2. Testes de Independência
|
|
|
- Vitorino Castanho
- 6 Há anos
- Visualizações:
Transcrição
1 . Testes de Independência Objetivo: Verificar se existe independência entre duas variáveis medidas nas mesmas unidades experimentais. Exemplo 3: A Associação de Imprensa do Estado de São Paulo fez um levantamento com 1300 leitores, para verificar se a preferência por leitura de um determinado jornal é independente do nível de instrução do indivíduo. Os resultados obtidos foram: Grau de instrução Tipo de Jornal Jornal A Jornal B Jornal C Outros Total 1 o Grau o Grau Universitário Total
2 Vamos calcular proporções segundo os totais das colunas (poderiam também ser calculadas pelos totais das linhas). Temos a seguinte tabela: Grau de instrução Tipo de Jornal Jornal A Jornal B Jornal C Outros Total 1 o Grau 3,33% 1,90% 1,43% 11,74% 3,85% o Grau 30,00% 38,57% 35,71% 31,74% 34,6% Universitário 66,67% 59,5% 6,86% 56,5% 61,54% Total 100,00% 100,00% 100,00% 100,00% 100,00% Independentemente da preferência por um tipo de jornal, 3,85% dos leitores têm o 1º Grau, 34,6% têm o º Grau e 61,54% são universitários. 0
3 Sob independência entre grau de instrução e preferência por um tipo de jornal, o número esperado de leitores que têm o 1º Grau e preferem o jornal A é igual a 300 x 0,0385 = 11,54, que têm o º Grau e preferem o Jornal A é 300 x 0,346 = 103,85 e que são universitários e preferem o jornal A é 300 x 0,6154 = 184,6. Grau de instrução 1 o Grau 10 11,54 (3,85%) o Grau ,85 (34,6)% 00 Universitário 184,6 (61,54%) Tipo de Jornal Jornal A Jornal B Jornal C Outros Total 8 16,15 (3,85%) ,38 (34,6%) 50 58,46 (61,54%) 5 13,46 (3,85%) 15 11,15 (34,6%) 0 15,38 (61,54%) 7 8,85 (3,85%) 73 79,6 (34,6%) ,54 (61,54%) As diferenças entre os valores observados e os esperados não são muito pequenas. Preferência por um tipo de jornal e grau de instrução parecem não ser independentes Total
4 Testes de Independência Metodologia Em geral, os dados referem-se a mensurações de duas características (A e B) feitas em n unidades experimentais, que são apresentadas conforme a seguinte tabela: A \ B B 1 B... B s Total A 1 O 11 O 1... O 1s O 1. A O 1 O... O s O A r O r1 O r... O rs O r. Total O.1 O.... O.s n Hipóteses a serem testadas Teste de independência: H: A e B são variáveis independentes A: As variáveis A e B não são independentes
5 Quantas observações devemos esperar em cada casela, se A e B forem independentes? Sendo O ij o total de observações na casela (i, j), se A e B forem independentes, esperamos que, para todos os possíveis pares (A i e B j ): O i1 /O.1 = O i /O. =... = O is /O.s = O i. /n, i = 1,..., r ou ainda O ij /O.j = O i. /n = 1,..., r, j = 1,..., s de onde se deduz, finalmente, que O ij = (O i. x O.j )/n, i = 1,,, r e j = 1,,,s. Logo, o número esperado de observações com as características (A i e B j ), entre as n observações, sob a hipótese de independência, é dado por E ij O i. n O. j 3
6 Distância entre os valores observados e os valores esperados sob a suposição de independência: χ s r ( Oij Eij ) i 1 j 1 E ij Estatística do teste de independência Supondo H verdadeira, aproximadamente, ( O E ) r s ij ij ~ q i 1 j 1 Eij sendo q = ( r 1) ( s 1 ) o número de graus de liberdade. 4
7 Regra de decisão: Pode ser baseada no valor P (nível descritivo), neste caso obs em que é o valor calculado, a partir dos dados, usando a expressão apresentada para. Graficamente: P P ( q obs ) P Se, para fixado, obtemos P, rejeitamos a hipótese H de independência. obs 5
8 Exemplo (continuação): Estudo da independência entre preferência por um tipo de jornal e grau de instrução eleitores foram entrevistados ao acaso. Hipóteses H: As variáveis preferência por um tipo de jornal e grau de instrução são independentes. A: Existe dependência entre as variáveis. Grau de instrução Tipo de Jornal Jornal A Jornal B Jornal C Outros Total 1 o Grau o Grau Universitário Total Exemplo do cálculo dos valores esperados sob H (independência): Número esperado de leitores que têm 1º Grau e preferem o jornal A: E ,54. 6
