Capítulo 6 Estatística não-paramétrica
|
|
|
- Amélia Aquino Vidal
- 9 Há anos
- Visualizações:
Transcrição
1 Capítulo 6 Estatística não-paramétrica Slide 1 Teste de ajustamento do Qui-quadrado Testes de independência e de homogeneidade do Qui-quadrado
2 Algumas considerações Slide 2 As secções deste capítulo referem-se à análise de dados categorizados (qualitativos ou atributos) os quais podem ser classificados em diferentes categorias (frequentemente designadas por células). Vamos usar a distribuição χ 2 (Qui-quadrado). No teste de ajustamento temos uma tabela com apenas uma linha ou uma coluna. Nos testes de independência e de homogeneidade as tabelas têm, pelo menos, 2 linhas e 2 colunas.
3 Algumas considerações Slide 3 Definições Testes Paramétricos Os testes paramétricos obrigam a que as populações envolvidas obedeçam a certas premissas. Testes Não-Paramétricos Nos testes não-paramétricos as populações não têm que obedecer a quaisquer premissas. Assim sendo, este testes são também designados por testes distribution-free.
4 Vantagens dos Métodos Não-paramétricos Slide 4 1. Os métodos não-paramétricos podem ser aplicados numa grande variedade de situações pois não exigem premissas rígidas, tal como acontece com os métodos paramétricos. Em particular, os métodos não-paramétricos não exigem que as populações tenham distribuição Normal. 2. Ao contrário do que acontece com os métodos paramétricos, os métodos não-paramétricos podem ser aplicados a dados qualitativos. 3. Habitualmente, os métodos não-paramétricos envolvem cálculos mais simples do que os correspondentes métodos paramétricos, donde são mais fáceis de perceber e aplicar.
5 Desvantagens dos Métodos Não-paramétricos Slide 5 1. Os métodos não-paramétricos tendem a desperdiçar informação uma vez que, frequentemente, os dados quantitativos são transformados em dados qualitativos. 2. Os testes não-paramétricos não são tão eficientes como os métodos paramétricos logo, em geral, com um teste não-paramétrico é necessário uma maior evidência (como, por exemplo, uma amostra maior ou maiores diferenças) para poder rejeitar a hipótese nula.
6 Definição Slide 6 Experiência Multinomial Esta é uma experiência que obedece às seguintes condições: 1. O número de provas é fixo. 2. As provas são independentes. 3. Todos os resultados de uma prova devem poder ser classificados numa só das diferentes categorias. 4. As probabilidades para cada uma das categorias permanecem constantes em cada prova.
7 Definição Slide 7 Teste de ajustamento Um teste de ajustamento é usado para testar a hipótese de uma certa distribuição de frequências observadas seguir uma certa distribuição teórica.
8 Teste de ajustamento Slide 8 Notação 0 representa a frequência (ou valor) observada (o) E representa a frequência esperada (de acordo com a distribuição teórica) k representa o número de categorias n representa a dimensão da amostra (ou seja, neste contexto, o número de provas)
9 Frequências Esperadas Slide 9 Se todas as frequências esperadas forem iguais: E = n k cada valor esperado é a soma de todas as frequências observadas dividida pelo número de categorias.
10 Frequências Esperadas Slide 10 Se as frequências esperadas forem diferentes: E = n p cada valor esperado determina-se multiplicando a soma de todas as frequências observadas pela probabilidade de cada categoria.
11 Teste de ajustamento Slide 11 Estatística de teste X 2 = Σ (O E)2 E Valores críticos 1. Determinam-se usando a tabela da distribuição Qui-quadrado com k 1 graus de liberdade, onde k = número de categorias. 2. A hipótese alternativa é sempre unilateral direita.
