISTRIBUIÇÃO

Leia mais

Renda x Vulnerabilidade Ambiental

Renda x Vulnerabilidade Ambiental Renda x Vulnerabilidade Ambiental ANEXO D ANÁLISE EXPLORATÓRIA E PREPARAÇÃO DOS DADOS Identificamos tendência linear positiva. A correlação entre as variáveis é significativa, apresentando 99% de confiança.

Leia mais

Inferência a partir de duas amostras

Inferência a partir de duas amostras Inferência a partir de duas amostras Inferência a partir de duas amostras. Inferência sobre duas médias: amostras dependentes. Inferência sobre duas médias: amostras grandes e independêntes 3. Comparação

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO 1 1. CORRELAÇÃO 1.1. INTRODUÇÃO 1.. PADRÕES DE ASSOCIAÇÃO 1.3. INDICADORES DE ASSOCIAÇÃO 1.4. O COEFICIENTE DE CORRELAÇÃO 1.5. HIPÓTESES BÁSICAS 1.6. DEFINIÇÃO 1.7. TESTE DE HIPÓTESE.

Leia mais

Inferência. 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média. Renata Souza

Inferência. 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média. Renata Souza Inferência 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média Renata Souza Aspectos Gerais A estatística descritiva tem por objetivo resumir ou descrever características importantes

Leia mais

Inferência. 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média. Renata Souza

Inferência. 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média. Renata Souza Inferência 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média Renata Souza Aspectos Gerais A estatística descritiva tem por objetivo resumir ou descrever características importantes

Leia mais

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof.

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof. ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim 1 de 6 Pessoal, segue a resolução das questões de Estatística da prova realizada pela SEFAZ-PE, para o cargo de Auditor Fiscal do Tesouro

Leia mais

Filho, não é um bicho: chama-se Estatística!

Filho, não é um bicho: chama-se Estatística! Paulo Jorge Silveira Ferreira Filho, não é um bicho: chama-se Estatística! Estatística aplicada uma abordagem prática FICHA TÉCNICA EDIÇÃO: Paulo Ferreira TÍTULO: Filho, não é um bicho: chama-se Estatística!

Leia mais

Medidas de Dispersão ou variabilidade

Medidas de Dispersão ou variabilidade Medidas de Dispersão ou variabilidade A média - ainda que considerada como um número que tem a faculdade de representar uma série de valores - não pode, por si mesma, destacar o grau de homogeneidade ou

Leia mais

Testes de Hipóteses. Henrique Dantas Neder

Testes de Hipóteses. Henrique Dantas Neder Testes de Hipóteses Henrique Dantas Neder Vimos no capítulo anterior como construir intervalos de conança para parâmetros da população. Um outro procedimento muito utilizado em inferência é o estabelecimento

Leia mais

AULA 07 Regressão. Ernesto F. L. Amaral. 05 de outubro de 2013

AULA 07 Regressão. Ernesto F. L. Amaral. 05 de outubro de 2013 1 AULA 07 Regressão Ernesto F. L. Amaral 05 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas

Leia mais

Considerações. Planejamento. Planejamento. 3.3 Análise de Variância ANOVA. 3.3 Análise de Variância ANOVA. Estatística II

Considerações. Planejamento. Planejamento. 3.3 Análise de Variância ANOVA. 3.3 Análise de Variância ANOVA. Estatística II UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARAN PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Estatística II Aula 8 Profa. Renata G. Aguiar Considerações Coleta de dados no dia 18.05.2010. Aula extra

Leia mais

Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo

Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Testes de Hipóteses Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução e notação Em geral, intervalos de confiança são a forma mais

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Aula 9 Fundamentos de Testes de Hipóteses Leitura: Devore, Capítulo 8 Chap 9-1 Objetivos Neste capítulo, vamos aprender: Os princípios básicos de testes de hipóteses Estabelecer

Leia mais

Distribuição T - Student. Prof. Herondino S. F.

