AULA 8 Experimentos multinomiais e tabelas de contingência
|
|
|
- Thomas Gama Rico
- 7 Há anos
- Visualizações:
Transcrição
1 1 AULA 8 Experimentos multinomiais e tabelas de contingência Ernesto F. L. Amaral 05 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario F Introdução à estatística. 10 ª ed. Rio de Janeiro: LTC. Capítulo 11 (pp ).
2 ESQUEMA DA AULA 2 Experimentos multinomiais: aderência. Tabelas de contingência: independência e homogeneidade.
3 VISÃO GERAL 3 Tratar de dados categóricos (ou qualitativos ou de atributo) que podem ser separados em diferentes células. Objetivo é testar afirmativas sobre dados categóricos que consistem em contagem de freqüências para as categorias: Experimentos multinomiais: contagens de freqüências observadas, arranjadas em uma única linha ou coluna (tabela de freqüência de entrada única) para verificar se tais contagens seguem alguma distribuição alegada. Tabelas de contingência: contagens de freqüência arranjadas em uma tabela com, no mínimo, 2 linhas e 2 colunas. Tabelas de dupla entrada que envolvem dados emparelhados.
4 DISTRIBUIÇÃO DE QUI-QUADRADO 4 É utilizada a distribuição de qui-quadrado que possui as seguintes propriedades: Não é simétrica. Valores da distribuição podem ser 0 ou positivos, mas não podem ser negativos. É diferente para cada número de graus de liberdade.
5 EXPERIMENTOS MULTINOMIAIS: ADERÊNCIA 5
6 TESTE DE HIPÓTESE 6 O teste de hipótese usará a distribuição qui-quadrado com as contagens de freqüências observadas e as contagens de freqüências esperadas. Ou seja, a estatística de teste qui-quadrado é uma medida de discrepância entre as freqüências observadas e esperadas. O experimento multinomial possui mais de duas categorias, enquanto o experimento binomial tem exatamente duas categorias.
7 EXPERIMENTO MULTINOMIAL 7 Este experimento satisfaz as seguintes condições: Número de tentativas é fixo. Tentativas são independentes. Todos resultados de cada tentativa devem ser classificados em exatamente uma das várias diferentes categorias. Probabilidades para diferentes categorias permanecem constantes para cada tentativa. É testada afirmativa de que freqüências observadas nas diferentes categorias se ajustam a uma distribuição alegada.
8 TESTE DE ADERÊNCIA 8 O teste de aderência (bondade de ajuste) é usado para testar a hipótese de que uma distribuição de freqüência observada se ajusta (ou concorda com) alguma distribuição teórica especificada. Notação: O: freqüência observada de um resultado. E: freqüência esperada de um resultado. k: número de diferentes categorias ou resultados. n: número de tentativas total.
9 ENCONTRANDO FREQÜÊNCIAS ESPERADAS 9 Se todas freqüências esperadas são iguais: Então cada freqüência esperada é a soma de todas freqüências observadas dividida pelo número de categorias. E=n/k. Se as freqüências esperadas não são todas iguais: Então cada freqüência esperada é encontrada multiplicando-se a soma de todas freqüências observadas pela probabilidade da categoria. E=np para cada categoria.
10 ALGUMAS CONSIDERAÇÕES 10 Freqüências observadas têm que ser números inteiros (contagens reais), mas freqüências esperadas não precisam ser números inteiros. Freqüências amostrais comumente se desviam um pouco dos valores teoricamente esperados. Devemos testar se as diferenças entre os valores reais observados (O) e os valores teoricamente esperados (E) são estatisticamente significativos.