12 Slide 12 Se os valores observados estiverem próximos dos valores esperados, então o valor da estatística de teste será pequeno (que é o mesmo do que dizer que o P-value será grande) e vice-versa. Um valor muito elevado da estatística de teste levará à rejeição da hipótese nula (a qual diz que não há diferença entre os valores observados e os valores esperados)
13 Slide 13 Tabelas de contingência: Independência e Homogeneidade
14 Definição Slide 14 Uma tabela de contingência é uma tabela de frequências que representa um conjunto de dados que foram classificados simultaneamente segundo duas (bidimensional) ou mais variáveis (multidimensional). As tabelas de contingência têm, pelo menos, 2 linhas e 2 colunas.
15 Slide 15
16 Definição Slide 16 Teste de Independência Este método testa a hipótese nula de a variável linha e a variável coluna numa tabela de contingência não estarem relacionadas. (A hipótese nula afirma que as duas variáveis são independentes.)
17 Pressupostos 1. As observações são seleccionadas aleatoriamente. Slide A hipótese nula H 0 afirma que as variáveis linha e coluna são independentes; a hipótese alternativa H 1 afirma que as variáveis linha e coluna são dependentes. 3. O valor esperado, E, de cada célula da tabela de contingência tem que ser, pelo menos, 5. (Que não é o mesmo do que dizer que cada valor observado, O, de cada célula da tabela de contingência tenha que ser, pelo menos, 5.)
18 Teste de Independência Estatística de teste Slide 18 Valores críticos: X 2 = Σ X 2 = Σ (O E)2 E Correcção de Yates: aplica-se quando a tabela de contingência é 2x2. Neste caso, a estatística de teste é ( O E -0.5)2 E 1. Determinam-se através da tabela da distribuição Quiquadrado com (r 1)(c 1)=graus de liberdade onde r é o número de linhas e c o número de colunas da tabela de contingência.
19 Slide A hipótese alternativa é sempre unilateral direita. E = (total de linha) (total de coluna) (total) E = n i. n.j n
20 Teste de Independência Slide 20 H 0 : A variável linha é independente da variável coluna. H 1 : A variável linha é dependente (está relacionada com a) da variável coluna. A dependência entre as duas variáveis significa apenas que as duas variáveis estão relacionadas, não especifica o tipo de relação (por exº, do tipo causa/efeito).
21 Frequências Observadas e Esperadas Slide 21 Survived Died Men Women Boys Girls Total Total Vamos usar a tabela de contingência referente aos passageiros do Titanic para calcular as frequências esperadas. Para a primeira célula, a que se encontra na posição 11, ou seja, 1ª linha e 1ª coluna, temos: E 11 = n 1. n.1 n = (706)(1692) 2223 =
22 Frequências Observadas e Esperadas Slide 22 Survived Men Women Boys Girls Total Died Total Cálculo da frequência esperada da célula na posição 21, sob a hipótese de independência entre as variáveis. E 21 = (1517)(1692) 2223 =
23 Frequências Observadas e Esperadas Slide 23 Survived Men Women Boys Girls Total Died Total Para interpretar o resultado obtido para a célula, por exemplo, na posição 21, dizemos que embora tivessem sido observadas 1360 mortes nos homens, se houvesse independência entre a sobrevivência e o facto de um indivíduo ser homem, mulher, rapaz ou rapariga, esperaríamos apenas mortes nos homens.
24 Slide 24 Exemplo: Teste a hipótese de a sobrevivência dos passageiros do Titanic ser independente do facto do passageiro ser homem, mulher, rapaz ou rapariga, usando um nível de significância de H 0 : A sobrevivência dos passageiros é independente do facto de ser homem, mulher, rapaz ou rapariga. H 1 : A sobrevivência dos passageiros é dependente do facto de ser homem, mulher, rapaz ou rapariga.