Distribuição T - Student. Prof. Herondino S. F. Distribuição T - Student Prof. Herondino S. F. Distribuição T-Student A distribuição T de Student é uma distribuição de probabilidade estatística, publicada por um autor que se chamou de Student, pseudônimo

Leia mais

Estimação parâmetros e teste de hipóteses. Prof. Dr. Alberto Franke (48)

Estimação parâmetros e teste de hipóteses. Prof. Dr. Alberto Franke (48) Estimação parâmetros e teste de hipóteses Prof. Dr. Alberto Franke (48) 91471041 Intervalo de confiança para média É um intervalo em que haja probabilidade do verdadeiro valor desconhecido do parâmetro

Leia mais

Capítulo 9 - Regressão Linear Simples (RLS): Notas breves

Capítulo 9 - Regressão Linear Simples (RLS): Notas breves Capítulo 9 - Regressão Linear Simples RLS: Notas breves Regressão Linear Simples Estrutura formal do modelo de Regressão Linear Simples RLS: Y i = β 0 + β 1 x i + ε i, 1 onde Y i : variável resposta ou

Leia mais

Testes de hipóteses. Wagner H. Bonat Fernando P. Mayer Elias T. Krainski

Testes de hipóteses. Wagner H. Bonat Fernando P. Mayer Elias T. Krainski Testes de hipóteses Wagner H. Bonat Fernando P. Mayer Elias T. Krainski Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação 07/06/2018 WB, FM, EK ( LEG/DEST/UFPR

Leia mais

AULA 11 Teste de Hipótese

AULA 11 Teste de Hipótese 1 AULA 11 Teste de Hipótese Ernesto F. L. Amaral 20 de setembro de 2012 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro: LTC. Capítulo

Leia mais

Resultados possíveis do nosso estudo

Resultados possíveis do nosso estudo Resultados possíveis do nosso estudo Interpretação de gráficos, decisão baseada nas hipóteses, interpretação. Para termos isso, precisamos fazer uma inferência estatística! Número de visitas Inferência

Leia mais

Esse material foi extraído de Barbetta (2007 cap 13)

Esse material foi extraído de Barbetta (2007 cap 13) Esse material foi extraído de Barbetta (2007 cap 13) - Predizer valores de uma variável dependente (Y) em função de uma variável independente (X). - Conhecer o quanto variações de X podem afetar Y. Exemplos

Leia mais

Correlação e Regressão Linear

Correlação e Regressão Linear Correlação e Regressão Linear Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais CORRELAÇÃO LINEAR Coeficiente de correlação linear r Mede o grau de relacionamento linear entre valores

Leia mais

Probabilidade e Estatística (Aula Prática - 23/05/16 e 24/05/16)

Probabilidade e Estatística (Aula Prática - 23/05/16 e 24/05/16) Probabilidade e Estatística (Aula Prática - 23/05/16 e 24/05/16) Resumo: Veremos nesta aula tabelas, cálculos de porcentagem e gráficos; amostras e tipo de amostragem; Medidas de tendência central e medidas

Leia mais

a) 19% b) 20% c) Aproximadamente 13% d) 14% e) Qualquer número menor que 20%

a) 19% b) 20% c) Aproximadamente 13% d) 14% e) Qualquer número menor que 20% 0. Sabe-se que o nível de significância é a probabilidade de cometermos um determinado tipo de erro quando da realização de um teste de hipóteses. Então: a) A escolha ideal seria um nível de significância

Leia mais

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA VARIABILIDADE NA MEDIDA DE DADOS CIENTÍFICOS Se numa pesquisa, desenvolvimento de um processo ou produto, o valor

Leia mais

Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística

Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística Introdução ao Planejamento e Análise Estatística de Experimentos Capítulo 3 Introdução à Probabilidade e à Inferência Estatística Introdução ao Planejamento e Análise Estatística de Experimentos Agora,

Leia mais

Tutorial para o desenvolvimento das Oficinas

Tutorial para o desenvolvimento das Oficinas Tutorial para o desenvolvimento das Oficinas 1 Métodos Quantitativos Profa. Msc. Regina Albanese Pose 2 Objetivos Objetivo Geral Este tutorial tem como objetivo parametrizar o desenvolvimento da oficina

Leia mais

Curso de Metodologia da Pesquisa em Ciências da Vida. Tópicos em bioestatística fundamentais para o pesquisador em Ciências da Vida

Curso de Metodologia da Pesquisa em Ciências da Vida. Tópicos em bioestatística fundamentais para o pesquisador em Ciências da Vida Tópicos em bioestatística fundamentais para o pesquisador em Ciências da Vida Conceito de bioestatística A bioestatística é um recurso matemático aplicado às ciências biológicas Tem por finalidade de coletar,