11 REQUISITOS PARA TESTE DE DIFERENÇAS 11 Dados selecionados aleatoriamente. Dados amostrais consistem em contagens de freqüências para cada uma das diferentes categorias. Para cada categoria, freqüência esperada é, no mínimo, 5. Valores críticos são encontrados usando-se graus de liberdade (k 1) específicos, sendo k o número de categorias. Estes testes são sempre unilaterais à direita. Estatística de teste para testes de aderência em experimentos multinomiais:
12 RESULTADOS DA ESTATÍSTICA DE TESTE 12 A estatística de teste χ 2 se baseia nas diferenças entre valores observados e esperados. Uma concordância entre valores observados e esperados levará a um pequeno valor de χ 2 e a um grande valor P. Uma discrepância entre valores observados e esperados levará a um grande valor de χ 2 e a um pequeno valor P. O valor crítico e a região crítica se localizam no extremo direito da distribuição (unilateral à direita).
13 RELAÇÕES ENTRE χ 2, VALOR P E ADERÊNCIA 13
14 14 EX.: TESTE DE p 0 = p 1 = p 2 = p 3 = p 4 = p 5 = p 6 = p 7 = p 8 = p 9 Ho: frequências relativas (probs.) de 10 células são iguais. Graus de liberdade: k 1 = 10 1 = 9
15 EX.: COMPARAÇÃO DE FREQÜÊNCIAS 15 Gráficos como este abaixo são úteis na comparação visual de freqüências esperadas e observadas, bem como na sugestão de quais categorias resultam principais diferenças.
16 VALORES P 16 A abordagem do valor P também pode ser usada. Os valores P são fornecidos automaticamente por programas estatísticos.
17 FUNDAMENTOS PARA ESTATÍSTICA DE TESTE 17 Mede-se diferença de freqüências observadas e esperadas. Simples soma das diferenças entre valores observados e esperados não é eficaz, porque soma é sempre zero. Elevação ao quadrado dos valores de (O E) fornece uma estatística melhor (como no caso do desvio padrão). (O E) 2 mede a magnitude das diferenças. (O E) 2 /E mede magnitude das diferenças em relação ao esperado. Distribuição pode ser aproximada pela distribuição χ 2 que é contínua. Graus de liberdade indicam número de categorias que podemos inferir freqüências, antes que estas sejam determinadas para todas categorias.
18 TABELAS DE CONTINGÊNCIA: INDEPENDÊNCIA E HOMOGENEIDADE 18
19 TABELAS DE CONTINGÊNCIA 19 Tabela de contingência (ou tabela de freqüência de dupla entrada) é uma tabela na qual as freqüências correspondem a duas variáveis (linhas e colunas). Estas tabelas incluem contagens de freqüência para dados categóricos arranjados em uma tabela com pelo menos 2 linhas e 2 colunas. Testes de independência são usados para determinar se uma variável linha de uma tabela de contingência é independente de sua variável coluna. Testes de homogeneidade são usados para determinar se populações diferentes têm as mesmas proporções de alguma característica.
20 TESTE DE INDEPENDÊNCIA 20 Um teste de independência testa a hipótese nula de que não há associação entre a variável linha e a variável coluna em uma tabela de contingência. Hipótese nula: variáveis linha e coluna são independentes.
21 REQUISITOS 21 Dados amostrais são selecionados aleatoriamente e são representados como contagens de freqüências em tabela de dupla entrada. Hipótese nula (H 0 ) é a afirmativa de que variáveis linha e coluna são independentes. Hipótese alternativa (H 1 ) é a afirmativa de que as variáveis linha e coluna são dependentes. Em toda célula da tabela, a freqüência esperada (E) é no mínimo 5. Não há exigência quanto à freqüência observada (O). Não há exigência de que população deva ter distribuição normal ou qualquer outra.
22 ESTATÍSTICA DE TESTE 22 Estatística de teste para um teste de independência: Permite medir grau de discordância entre freqüências observadas e as teoricamente esperadas, quando as duas variáveis são independentes. Grandes valores da estatística de teste refletem diferenças significativas entre as freqüências observadas e esperadas.