25 Slide 25 Cálculos: X 2 = ( ) 2 + ( ) 2 + ( ) 2 + ( ) ( ) 2 + ( ) 2 + ( ) 2 + ( ) X 2 = =
26 Slide 26 O número de graus de liberdade é (r 1)(c 1) = (2 1)(4 1) = 3 pois a tabela tem 2 linhas e 4 colunas. Então, o valor crítico é χ 2 (0.05;3) = 7.815
27 Estatística de teste: X 2 = Slide 27 com α = 0.05 e (r 1) (c 1) = (2 1) (4 1) = 3 graus de liberdade Valor crítico: χ 2 = 7.815
28 Relações entre as componentes num Teste de Independência Slide 28 Com pare os valores observados, O, com os respectivos valores esperados, E. O `s e E `s próxim os. X 2 pequeno, P-value grande. O `s e E `s afastados. X 2 grande, P-value pequeno. X 2 aqui X 2 aqui N ão rejeitar H 0. R ejeitar H 0.
29 Definição Slide 29 Teste de Homogeneidade Num teste de homogeneidade, verificamos se diferentes populações têm as mesmas características.
30 Como distinguir um teste de homogeneidade dum teste de independência: Slide 30 A dimensão das amostras provenientes da diferentes populações foi fixada à partida (teste de homogeneidade), ou foi recolhida apenas uma amostra que depois foi classificada aleatoriamente nas diferentes linhas e colunas (teste de independência)?
31 Slide 31 Exemplo: Através da tabela que se segue, teste o efeito do sexo do entrevistador nas respostas de uma amostra de indivíduos do sexo masculino a uma certa sondagem, com um nível de significância de 0.05.
32 Slide 32 H 0 : A proporção de respostas concordantes/discordantes é a mesma quer o entrevistador seja do sexo masculino ou feminino. H 1 : As proporções são diferentes Chi-Square Tests Value df Asymp. Sig. (2-sided) Pearson Chi-Square 6,529(b) 1,011 Continuity Correction(a) 6,184 1,013 Likelihood Ratio 6,662 1,010 Exact Sig. (2-sided) Exact Sig. (1-sided) Fisher's Exact Test,011,006 Linear-by-Linear Association 6,524 1,011 N of Valid Cases 1200 a Computed only for a 2x2 table b 0 cells (,0%) have expected count less than 5. The minimum expected count is 110,67.
33 Slide 33 O SPSS fornece-nos o valor da estatística de teste X 2 = e o P-value (pois a tabela é 2x2). Usando a abordagem através do P-value, rejeitamos a hipótese nula de igualdade (homogeneidade) das proporções (porque o P-value é menor do que 0.05). Assim, concluímos que existe evidência suficiente para rejeitar a hipótese de igualdade de proporções.
Capítulo 6 Estatística não-paramétrica
Capítulo 6 Estatística não-paramétrica Slide 1 Teste de ajustamento do Qui-quadrado Testes de independência e de homogeneidade do Qui-quadrado Testes dos sinais e de Wilcoxon Teste de Mann-Whitney Teste
Testes de Hipóteses. : Existe efeito
Testes de Hipóteses Hipótese Estatística de teste Distribuição da estatística de teste Decisão H 0 : Não existe efeito vs. H 1 : Existe efeito Hipótese nula Hipótese alternativa Varia conforme a natureza
Introdução à análise estatística com SPSS. Guião nº6: Medidas de associação
Introdução à análise estatística com SPSS Guião nº6: Medidas de associação Experiência sobre volume plasmático e o peso em 13 homens saudáveis Os investigadores pretendem descobrir se as variáveis volume
AULA 8 Experimentos multinomiais e tabelas de contingência
1 AULA 8 Experimentos multinomiais e tabelas de contingência Ernesto F. L. Amaral 05 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas
2. Testes de Independência
. Testes de Independência Objetivo: Verificar se existe independência entre duas variáveis medidas nas mesmas unidades experimentais. Exemplo 3: A Associação de Imprensa do Estado de São Paulo fez um levantamento
- Testes Qui-quadrado - Aderência e Independência
- Testes Qui-quadrado - Aderência e Independência 1 1. Testes de Aderência Objetivo: Testar a adequabilidade de um modelo probabilístico a um conjunto de dados observados Exemplo 1: Segundo Mendel (geneticista
Estimação e Testes de Hipóteses
Estimação e Testes de Hipóteses 1 Estatísticas sticas e parâmetros Valores calculados por expressões matemáticas que resumem dados relativos a uma característica mensurável: Parâmetros: medidas numéricas