9 Tabela de valores observados e esperados (entre parênteses) Tipo de Jornal Grau de instrução Jornal A Jornal B Jornal C Outros Total 1 o Grau (11,54) (16,15) (13,46) (8,85) 50 o Grau (103,85) (145,38) (11,15) (79,6) 450 Universitário (184,6) (58,46) (15,38) (141,54) 800 Total º Grau e prefere jornal B: Universitário e prefere outros jornais: E ,38 E Lembre-se: ij O i. n.. O.j E ,
10 Cálculo da estatística de qui-quadrado: obs (90 103,85) 103,85 (00 184,6) 184,6 53,910. Tipo de Jornal Grau de instrução Jornal A Jornal B Jornal C Outros Total 1 o Grau (11,54) (16,15) (13,46) (8,85) 50 o Grau (103,85) (145,38) (11,15) (79,6) 450 Universitário (184,6) (58,46) (15,38) (141,54) 800 Total (10 11,54) 11,54 (8 16,15) 16,15 (16 145,38) 145,38 (50 58,46) 58,46 (5 13,46) 13,46 (15 11,15) 11,15 (0 15,38) 15,38 (7 8,85) 8,85 (73 79,6) 79,6 ( ,54) 141,54 8
11 Determinação do número de graus de liberdade: Categorias de Grau de instrução: s = 3 Categorias de Tipo de jornal: r = 4 O nível descritivo (valor P): P P ( 6 53,910) q = (r 1) (s 1) = 3 = 6 0,0001 Supondo 0,05, temos P < Assim, temos evidências para rejeitar a independência entre as variáveis grau de instrução e preferência por tipo de jornal ao nível de 5% de significância. Os cálculos podem ser feitos diretamente no Rcmdr: Estatísticas Tabelas de Contingência Digite e analise tabela de dupla entrada 9
12 Saída do Rcmdr: data:.table X-squared = , df = 6, p-value = 7.69e-10 >.Test$expected # Expected Counts > round(.test$residuals^, ) # Chi-square Components
13 Exemplo 4: 137 indivíduos adultos classificados segundo a pressão sanguínea (mm Hg) e o nível de colesterol (mg/100cm 3 ). Verificar se existe independência entre essas variáveis. Colesterol Pressão < a 166 > 166 Total < a > Total H: Pressão sanguínea e nível de colesterol são independentes; A: Nível de colesterol e pressão sanguínea são variáveis dependentes. Os cálculos podem ser feitos diretamente no Rcmdr: Estatísticas Tabelas de Contingência Digite e analise tabela de dupla entrada 31
14 Saída do Rcmdr: data:.table X-squared = , df = 4, p-value = >.Test$expected # Expected Counts > round(.test$residuals^, ) # Chi-square Components Para α = 0,05, temos P < α. Assim, temos evidências para rejeitar a hipótese de independência entre as variáveis pressão sanguínea e nível de colesterol ao nível de 5% de significância. 3
- Testes Qui-quadrado - Aderência e Independência
- Testes Qui-quadrado - Aderência e Independência 1 1. Testes de Aderência Objetivo: Testar a adequabilidade de um modelo probabilístico a um conjunto de dados observados Exemplo 1: Segundo Mendel (geneticista
- Testes Qui-quadrado - Aderência e Independência
- Testes Qui-quadrado - Aderência e Independência 1 1. Testes de Aderência Objetivo: Testar a validade de um modelo probabilístico discreto a um conjunto de dados observados Exemplo 1: Segundo Mendel (geneticista
- Testes Qui-quadrado - Aderência e Independência
- Testes Qui-quadrado - Aderência e Independência 1 1. Testes de Aderência Objetivo: Testar a adequabilidade de um modelo probabilístico a um conjunto de dados observados Exemplo 1: Segundo Mendel (geneticista
- Testes Qui-quadrado. - Aderência e Independência
- Testes Qui-quadrado - Aderência e Independência 1 1. Testes de Aderência Objetivo: Testar a adequabilidade de um modelo probabilístico a um conjunto de dados observados Exemplo 1: 1 Genética Equilíbrio
Testes de Aderência Testes de Independência Testes de Homogeneidade
Testes de Aderência Testes de Independência Testes de Homogeneidade 1 1. Testes de Aderência Objetivo: Testar a adequabilidade de um modelo probabilístico a um conjunto de dados observados Exemplo 1: Genética
Capítulo 6 Estatística não-paramétrica
Capítulo 6 Estatística não-paramétrica Slide 1 Teste de ajustamento do Qui-quadrado Testes de independência e de homogeneidade do Qui-quadrado Algumas considerações Slide 2 As secções deste capítulo referem-se
MAE0229 Introdução à Probabilidade e Estatística II