23 VALORES CRÍTICOS 23 Valores críticos são encontrados com graus de liberdade [(r 1)(c 1)], em que r é o número de linhas e c é o número de colunas. Ao saber total de todas freqüências, podemos associar livremente freqüências a apenas r 1 linhas e a c 1 colunas, antes que as freqüências de todas células sejam determinadas. Porém, não podemos ter freqüências negativas ou freqüências tão grandes que a soma de qualquer linha (ou coluna) exceda total das freqüências observadas. Em um teste de independência com uma tabela de contingência, a região crítica se localiza apenas na cauda direita.
24 FREQÜÊNCIA ESPERADA PARA UMA CÉLULA 24 Freqüência esperada (E) pode ser calculada para cada célula: Multiplicando-se o total das freqüências das linhas pelo total das freqüências das colunas. Dividindo-se o resultado pelo grande total das freqüências.
25 COMPONENTES-CHAVE NO TESTE DE INDEPENDÊNCIA 25
26 TESTE DE HOMOGENEIDADE 26 Amostras podem ser extraídas de populações diferentes e desejamos determinar se essas populações têm as mesmas proporções da característica em consideração. Em um teste de homogeneidade, testamos a afirmativa de que populações diferentes têm a mesma proporção de alguma característica. Ao realizar um teste de homogeneidade, podemos usar mesmos requisitos, estatística de teste, valor crítico e demais procedimentos já apresentados. Exceção é que em vez de testar a hipótese nula de independência entre as variáveis linha e coluna, testamos a hipótese nula de que as diferentes populações têm as mesmas proporções de alguma característica.
27 INTENÇÃO DE VOTO PARA PRESIDENTE Datafolha (10/10/2010), margem de erro (±2%): 27 Fonte:
28 INTENÇÃO DE VOTO PARA PRESIDENTE (%) 28 Valores observados: Sexo Dilma Serra Total Homem Mulher Total Valores esperados: Homem Mulher Sexo Dilma Serra Total (95*91)/178= 48,57 (95*87)/178= 46,43 χ 2 = (52-48,57) 2 /48, (44-40,57) 2 /40,57 1,063 gl = (r-1)(c-1) = (2-1)(2-1) = 1 (83*91)/178= 42,43 (83*87)/178= 40,57 Total Tabela A-4 (pág.621): valor crítico = 3,841; α = 0,
29 NO PROGRAMA ESTATÍSTICO 29 Teste de qui-quadrado: dilma mulher 0 1 Total Total Pearson chi2(1) = Pr = Hipótese nula (H 0 ) é a afirmativa de que variáveis linha e coluna são independentes. Hipótese alternativa (H 1 ) é a afirmativa de que as variáveis linha e coluna são dependentes. Resultado indica que probabilidade de não rejeitar H 0 é muito grande (p=0,302). É maior que α = 0,05. Não há relação entre sexo do eleitor e escolha do candidato a presidente.
AULA 11 Experimentos Multinomiais e Tabelas de Contingência
1 AULA 11 Experimentos Multinomiais e Tabelas de Contingência Ernesto F. L. Amaral 24 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG)
AULA 06 Correlação. Ernesto F. L. Amaral. 04 de outubro de 2013
1 AULA 06 Correlação Ernesto F. L. Amaral 04 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de
AULA 05 Teste de Hipótese
1 AULA 05 Teste de Hipótese Ernesto F. L. Amaral 03 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario F. 2008. Introdução
AULA 04 Teste de hipótese
1 AULA 04 Teste de hipótese Ernesto F. L. Amaral 03 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal
AULA 07 Inferência a Partir de Duas Amostras
1 AULA 07 Inferência a Partir de Duas Amostras Ernesto F. L. Amaral 10 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola,
Capítulo 6 Estatística não-paramétrica