Bioestatística. Paulo Nogueira quarta-feira, 11 de Janeiro de 2012
Bioestatística Paulo Nogueira quarta-feira, 11 de Janeiro de 2012 Bioestatística? Bioestatística Biologia + Estatística (Portmanteau) Biometria Estatística aplicada às ciências da saúde Para que serve
- Testes Qui-quadrado. - Aderência e Independência
- Testes Qui-quadrado - Aderência e Independência 1 1. Testes de Aderência Objetivo: Testar a adequabilidade de um modelo probabilístico a um conjunto de dados observados Exemplo 1: 1 Genética Equilíbrio
TESTE DO QUI-QUADRADO DE INDEPENDÊNCIA
TESTE DO QUI-QUADRADO DE INDEPENDÊNCIA Suponha que numa amostra aleatória de tamanho n de uma dada população são observados dois atributos ou características A e B (qualitativas ou quantitativas), uma
ISCTE- IUL Instituto Universitário de Lisboa
ISCTE- IUL Instituto Universitário de Lisboa Licenciatura em Gestão Exame de ª Época de Estatística II de Junho de 0 Duração: h +30m Nota: Não são prestados esclarecimentos durante a prova! Só é permitida
Aula 16: Análise de Aderência e Associação
Aula 16: Análise de Aderência e Associação Professor: José Luiz Padilha da Silva email: [email protected] Departamento de Estatística Universidade Federal do Paraná Curitiba, 2018 José Luiz Padilha da
- Testes Qui-quadrado - Aderência e Independência
- Testes Qui-quadrado - Aderência e Independência 1 1. Testes de Aderência Objetivo: Testar a validade de um modelo probabilístico discreto a um conjunto de dados observados Exemplo 1: Segundo Mendel (geneticista
Associação entre variáveis categóricas e IC95%
Associação entre variáveis categóricas e IC95% Andréa Homsi Dâmaso Programa de pós-graduação em Epidemiologia UFPEL Biotecnologia: Bioestatística e Delineamento Experimental Aula de hoje Teste do qui-quadrado
Testes não paramétricos são testes de hipóteses que não requerem pressupostos sobre a forma da distribuição subjacente aos dados.
TESTES NÃO PARAMÉTRICOS Testes não paramétricos são testes de hipóteses que não requerem pressupostos sobre a forma da distribuição subjacente aos dados. Bioestatística, 2007 15 Vantagens dos testes não
Testes de Aderência Testes de Independência Testes de Homogeneidade
Testes de Aderência Testes de Independência Testes de Homogeneidade 1 1. Testes de Aderência Objetivo: Testar a adequabilidade de um modelo probabilístico a um conjunto de dados observados Exemplo 1: Genética
Stela Adami Vayego Estatística II CE003/DEST/UFPR
Resumo 1 Teste de hipóteses não paramétricos Os métodos não-paramétricos fazem poucas suposições sobre a natureza das distribuições dos dados. Não exige que as distribuições nas populações sejam normais,
- Testes Qui-quadrado - Aderência e Independência
- Testes Qui-quadrado - Aderência e Independência 1 1. Testes de Aderência Objetivo: Testar a adequabilidade de um modelo probabilístico a um conjunto de dados observados Exemplo 1: Segundo Mendel (geneticista
Teste Qui-quadrado. Dr. Stenio Fernando Pimentel Duarte
Dr. Stenio Fernando Pimentel Duarte Exemplo Distribuição de 300 pessoas, classificadas segundo o sexo e o tabagismo Tabagismo Fumante (%) Não Fumante (%) Masculino 92 (46,0) 108 (54,0) Sexo Feminino 38
CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO
CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO Ana Paula Araujo Correa Eder Queiroz Newton Trevisan DEFINIÇÃO É um teste de hipóteses que se destina a encontrar um valor da dispersão para duas variáveis
Estatística Aplicada I. } Análise Bidimensional
Estatística Aplicada I } Análise Bidimensional 1 Aula de hoje } Temas } Associação entre variáveis } Qualitativas e Quantitativas } Covariância: conceitos e propriedades } Coeficiente de correlação } Observações
Métodos Empíricos de Pesquisa I. } Análise Bidimensional
Métodos Empíricos de Pesquisa I } Análise Bidimensional 1 Aula de hoje } Temas } Associação entre variáveis } Qualitativas e Quantitativas } Covariância: conceitos e propriedades } Coeficiente de correlação