Exercício A fim de comparar os salários médios anuais de executivos e executivas de uma determinada cidade, amostras aleatórias de n = 26 executivos e n 2 = 24 executivas foram coletadas obtendose os valores
Testes de Aderência, Homogeneidade e Independência
Testes de Aderência, Homogeneidade e Independência Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais O que é um teste de hipótese? Queremos saber se a evidência que temos em mãos significa
Testes de Aderência, Homogeneidade e Independência
Testes de Aderência, Homogeneidade e Independência Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais O que é um teste de hipótese? Queremos saber se a evidência que temos em mãos significa
Capítulo 6 Estatística não-paramétrica
Capítulo 6 Estatística não-paramétrica Slide 1 Teste de ajustamento do Qui-quadrado Testes de independência e de homogeneidade do Qui-quadrado Testes dos sinais e de Wilcoxon Teste de Mann-Whitney Teste
Testes de Aderência, Homogeneidade e Independência
Testes de Aderência, Homogeneidade e Independência Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais O que é um teste de hipótese? Queremos saber se a evidência que temos em mãos significa
Aula 16: Análise de Aderência e Associação
Aula 16: Análise de Aderência e Associação Professor: José Luiz Padilha da Silva email: [email protected] Departamento de Estatística Universidade Federal do Paraná Curitiba, 2018 José Luiz Padilha da
Medidas de associação entre duas variáveis qualitativas
Medidas de associação entre duas variáveis qualitativas Hoje vamos analisar duas variáveis qualitativas (categóricas) conjuntamente com o objetivo de verificar se existe alguma relação entre elas. Vamos
Análise de Aderência e de Associação
Análise de Aderência e de Associação Capítulo 14, Estatística Básica (Bussab & Morettin, 8a Edição) Capítulo 8, Introdução Computacional à Probabilidade e Estatística (Pedrosa & Gama, Porto Editora) 8a
Teste Qui-quadrado. Dr. Stenio Fernando Pimentel Duarte
Dr. Stenio Fernando Pimentel Duarte Exemplo Distribuição de 300 pessoas, classificadas segundo o sexo e o tabagismo Tabagismo Fumante (%) Não Fumante (%) Masculino 92 (46,0) 108 (54,0) Sexo Feminino 38
MÓDULO V: Análise Bidimensional: Correlação, Regressão e Teste Qui-quadrado de Independência
MÓDULO V: Análise Bidimensional: Correlação, Regressão e Teste Qui-quadrado de Independência Introdução 1 Muito frequentemente fazemos perguntas do tipo se alguma coisa tem relação com outra. Estatisticamente
Teste Qui-quadrado. Comparando proporções Verificando a hipótese de associação entre variáveis qualitativas
Teste Qui-quadrado Comparando proporções Verificando a hipótese de associação entre variáveis qualitativas Exemplo Inicial: Igualdade de Proporções A administração de um hospital deseja verificar se luvas
Testes de Aderência, Homogeneidade e Independência. Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais
Testes de Aderência, Homogeneidade e Independência Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais Teste de hipótese Queremos saber se a evidência que temos em mãos significa que encontramos
UNIVERSIDADE FEDERAL DA FRONTEIRA SUL Campus CERRO LARGO. PROJETO DE EXTENSÃO Software R: de dados utilizando um software livre. Teste Qui-Quadrado
UNIVERSIDADE FEDERAL DA FRONTEIRA SUL Campus CERRO LARGO PROJETO DE EXTENSÃO Software R: Capacitação em análise estatística de dados utilizando um software livre. Fonte: https://www.r-project.org/ Módulo
Teste Qui-Quadrado para Independência Texto criado na data. 7 de novembro de 2018
Teste Qui-Quadrado para Independência Texto criado na data 7 de novembro de 2018 Exemplo 1. Um exemplo típico do tema Teste de Independência. Os resultados da classificação de pessoas segundo a cor dos
Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência
Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência Erica Castilho Rodrigues 2 de Agosto de 2013 3 Modelos de Poisson podem ser usados para analisar tabelas de contingência.