Capítulo 6 Estatística não-paramétrica Slide 1 Teste de ajustamento do Qui-quadrado Testes de independência e de homogeneidade do Qui-quadrado Algumas considerações Slide 2 As secções deste capítulo referem-se
CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO
CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO Ana Paula Araujo Correa Eder Queiroz Newton Trevisan DEFINIÇÃO É um teste de hipóteses que se destina a encontrar um valor da dispersão para duas variáveis
Capítulo 6 Estatística não-paramétrica
Capítulo 6 Estatística não-paramétrica Slide 1 Teste de ajustamento do Qui-quadrado Testes de independência e de homogeneidade do Qui-quadrado Testes dos sinais e de Wilcoxon Teste de Mann-Whitney Teste
Teste Qui-quadrado. Dr. Stenio Fernando Pimentel Duarte
Dr. Stenio Fernando Pimentel Duarte Exemplo Distribuição de 300 pessoas, classificadas segundo o sexo e o tabagismo Tabagismo Fumante (%) Não Fumante (%) Masculino 92 (46,0) 108 (54,0) Sexo Feminino 38
AULA 03 Estimativas e tamanhos amostrais
1 AULA 03 Estimativas e tamanhos amostrais Ernesto F. L. Amaral 03 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade
Testes para dados categóricos
Testes para dados categóricos Teste de homogeneidade Objetivo: testar se existe diferença entre frequências observadas (O ij ) e frequências esperadas (E ij ). Dados amostrais: amostras aleatórias independentes
AULA 02 Distribuição de Probabilidade Normal
1 AULA 02 Distribuição de Probabilidade Normal Ernesto F. L. Amaral 20 de agosto de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario
Stela Adami Vayego Estatística II CE003/DEST/UFPR
Resumo 1 Teste de hipóteses não paramétricos Os métodos não-paramétricos fazem poucas suposições sobre a natureza das distribuições dos dados. Não exige que as distribuições nas populações sejam normais,
Análise de Aderência e de Associação
Análise de Aderência e de Associação Capítulo 14, Estatística Básica (Bussab & Morettin, 8a Edição) Capítulo 8, Introdução Computacional à Probabilidade e Estatística (Pedrosa & Gama, Porto Editora) 8a
DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA)
1. Sabe-se que o nível de significância é a probabilidade de cometermos um determinado tipo de erro quando da realização de um teste de hipóteses. Então: a) A escolha ideal seria um nível de significância
Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência
Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência Erica Castilho Rodrigues 2 de Agosto de 2013 3 Modelos de Poisson podem ser usados para analisar tabelas de contingência.
AULA 11 Teste de Hipótese
1 AULA 11 Teste de Hipótese Ernesto F. L. Amaral 20 de setembro de 2012 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro: LTC. Capítulo
Testes de Aderência, Homogeneidade e Independência
Testes de Aderência, Homogeneidade e Independência Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais O que é um teste de hipótese? Queremos saber se a evidência que temos em mãos significa
MOQ 13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel
MOQ 13 PROBABILIDADE E ESTATÍSTICA Professor: Rodrigo A. Scarpel [email protected] www.mec.ita.br/~rodrigo Programa do curso: Semanas 1 3 4 5 6 7 8 9 10 11 1 13 14 15 e 16 Introdução à probabilidade (eventos,
AULA 09 Regressão. Ernesto F. L. Amaral. 17 de setembro de 2012
1 AULA 09 Regressão Ernesto F. L. Amaral 17 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario F. 2008. Introdução à
Testes de Aderência, Homogeneidade e Independência