AULA 05 Teste de Hipótese
1 AULA 05 Teste de Hipótese Ernesto F. L. Amaral 03 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario F. 2008. Introdução
Estatística Não Paramétrica
Estatística Não Paramétrica Como construir testes de hipóteses para uma amostra Como construir testes de hipóteses para duas amostras dependentes Como construir testes de hipóteses para duas amostras independentes
Medidas de associação entre duas variáveis qualitativas
Medidas de associação entre duas variáveis qualitativas Hoje vamos analisar duas variáveis qualitativas (categóricas) conjuntamente com o objetivo de verificar se existe alguma relação entre elas. Vamos
Resultados dos testes estatísticos
Resultados dos testes estatísticos Estudo da fiabilidade do instrumento para avaliação dos comportamentos e atitudes Factor Analysis Communalities Initial Extraction Item47 1,000,759 Item48 1,000,801 Item49
Testes de Aderência, Homogeneidade e Independência
Testes de Aderência, Homogeneidade e Independência Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais O que é um teste de hipótese? Queremos saber se a evidência que temos em mãos significa
MAE0229 Introdução à Probabilidade e Estatística II
Exercício A fim de comparar os salários médios anuais de executivos e executivas de uma determinada cidade, amostras aleatórias de n = 26 executivos e n 2 = 24 executivas foram coletadas obtendose os valores
Testes de Aderência, Homogeneidade e Independência
Testes de Aderência, Homogeneidade e Independência Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais O que é um teste de hipótese? Queremos saber se a evidência que temos em mãos significa
Testes de Aderência, Homogeneidade e Independência
Testes de Aderência, Homogeneidade e Independência Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais O que é um teste de hipótese? Queremos saber se a evidência que temos em mãos significa
Análise de Aderência e de Associação
Análise de Aderência e de Associação Capítulo 14, Estatística Básica (Bussab & Morettin, 8a Edição) Capítulo 8, Introdução Computacional à Probabilidade e Estatística (Pedrosa & Gama, Porto Editora) 8a
MÓDULO V: Análise Bidimensional: Correlação, Regressão e Teste Qui-quadrado de Independência
MÓDULO V: Análise Bidimensional: Correlação, Regressão e Teste Qui-quadrado de Independência Introdução 1 Muito frequentemente fazemos perguntas do tipo se alguma coisa tem relação com outra. Estatisticamente
Testes para dados categóricos
Testes para dados categóricos Teste de homogeneidade Objetivo: testar se existe diferença entre frequências observadas (O ij ) e frequências esperadas (E ij ). Dados amostrais: amostras aleatórias independentes
AULA 04 Teste de hipótese
1 AULA 04 Teste de hipótese Ernesto F. L. Amaral 03 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal
Os testes. Objetivos. O teste Q de Cochran; O teste de Friedman (Análise de variância de duplo fator por postos)
Prof. Lorí Viali, Dr. http://www.mat.ufrgs.br/viali/ [email protected] Os testes O teste Q de Cochran; O teste de Friedman (Análise de variância de duplo fator por postos) William Gemmell Cochran (1909-1980)
AULA 11 Teste de Hipótese
1 AULA 11 Teste de Hipótese Ernesto F. L. Amaral 20 de setembro de 2012 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro: LTC. Capítulo
Aula 8. Teste Binomial a uma proporção p
Aula 8. Teste Binomial a uma proporção p Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán Teste Binomial a uma Proporção p Seja p ˆ = X n a proporção de indivíduos com uma
INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO PORTO Ano lectivo 2009/20010 EXAME: DATA 24 / 02 / NOME DO ALUNO:
INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO PORTO Ano lectivo 2009/20010 Estudos de Mercado EXAME: DATA 24 / 02 / 20010 NOME DO ALUNO: Nº INFORMÁTICO: TURMA: PÁG. 1_ PROFESSOR: ÉPOCA: Grupo I (10
Prof. Lorí Viali, Dr.