Testes de hipóteses. Wagner H. Bonat Fernando P. Mayer Elias T. Krainski
Testes de hipóteses Wagner H. Bonat Fernando P. Mayer Elias T. Krainski Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação 07/06/2018 WB, FM, EK ( LEG/DEST/UFPR
ESTATÍSTICA Distribuições qui-quadrado, t de Student e F de Snedecor Lucas Schmidt
ESTATÍSTICA Distribuições qui-quadrado, t de Student e F de Snedecor Lucas Schmidt [email protected] Estimação de parâmetros Média Variância Proporção Estimação de parâmetros Média: " estimador
16/6/2014. Teste Qui-quadrado de independência
UNIVERSIDADE FEDERAL DA PARAÍBA TESTES NÃO- PARAMÉTRICOS Parte I Prof. Luiz Medeiros Departamento de Estatística Teste Qui-quadrado de independência Um dos principais objetivos de se construir uma tabela
Stela Adami Vayego Estatística II CE003/DEST/UFPR
Resumo 1 Teste de hipóteses não paramétricos Os métodos não-paramétricos fazem poucas suposições sobre a natureza das distribuições dos dados. Não exige que as distribuições nas populações sejam normais,
Os testes. Objetivos. O teste Q de Cochran; O teste de Friedman (Análise de variância de duplo fator por postos)
Prof. Lorí Viali, Dr. http://www.mat.ufrgs.br/viali/ [email protected] Os testes O teste Q de Cochran; O teste de Friedman (Análise de variância de duplo fator por postos) William Gemmell Cochran (1909-1980)
X ~ Binomial (n ; p) H: p = p 0 x A: p p 0 (ou A: p > p 0 ou A: p < p 0 ) { X k 1 } U { X k 2 } (ou { X k } ou { X k }) x RC não rejeitamos H
NOÇÕES DE TESTE DE HIPÓTESES (II) Nível Descritivo valor P Resumo X ~ Binomial (n ; p) (1) Estabelecer as hipóteses sobre p: H: p = p 0 x A: p p 0 (ou A: p > p 0 ou A: p < p 0 ) (2) Escolher um nível de
Introdução em Probabilidade e Estatística II
Introdução em Probabilidade e Estatística II Lista 6 Exercicio 1 O tempo residual do efeito de um agrotóxico está sendo analisado. Estudos anteriores, com produtos similares, indicam que o modelo exponencial
Professora Ana Hermínia Andrade. Período
Teste de Hipóteses Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2016.1 Teste de Hipóteses O Teste de Hipóteses
TESTE DO QUI-QUADRADO DE INDEPENDÊNCIA
TESTE DO QUI-QUADRADO DE INDEPENDÊNCIA Suponha que numa amostra aleatória de tamanho n de uma dada população são observados dois atributos ou características A e B (qualitativas ou quantitativas), uma
Probabilidade e Estatística
Probabilidade e Estatística Teste Qui-quadrado Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Teste Qui-quadrado É um teste não paramétrico, pois independe dos parâmetros
Testes para dados categóricos
Testes para dados categóricos Teste de homogeneidade Objetivo: testar se existe diferença entre frequências observadas (O ij ) e frequências esperadas (E ij ). Dados amostrais: amostras aleatórias independentes
TESTES NÃO-PARAMÉTRICOS
Les-0773: ESTATÍSTICA APLICADA III TESTES NÃO-PARAMÉTRICOS AULA 3 26/05/17 Prof a Lilian M. Lima Cunha Maio de 2017 Revisão... Teste dos Sinais A Comparar valores de medianas de uma amostra com um valor
Exemplo (tabela um) distribuições marginais enquanto que. Distribuição Conjunta
Distribuição Conjunta Suponha que se queira analisar o comportamento conjunto das variáveis = de Instrução e = Região de procedência. Neste caso, a distribuição de freqüências é apresentada como uma tabela
AULA 8 Experimentos multinomiais e tabelas de contingência
1 AULA 8 Experimentos multinomiais e tabelas de contingência Ernesto F. L. Amaral 05 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas
Prof. Lorí Viali, Dr.
Prof. Lorí Viali, Dr. [email protected] http://www.mat.ufrgs.br/~viali/ Distribuição Conjunta Suponha que se queira analisar o comportamento conjunto das variáveis X = Grau de Instrução e Y = Região
Análise de Dados Categóricos
Universidade Federal Fluminense Instituto de Matemática e Estatística Análise de Dados Categóricos Ana Maria Lima de Farias Fábio Nogueira Demarqui Departamento de Estatística Março 2017 Sumário 1 Análise
Prof. Lorí Viali, Dr.