Testes de Aderência, Homogeneidade e Independência Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais O que é um teste de hipótese? Queremos saber se a evidência que temos em mãos significa
TESTE DO QUI-QUADRADO DE INDEPENDÊNCIA
TESTE DO QUI-QUADRADO DE INDEPENDÊNCIA Suponha que numa amostra aleatória de tamanho n de uma dada população são observados dois atributos ou características A e B (qualitativas ou quantitativas), uma
AULA 02 Distribuição de probabilidade normal
1 AULA 02 Distribuição de probabilidade normal Ernesto F. L. Amaral 02 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas (FAFICH)
ESTATÍSTICA Distribuições qui-quadrado, t de Student e F de Snedecor Lucas Schmidt
ESTATÍSTICA Distribuições qui-quadrado, t de Student e F de Snedecor Lucas Schmidt [email protected] Estimação de parâmetros Média Variância Proporção Estimação de parâmetros Média: " estimador
AULA 07 Distribuições Discretas de Probabilidade
1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:
Probabilidade e Estatística
Probabilidade e Estatística Teste Qui-quadrado Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Teste Qui-quadrado É um teste não paramétrico, pois independe dos parâmetros
Testes de Aderência, Homogeneidade e Independência
Testes de Aderência, Homogeneidade e Independência Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais O que é um teste de hipótese? Queremos saber se a evidência que temos em mãos significa
Medidas de associação entre duas variáveis qualitativas
Medidas de associação entre duas variáveis qualitativas Hoje vamos analisar duas variáveis qualitativas (categóricas) conjuntamente com o objetivo de verificar se existe alguma relação entre elas. Vamos
Testes de Aderência, Homogeneidade e Independência. Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais
Testes de Aderência, Homogeneidade e Independência Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais Teste de hipótese Queremos saber se a evidência que temos em mãos significa que encontramos
Testes de Hipóteses para. uma Única Amostra. Objetivos de Aprendizagem. 9.1 Teste de Hipóteses. UFMG-ICEx-EST-027/031 07/06/ :07
-027/031 07/06/2018 10:07 9 ESQUEMA DO CAPÍTULO 9.1 TESTE DE HIPÓTESES 9.2 TESTES PARA A MÉDIA DE UMA DISTRIBUIÇÃO NORMAL, VARIÂNCIA CONHECIDA 9.3 TESTES PARA A MÉDIA DE UMA DISTRIBUIÇÃO NORMAL, VARIÂNCIA
AULA 19 Análise de Variância
1 AULA 19 Análise de Variância Ernesto F. L. Amaral 18 de outubro de 2012 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro: LTC. Capítulo
Estatística Não Paramétrica
Estatística Não Paramétrica Como construir testes de hipóteses para uma amostra Como construir testes de hipóteses para duas amostras dependentes Como construir testes de hipóteses para duas amostras independentes
Aula 16: Análise de Aderência e Associação
Aula 16: Análise de Aderência e Associação Professor: José Luiz Padilha da Silva email: [email protected] Departamento de Estatística Universidade Federal do Paraná Curitiba, 2018 José Luiz Padilha da
- Testes Qui-quadrado - Aderência e Independência
- Testes Qui-quadrado - Aderência e Independência 1 1. Testes de Aderência Objetivo: Testar a validade de um modelo probabilístico discreto a um conjunto de dados observados Exemplo 1: Segundo Mendel (geneticista
Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo
Testes de Hipóteses Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução e notação Em geral, intervalos de confiança são a forma mais
TESTES NÃO-PARAMÉTRICOS