Leia mais

Testes de Hipóteses. Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM

Testes de Hipóteses. Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM Testes de Hipóteses Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM Testes de hipóteses O Teste de Hipótese é uma regra de decisão para aceitar ou rejeitar uma hipótese

Leia mais

Stela Adami Vayego DEST/UFPR. Resumo 11 - Testes de Hipóteses

Stela Adami Vayego DEST/UFPR. Resumo 11 - Testes de Hipóteses Resumo - Testes de Hipóteses.. Introdução Como para a estimação, o propósito dos testes de hipóteses é ajudar o pesquisador a tomar uma decisão referente a uma população, examinando uma amostra (a menos

Leia mais

Distribuições Amostrais

Distribuições Amostrais Distribuições Amostrais 1 Da população, com parâmetro, retira-se k amostras de tamanho n e calcula-se a estatística. Estas estatísticas são as estimativas de. As estatísticas, sendo variáveis aleatórias,

Leia mais

Estatística 1. Resumo Teórico

Estatística 1. Resumo Teórico Estatística 1 Resumo Teórico Conceitos do Curso 1. Tipos de Variáveis e Representações Gráficas a. Tipos de Variáveis b. Distribuição de Frequências c. Histograma 2. Estatística Descritiva Medidas Estatísticas

Leia mais

Delineamento e Análise Experimental Aula 3

Delineamento e Análise Experimental Aula 3 Aula 3 Castro Soares de Oliveira Teste de hipótese Teste de hipótese é uma metodologia estatística que permite tomar decisões sobre uma ou mais populações baseando-se no conhecimento de informações da

Leia mais

Exemplo 1: Sabemos que a média do nível sérico de colesterol para a população de homens de 20 a 74 anos é 211 mg/100ml.

Exemplo 1: Sabemos que a média do nível sérico de colesterol para a população de homens de 20 a 74 anos é 211 mg/100ml. Exemplo 1: Sabemos que a média do nível sérico de colesterol para a população de homens de 20 a 74 anos é 211 mg/100ml. O nível médio de colesterol da subpopulação de homens que são fumantes hipertensos

Leia mais

Métodos Quantitativos

Métodos Quantitativos Métodos Quantitativos Unidade 4. Estatística inferencial Parte II 1 Sumário Seção Slides 4.1 Correlação entre variáveis quantitativas 03 11 4.2 Teste de significância 12 19 4.3 Regressão linear 20 27 4.4

Leia mais

Razão para rejeitar H 0

Razão para rejeitar H 0 Processo do teste de hipótese Hipótese de pesquisa: a idade média da população é 5 H : μ = 5 H 1 : μ 5 É X = improvável se μ =5? População Selecionar amostra aleatória Sim: Rejeite Ho Para definir pouco

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS fonte de graus de soma de quadrado variação liberdade quadrados médio teste F regressão 1 1,4 1,4 46,2 resíduo 28 0,8 0,03 total 2,2 A tabela de análise de variância (ANOVA) ilustrada acima resulta de

Leia mais

RESUMO DO CAPÍTULO 3 DO LIVRO DE WOOLDRIDGE ANÁLISE DE REGRESSÃO MÚLTIPLA: ESTIMAÇÃO

RESUMO DO CAPÍTULO 3 DO LIVRO DE WOOLDRIDGE ANÁLISE DE REGRESSÃO MÚLTIPLA: ESTIMAÇÃO RESUMO DO CAPÍTULO 3 DO LIVRO DE WOOLDRIDGE ANÁLISE DE REGRESSÃO MÚLTIPLA: ESTIMAÇÃO Regressão simples: desvantagem de apenas uma variável independente explicando y mantendo ceteris paribus as demais (ou

Leia mais

Módulo 16- Análise de Regressão

Módulo 16- Análise de Regressão Módulo 6 Análise de Regressão Módulo 6- Análise de Regressão Situação Problema Um grupo de investidores estrangeiros deseja aumentar suas atividades no Brasil. Considerando a conjuntura econômica de moeda

Leia mais

TESTE DE HIPÓTESE. Introdução

TESTE DE HIPÓTESE. Introdução TESTE DE HIPÓTESE Introdução O teste de hipótese estatística objetiva decidir se uma afirmação sobre uma população, usualmente um parâmetro desta, é, ou não, apoiada pela evidência obtida dos dados amostrais.