Prof. Lorí Viali, Dr. http://www.mat.ufrgs.br/viali/ [email protected] Os testes O teste de Kruskal-Wallis (Análise de variância de uma classificação por postos) O teste qui-quadrado William Henry Kruskal
Capítulo 4 Inferência Estatística
Capítulo 4 Inferência Estatística Slide 1 Resenha Intervalo de Confiança para uma proporção Intervalo de Confiança para o valor médio de uma variável aleatória Intervalo de Confiança para a diferença de
Métodos Quantitativos Aplicados
Métodos Quantitativos Aplicados Aula 8 http://www.iseg.utl.pt/~vescaria/mqa/ Tópicos apresentação A análise de relações de interdependência para variáveis qualitativas: a Análise factorial de correspondências
Os testes. O teste de McNemar O teste de Wilcoxon O teste do sinais
Prof. Lorí Viali, Dr. http://www.mat.ufrgs.br/viali/ [email protected] Os testes O teste de McNemar O teste de Wilcoxon O teste do sinais O teste de McNemar para a significância de mudanças é aplicável
Métodos Quantitativos Aplicados
Métodos Quantitativos Aplicados Aula 6 http://www.iseg.utl.pt/~vescaria/mqa/ Tópicos apresentação Análise de dados bivariada: os casos dos testes de proporções para duas amostras independentes e emparelhadas
TESTES DE AJUSTAMENTO (TESTES DA BONDADE DO AJUSTAMENTO)
TESTES DE AJUSTAMENTO (TESTES DA BONDADE DO AJUSTAMENTO) Os testes de ajustamento servem para testar a hipótese de que uma determinada amostra aleatória tenha sido extraída de uma população com distribuição
Testes de hipóteses Paramétricos
Testes de hipóteses Paramétricos Modelos de análise de variância com um factor Teste de Bartlett Teste de comparações múltiplas de Scheffé Rita Brandão (Univ. Açores) Testes de hipóteses Paramétricos 1
Variância pop. * conhecida Teste t Paramétrico Quantitativa Distribuição normal Wilcoxon (teste dos sinais, Wilcoxon p/ 1 amostra)
Testes de Tendência Central (média, mediana, proporção) Classificação Variável 1 Variável 2 Núm ero Gru pos Dependência Teste Z Paramétrico Quantitativa - 1 - Premissas Variância pop. * conhecida Teste
MAE Introdução à Probabilidade e Estatística II Resolução Lista 5
MAE 229 - Introdução à Probabilidade e Estatística II Resolução Lista 5 Professor: Pedro Morettin e Profa. Chang Chian Exercício 1 (a) De uma forma geral, o desvio padrão é usado para medir a dispersão
Probabilidade e Estatística
Probabilidade e Estatística Teste Qui-quadrado Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Teste Qui-quadrado É um teste não paramétrico, pois independe dos parâmetros
Testes de Hipóteses para. uma Única Amostra. Objetivos de Aprendizagem. 9.1 Teste de Hipóteses. UFMG-ICEx-EST-027/031 07/06/ :07
-027/031 07/06/2018 10:07 9 ESQUEMA DO CAPÍTULO 9.1 TESTE DE HIPÓTESES 9.2 TESTES PARA A MÉDIA DE UMA DISTRIBUIÇÃO NORMAL, VARIÂNCIA CONHECIDA 9.3 TESTES PARA A MÉDIA DE UMA DISTRIBUIÇÃO NORMAL, VARIÂNCIA