Les-0773: ESTATÍSTICA APLICADA III TESTES NÃO-PARAMÉTRICOS AULA 3 26/05/17 Prof a Lilian M. Lima Cunha Maio de 2017 Revisão... Teste dos Sinais A Comparar valores de medianas de uma amostra com um valor
- Testes Qui-quadrado - Aderência e Independência
- Testes Qui-quadrado - Aderência e Independência 1 1. Testes de Aderência Objetivo: Testar a adequabilidade de um modelo probabilístico a um conjunto de dados observados Exemplo 1: Segundo Mendel (geneticista
Estatística aplicada a ensaios clínicos
Estatística aplicada a ensaios clínicos RAL - 5838 Luís Vicente Garcia [email protected] Faculdade de Medicina de Ribeirão Preto Estatística aplicada a ensaios clínicos aula 12 1 grupo 2 grupos > 2
Exemplo (tabela um) distribuições marginais enquanto que. Distribuição Conjunta
Distribuição Conjunta Suponha que se queira analisar o comportamento conjunto das variáveis = de Instrução e = Região de procedência. Neste caso, a distribuição de freqüências é apresentada como uma tabela
Os testes. Objetivos. O teste Q de Cochran; O teste de Friedman (Análise de variância de duplo fator por postos)
Prof. Lorí Viali, Dr. http://www.mat.ufrgs.br/viali/ [email protected] Os testes O teste Q de Cochran; O teste de Friedman (Análise de variância de duplo fator por postos) William Gemmell Cochran (1909-1980)
Variância pop. * conhecida Teste t Paramétrico Quantitativa Distribuição normal Wilcoxon (teste dos sinais, Wilcoxon p/ 1 amostra)
Testes de Tendência Central (média, mediana, proporção) Classificação Variável 1 Variável 2 Núm ero Gru pos Dependência Teste Z Paramétrico Quantitativa - 1 - Premissas Variância pop. * conhecida Teste
7 Teste de Hipóteses
7 Teste de Hipóteses 7-1 Aspectos Gerais 7-2 Fundamentos do Teste de Hipóteses 7-3 Teste de uma Afirmação sobre a Média: Grandes Amostras 7-4 Teste de uma Afirmação sobre a Média : Pequenas Amostras 7-5
Teste de Hipótese. Capítulo 8 Triola, 10 a. Ed. (Capítulo 7 Triola, 9 a. Ed.) 1 Visão Geral. 2 Fundamentos do teste de hipótese
Teste de Hipótese Capítulo 8 Triola, 10 a. Ed. (Capítulo 7 Triola, 9 a. Ed.) 1 Visão Geral 2 Fundamentos do teste de hipótese z 3 Teste de uma afirmativa sobre uma Proporção z 4 Teste de uma afirmativa
Fernando de Pol Mayer
Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative
Estimação parâmetros e teste de hipóteses. Prof. Dr. Alberto Franke (48)
Estimação parâmetros e teste de hipóteses Prof. Dr. Alberto Franke (48) 91471041 Intervalo de confiança para média É um intervalo em que haja probabilidade do verdadeiro valor desconhecido do parâmetro
Razão para rejeitar H 0
Processo do teste de hipótese Hipótese de pesquisa: a idade média da população é 5 H : μ = 5 H 1 : μ 5 É X = improvável se μ =5? População Selecionar amostra aleatória Sim: Rejeite Ho Para definir pouco
AULA 07 Regressão. Ernesto F. L. Amaral. 05 de outubro de 2013
1 AULA 07 Regressão Ernesto F. L. Amaral 05 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas
Cap. 11 Testes de comparação entre duas amostras
Estatística Aplicada às Ciências Sociais Sexta Edição Pedro Alberto Barbetta Florianópolis: Editora da UFSC, 006 Cap. 11 Testes de comparação entre duas amostras Planejamento da pesquisa e análise estatística
Conceito de Estatística
Conceito de Estatística Estatística Técnicas destinadas ao estudo quantitativo de fenômenos coletivos, observáveis. Unidade Estatística um fenômeno individual é uma unidade no conjunto que irá constituir
Prof. Lorí Viali, Dr.