Leia mais

Capítulo 9 - Regressão Linear Simples (RLS): Notas breves

Capítulo 9 - Regressão Linear Simples (RLS): Notas breves Capítulo 9 - Regressão Linear Simples RLS: Notas breves Regressão Linear Simples Estrutura formal do modelo de Regressão Linear Simples RLS: Y i = β 0 + β 1 x i + ε i, 1 onde Y i : variável resposta ou

Leia mais

Na aula do dia 24 de outubro analisamos duas variáveis quantitativas conjuntamente com o objetivo de verificar se existe alguma relação entre elas.

Na aula do dia 24 de outubro analisamos duas variáveis quantitativas conjuntamente com o objetivo de verificar se existe alguma relação entre elas. Regressão Múltipla Na aula do dia 24 de outubro analisamos duas variáveis quantitativas conjuntamente com o objetivo de verificar se existe alguma relação entre elas. 1. definimos uma medida de associação

Leia mais

UNIVERSIDADE FEDERAL DA FRONTEIRA SUL Campus CERRO LARGO. PROJETO DE EXTENSÃO Software R: de dados utilizando um software livre.

UNIVERSIDADE FEDERAL DA FRONTEIRA SUL Campus CERRO LARGO. PROJETO DE EXTENSÃO Software R: de dados utilizando um software livre. UNIVERSIDADE FEDERAL DA FRONTEIRA SUL Campus CERRO LARGO PROJETO DE EXTENSÃO Software R: Capacitação em análise estatística de dados utilizando um software livre. Fonte: https://www.r-project.org/ Módulo

Leia mais

PREVISÃO. Prever o que irá. acontecer. boas decisões com impacto no futuro. Informação disponível. -quantitativa: dados.

PREVISÃO. Prever o que irá. acontecer. boas decisões com impacto no futuro. Informação disponível. -quantitativa: dados. PREVISÃO O problema: usar a informação disponível para tomar boas decisões com impacto no futuro Informação disponível -qualitativa Prever o que irá acontecer -quantitativa: dados t DEI/FCTUC/PGP/00 1

Leia mais

Capítulo 6 Estatística não-paramétrica

Capítulo 6 Estatística não-paramétrica Capítulo 6 Estatística não-paramétrica Slide 1 Teste de ajustamento do Qui-quadrado Testes de independência e de homogeneidade do Qui-quadrado Testes dos sinais e de Wilcoxon Teste de Mann-Whitney Teste

Leia mais

MÓDULO V: Análise Bidimensional: Correlação, Regressão e Teste Qui-quadrado de Independência

MÓDULO V: Análise Bidimensional: Correlação, Regressão e Teste Qui-quadrado de Independência MÓDULO V: Análise Bidimensional: Correlação, Regressão e Teste Qui-quadrado de Independência Introdução 1 Muito frequentemente fazemos perguntas do tipo se alguma coisa tem relação com outra. Estatisticamente

Leia mais

Hipóteses. Hipótese. É uma pressuposição de um determinado problema.

Hipóteses. Hipótese. É uma pressuposição de um determinado problema. Bioestatística Aula 7 Teoria dos Teste de Hitóteses Prof. Tiago A. E. Ferreira 1 Hipóteses Hipótese É uma pressuposição de um determinado problema. Uma vez formulada, a hipótese estará sujeita a uma comprovação

Leia mais

Estatística Computacional (Licenciatura em Matemática) Duração: 2h Exame 14/06/10 NOME:

Estatística Computacional (Licenciatura em Matemática) Duração: 2h Exame 14/06/10 NOME: DEPARTAMENTO DE MATEMÁTICA DA UNIVERSIDADE DE COIMBRA Estatística Computacional (Licenciatura em Matemática) Duração: 2h Exame 14/06/10 NOME: Observação: A resolução completa das perguntas inclui a justificação

Leia mais

Inferência estatística

Inferência estatística Inferência estatística Susana Barbosa Mestrado em Ciências Geofísicas 2013-2014 Inferência estatística Obtenção de conclusões sobre propriedades da população a partir das propriedades de uma amostra aleatória

Leia mais

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV DISCIPLINA: TGT41006 FUNDAMENTOS DE ESTATÍSTICA 10ª AULA: ASSOCIAÇÃO, CORRELAÇÃO E

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Permite avaliar se existe relação entre o comportamento de duas ou mais variáveis e em que medida se dá tal interação. Gráfico de Dispersão A relação entre duas variáveis pode ser

Leia mais