EXPERIMENTAÇÃO ZOOTÉCNICA. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari
EXPERIMENTAÇÃO ZOOTÉCNICA Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari [email protected] INTRODUÇÃO Um dos principais objetivos da estatística é a tomada de decisões a respeito da população,
Análise de Variância a um factor
1 Análise de Variância a um factor Análise de experiências com vários grupos de observações classificados através de um só factor (por exemplo grupos de indivíduos sujeitos a diferentes tratamentos para
Estatística Computacional (Licenciatura em Matemática) Duração: 2h Frequência NOME:
DEPARTAMENTO DE MATEMÁTICA DA UNIVERSIDADE DE COIMBRA Estatística Computacional (Licenciatura em Matemática) Duração: 2h Frequência 24-05-2011 NOME: Observação: A resolução completa das perguntas inclui
O teste qui-quadrado. A variável teste é: χ E. Os testes. Hipóteses e Cálculo H 0 : As variáveis são independentes H 1 : As variáveis são dependentes
Prof. Lorí Viali, Dr. http://www.mat.ufrgs.br/viali/ [email protected] Os testes O teste Qui-Quadrado O teste exato de Fisher O teste de Kolmogorov-Smirnov O teste de U de Mann-Whitney O teste de Wilcoxon
ESTATÍSTICA Distribuições qui-quadrado, t de Student e F de Snedecor Lucas Schmidt
ESTATÍSTICA Distribuições qui-quadrado, t de Student e F de Snedecor Lucas Schmidt [email protected] Estimação de parâmetros Média Variância Proporção Estimação de parâmetros Média: " estimador
Aula 7. Testes de Hipóteses Paramétricos (II)
Aula 7. Testes de Hipóteses Paramétricos (II) Métodos Estadísticos 008 Universidade de Averio Profª Gladys Castillo Jordán IC e TH para comparação de valores médios µ X e µ Y de duas populações Normais.
Testes de Aderência, Homogeneidade e Independência. Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais
Testes de Aderência, Homogeneidade e Independência Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais Teste de hipótese Queremos saber se a evidência que temos em mãos significa que encontramos
EXPERIMENTAÇÃO ZOOTÉCNICA. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari
EXPERIMENTAÇÃO ZOOTÉCNICA Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari [email protected] INTRODUÇÃO Um dos principais objetivos da estatística é a tomada de decisões a respeito da população,
Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência
Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência Erica Castilho Rodrigues 2 de Agosto de 2013 3 Modelos de Poisson podem ser usados para analisar tabelas de contingência.
Aula 7. Testes de Hipóteses Paramétricos (II)
Aula 7. Testes de Hipóteses Paramétricos (II) Métodos Estadísticos 008 Universidade de Averio Profª Gladys Castillo Jordán IC e TH para comparação de valores médios µ X e µ Y de duas populações Normais.