Prof. Lorí Viali, Dr. [email protected] http://www.mat.ufrgs.br/~viali/ Distribuição Conjunta Suponha que se queira analisar o comportamento conjunto das variáveis X = Grau de Instrução e Y = Região
2. Testes de Independência
. Testes de Independência Objetivo: Verificar se existe independência entre duas variáveis medidas nas mesmas unidades experimentais. Exemplo 3: A Associação de Imprensa do Estado de São Paulo fez um levantamento
Inferência Estatística:
Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Inferência Estatística: Princípios de Bioestatística decidindo na presença de incerteza Aula 8: Intervalos
Intervalos de Confiança
Intervalos de Confiança INTERVALOS DE CONFIANÇA.1 Conceitos básicos.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição numérica de
Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo
Testes de Hipóteses Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução e notação Em geral, intervalos de confiança são a forma mais
Delineamento e Análise Experimental Aula 3
Aula 3 Castro Soares de Oliveira Teste de hipótese Teste de hipótese é uma metodologia estatística que permite tomar decisões sobre uma ou mais populações baseando-se no conhecimento de informações da
Teste Qui-quadrado. Comparando proporções Verificando a hipótese de associação entre variáveis qualitativas
Teste Qui-quadrado Comparando proporções Verificando a hipótese de associação entre variáveis qualitativas Exemplo Inicial: Igualdade de Proporções A administração de um hospital deseja verificar se luvas
Estimação e Testes de Hipóteses
Estimação e Testes de Hipóteses 1 Estatísticas sticas e parâmetros Valores calculados por expressões matemáticas que resumem dados relativos a uma característica mensurável: Parâmetros: medidas numéricas
Análise Multivariada Aplicada à Contabilidade
Mestrado e Doutorado em Controladoria e Contabilidade Análise Multivariada Aplicada à Contabilidade Prof. Dr. Marcelo Botelho da Costa Moraes www.marcelobotelho.com [email protected] Turma: 2º / 2016 1 Agenda
Teste Chi-Quadrado de Independência. Prof. David Prata Novembro de 2016
Teste Chi-Quadrado de Independência Prof. David Prata Novembro de 2016 Duas Variáveis Categóricas Análise de variância envolve o exame da relação entre uma variável categórica explicativa e uma variável
MAE Introdução à Probabilidade e Estatística II Resolução Lista 5
MAE 229 - Introdução à Probabilidade e Estatística II Resolução Lista 5 Professor: Pedro Morettin e Profa. Chang Chian Exercício 1 (a) De uma forma geral, o desvio padrão é usado para medir a dispersão
- Testes Qui-quadrado - Aderência e Independência
- Testes Qui-quadrado - Aderência e Independência 1 1. Testes de Aderência Objetivo: Testar a adequabilidade de um modelo probabilístico a um conjunto de dados observados Exemplo 1: Segundo Mendel (geneticista
Testes de hipóteses. Wagner H. Bonat Fernando P. Mayer Elias T. Krainski
Testes de hipóteses Wagner H. Bonat Fernando P. Mayer Elias T. Krainski Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação 07/06/2018 WB, FM, EK ( LEG/DEST/UFPR
MÓDULO V: Análise Bidimensional: Correlação, Regressão e Teste Qui-quadrado de Independência
MÓDULO V: Análise Bidimensional: Correlação, Regressão e Teste Qui-quadrado de Independência Introdução 1 Muito frequentemente fazemos perguntas do tipo se alguma coisa tem relação com outra. Estatisticamente
MAE0229 Introdução à Probabilidade e Estatística II
Exercício A fim de comparar os salários médios anuais de executivos e executivas de uma determinada cidade, amostras aleatórias de n = 26 executivos e n 2 = 24 executivas foram coletadas obtendose os valores
Introdução à Bioestatística Turma Nutrição
Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Introdução à Bioestatística Turma Nutrição Aula 8: Intervalos de Confiança para Média e Proporção Distribuição
16/6/2014. Teste Qui-quadrado de independência
UNIVERSIDADE FEDERAL DA PARAÍBA TESTES NÃO- PARAMÉTRICOS Parte I Prof. Luiz Medeiros Departamento de Estatística Teste Qui-quadrado de independência Um dos principais objetivos de se construir uma tabela
Stela Adami Vayego DEST/UFPR
Testes de hipóteses não paramétricos Os métodos não-paramétricos fazem poucas suposições sobre a natureza das distribuições dos dados. Não exige que as distribuições nas populações sejam normais, nem são
Principais Conceitos em Estatística
1 Principais Conceitos em Estatística Ernesto F. L. Amaral 08 de outubro de 2009 www.ernestoamaral.com/met20092.html Fonte: Triola, Mario F. Introdução à estatística. 10 ª ed., Rio de Janeiro: LTC, 2008.