TESTES NÃO-PARAMÉTRICOS
Les-0773: ESTATÍSTICA APLICADA III TESTES NÃO-PARAMÉTRICOS AULA 3 26/05/17 Prof a Lilian M. Lima Cunha Maio de 2017 Revisão... Teste dos Sinais A Comparar valores de medianas de uma amostra com um valor
PHD 5742 Estatística Aplicada ao Gerenciamento dos Recursos Hídricos. 6 a aula Testes de Hipóteses
PHD 5742 Estatística Aplicada ao Gerenciamento dos Recursos Hídricos 6 a aula Testes de Hipóteses Mario Thadeu Leme de Barros Luís Antonio Villaça de Garcia Abril / 2007 Estatística Aplicada ao Gerenciamento
Parte 8 Testes de hipóteses Comparação de dois grupos
Parte 8 Testes de hipóteses Comparação de dois grupos Um objetivo frequente em estudos de diferentes áreas é a comparação de dois ou mais grupos (ou populações). Alguns exemplos: o Comparação dos salários
(a) Teste e IC para Duas Variâncias. (b) Teste para médias. Duas Amostras de Teste T e IC
Exercício 1 Contexto: amostras independentes de populações normais (a) Teste e IC para Duas Variâncias Método Hipótese nula Variância(Primeiro) / Variância(Segundo) = 1 Hipótese alternativa Variância(Primeiro)
7 Teste de Hipóteses
7 Teste de Hipóteses 7-1 Aspectos Gerais 7-2 Fundamentos do Teste de Hipóteses 7-3 Teste de uma Afirmação sobre a Média: Grandes Amostras 7-4 Teste de uma Afirmação sobre a Média : Pequenas Amostras 7-5
DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA)
1. Sabe-se que o nível de significância é a probabilidade de cometermos um determinado tipo de erro quando da realização de um teste de hipóteses. Então: a) A escolha ideal seria um nível de significância
ESTATÍSTICA. Ana Paula Fernandes - FAMAT/UFU
ESTATÍSTICA Ana Paula Fernandes - FAMAT/UFU 1 REFERÊNCIAS BIBLIOGRÁFICAS 2 BUSSAB & MORETTIN Quadro! 3 QUANTIS EMPÍRICOS 4 QUANTIL DE ORDEM P OU P-QUANTIL Quantil de ordem p ou p-quantil, indicada por
Aula prática 4 Parte I - Correlação e regressão linear simples
Aula prática 4 Parte I - Correlação e regressão linear simples Para esta aula prática vamos trabalhar com dados de um estudo cujo objetivo foi verificar a associação entre atividade física, aptidão cardiorrespiratória
Unidade IV Inferência estatística
6//5 Unidade IV Inferência estatística 4.. Introdução e histórico 4.. Conceitos fundamentais 4.3. Distribuições amostrais e Teorema central do limite 4.4. Estimação de parâmetros 4.5. Testes de hipóteses
1 Teoria da Decisão Estatística
1 Teoria da Decisão Estatística 1.1 Teste de Hipótese É uma metodologia estatística que permite tomar decisão sobre uma ou mais populações baseando no conhecimento de informações da amostra. Ao tentarmos
MÉTODOS QUANTITATIVOS APLICADOS
ANO LECTIVO DE 2013-2014 MÉTODOS QUANTITATIVOS APLICADOS Mestrados: Economia, Economia e Gestão de Ciência, Tecnologia e Inovação, Economia e Políticas Públicas, Economia Internacional e Estudos Europeus
Testes de hipóteses. Wagner H. Bonat Fernando P. Mayer Elias T. Krainski
Testes de hipóteses Wagner H. Bonat Fernando P. Mayer Elias T. Krainski Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação 07/06/2018 WB, FM, EK ( LEG/DEST/UFPR
INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... ANÁLISE DE VARIÂNCIA. Departamento de Matemática ESTV.
INTRODUÇÃO Exemplos Para curar uma certa doença existem quatro tratamentos possíveis: A, B, C e D. Pretende-se saber se existem diferenças significativas nos tratamentos no que diz respeito ao tempo necessário
MOQ 13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel
MOQ 13 PROBABILIDADE E ESTATÍSTICA Professor: Rodrigo A. Scarpel [email protected] www.mec.ita.br/~rodrigo Programa do curso: Semanas 1 3 4 5 6 7 8 9 10 11 1 13 14 15 e 16 Introdução à probabilidade (eventos,
Teste de Hipóteses Paramétricos
Teste de Hipóteses Paramétricos Fundamentos de um teste de hipóteses Como construir testes de hipóteses para uma média. Como construir testes de hipóteses para uma proporção. Como construir testes de hipóteses
EXPERIMENTAÇÃO AGRÁRIA
EXPERIMENTAÇÃO AGRÁRIA Tema : Delineamentos experimentais básicos (DCC/DBCC/DQL) Delineamento Completamente 1. Quando usar? Casualizado (DCC) Este delineamento é usado quando as unidades experimentais