AULA 12 - Normalidade e Inferência em Regressão Múltipla - Parte 2
AULA 12 - Normalidade e Inferência em Regressão Múltipla - Parte 2 Susan Schommer Econometria I - IE/UFRJ Testes de hipóteses sobre combinação linear dos parâmetros Na aula passada testamos hipóteses sobre
Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba
Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição t de Student 02/14 1 / 1 A distribuição t de Student é uma das distribuições
Universidade Federal do Paraná Seminário de Bioestatistica. Teste de Wilcoxon. Danielle Pierin Olivia Cleto
Universidade Federal do Paraná Seminário de Bioestatistica Teste de Wilcoxon Danielle Pierin Olivia Cleto Teste de Postos com Sinais de Wilcoxon para Pares Combinados Esse teste é usado com dados amostrais
Análise de Dados Categóricos
Universidade Federal Fluminense Instituto de Matemática e Estatística Análise de Dados Categóricos Ana Maria Lima de Farias Fábio Nogueira Demarqui Departamento de Estatística Março 2017 Sumário 1 Análise
Teste de Hipóteses Paramétricos
Teste de Hipóteses Paramétricos Fundamentos de um teste de hipóteses Como construir testes de hipóteses para uma média. Como construir testes de hipóteses para uma proporção. Como construir testes de hipóteses
AULAS 04, 05 E 06 AVALIAÇÃO UTILIZANDO EXPERIMENTOS
1 AULAS 04, 05 E 06 AVALIAÇÃO UTILIZANDO EXPERIMENTOS Ernesto F. L. Amaral 14, 19 e 21 de março de 2013 Técnicas Avançadas de Avaliação de Políticas Públicas (DCP 098) Fonte: Curso Técnicas Econométricas
Estatística e Probabilidade. Aula 11 Cap 06
Aula 11 Cap 06 Intervalos de confiança para variância e desvio padrão Confiando no erro... Intervalos de Confiança para variância e desvio padrão Na produção industrial, é necessário controlar o tamanho
Lista de Exercícios #8 Assunto: Teste de Hipóteses
. ANPEC 8 - Questão 5 Indique se as seguintes considerações sobre a teoria dos testes de hipótese são verdadeiras (V) ou falsas (F): () No teste de hipótese para proporções, se a variância da proporção
Análise da Variância. Prof. Dr. Alberto Franke (48)
Análise da Variância Prof. Dr. Alberto Franke (48) 91471041 Análise da variância Até aqui, a metodologia do teste de hipóteses foi utilizada para tirar conclusões sobre possíveis diferenças entre os parâmetros
TA33D ESTATÍSTICA APLICADA À QUALIDADE
TA33D ESTATÍSTICA APLICADA À QUALIDADE 1 TESTES DE HIPÓTESES EM UMA E DUAS AMOSTRAS 2 HIPÓTESE ESTATÍSTICA: CONCEITOS GERAIS Definição (HIPÓTESE ESTATÍSTICA): Uma hipótese estatística é uma afirmação sobre
1 Que é Estatística?, 1. 2 Séries Estatísticas, 9. 3 Medidas Descritivas, 27
Prefácio, xiii 1 Que é Estatística?, 1 1.1 Introdução, 1 1.2 Desenvolvimento da estatística, 1 1.2.1 Estatística descritiva, 2 1.2.2 Estatística inferencial, 2 1.3 Sobre os softwares estatísticos, 2 1.4
Teste qui-quadrado e teste exato de Fisher
Teste qui-quadrado e teste exato de Fisher em R. São apresentados exemplos com as funções chisq.test e fisher.test do pacote stats 1. chisq.test Pode ser utilizada para testar a bondade do ajuste a uma
Associação entre variáveis categóricas e IC95%
Associação entre variáveis categóricas e IC95% Andréa Homsi Dâmaso Programa de pós-graduação em Epidemiologia UFPEL Biotecnologia: Bioestatística e Delineamento Experimental Aula de hoje Teste do qui-quadrado
CONHECIMENTOS ESPECÍFICOS
CONHECIMENTOS ESPECÍFICOS Em uma grande escola, 10% dos alunos são comprovadamente fracos. Um teste educacional conseguiu identificar corretamente 80% entre aqueles que são fracos e 85% entre aqueles que