Prof. Lorí Viali, Dr. http://www.mat.ufrgs.br/viali/ [email protected] Os testes O teste de Kruskal-Wallis (Análise de variância de uma classificação por postos) O teste qui-quadrado William Henry Kruskal
A teoria postulada por Mendel estabelece que a segregação, neste caso, deve ocorrer na seguinte proporção: 9/16 : 3/16 : 3/16 : 1/16
O teste de χ 2 tem como objetivo verificar se existe associação entre duas, ou mais, variáveis qualitativas. Este teste faz uma comparação entre a freqüência observada e a freqüência esperada. Existem
Intervalos de Confiança
Intervalos de Confiança INTERVALOS DE CONFIANÇA.1 Conceitos básicos.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição numérica de
7.13 Exercicios sobre Qui-quadrado
321 7.13 Exercicios sobre Qui-quadrado Exercício 185. Um modelo de automóvel é vendido em quatro versões: SX, LX, GLX, GTX. Foi feita uma campanha publicitária para melhorar as vendas das versões GLX e
Análise de Correspondência: introdução
Análise de Correspondência: introdução Adilson dos Anjos Objetivo O objetivo dessa aula é apresentar o Teste de χ 2 como introdução à Análise de Correspondência e, Apresentar a Análise de Correspondência
9. Medidas de associação entre variáveis categóricas em tabelas de dupla entrada
9. Medidas de associação entre variáveis categóricas em tabelas de dupla entrada Quiquadrado de Pearson: mede a associação de tabelas de dupla entrada, sendo definida por: c (e e ij n ij ij ), em que é
Estimação e Testes de Hipóteses
Estimação e Testes de Hipóteses 1 Estatísticas sticas e parâmetros Valores calculados por expressões matemáticas que resumem dados relativos a uma característica mensurável: Parâmetros: medidas numéricas
Inferência Estatística Básica. Teste de Hipóteses: decidindo na presença de incerteza
Inferência Estatística Básica Teste de Hipóteses: decidindo na presença de incerteza Exemplo Inicial A ProCare Industries LTDA lançou, certa vez, um produto chamado Gender Choice. De acordo com a propaganda,
Medidas de associação para variáveis categóricas em tabelas de dupla entrada
Medidas de associação para variáveis categóricas em tabelas de dupla entrada a) Quiquadrado de Pearson: mede a associação de tabelas de dupla entrada, sendo definida por: c ( e e ij ij n ) ij, em que é
Estimação parâmetros e teste de hipóteses. Prof. Dr. Alberto Franke (48)
Estimação parâmetros e teste de hipóteses Prof. Dr. Alberto Franke (48) 91471041 Intervalo de confiança para média É um intervalo em que haja probabilidade do verdadeiro valor desconhecido do parâmetro
CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO
CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO Ana Paula Araujo Correa Eder Queiroz Newton Trevisan DEFINIÇÃO É um teste de hipóteses que se destina a encontrar um valor da dispersão para duas variáveis
A moeda é honesta ou é desequilibrada? Qual é a probabilidade de "cara"no lançamento de uma moeda?
Qual é a probabilidade de "cara"no lançamento de uma moeda? Qual é a proporção de eleitores favoráveis ao candidato A? A moeda é honesta ou é desequilibrada? O candidato A tem até 50% das intenções de
6. Medidas de associação entre variáveis categóricas em tabelas de dupla entrada
6. Medidas de associação entre variáveis categóricas em tabelas de dupla entrada Quiquadrado de Pearson: mede a associação de tabelas de dupla entrada, sendo definida por: c (e e ij n ij ij ), em que é
Introdução à análise estatística com SPSS. Guião nº6: Medidas de associação
Introdução à análise estatística com SPSS Guião nº6: Medidas de associação Experiência sobre volume plasmático e o peso em 13 homens saudáveis Os investigadores pretendem descobrir se as variáveis volume
Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo
Testes de Hipóteses Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução e notação Em geral, intervalos de confiança são a forma mais
Unidade IV Inferência estatística
6//5 Unidade IV Inferência estatística 4.. Introdução e histórico 4.. Conceitos fundamentais 4.3. Distribuições amostrais e Teorema central do limite 4.4. Estimação de parâmetros 4.5. Testes de hipóteses
TESTE DE HIPÓTESES NÍVEL DESCRITIVO
TESTE DE HIPÓTESES NÍVEL DESCRITIVO Exemplo 2: A diretoria de uma escola acredita que neste ano a proporção p de alunos usuários da Internet é maior que os 70% encontrados no ano anterior. Se uma pesquisa
Métodos Quantitativos para Ciências Sociais Professor: Marcos Vinicius Pó
Lista 2 - Amostragem - Testes de aderência, homogeneidade, independência - Testes ANOVA Parte 1: AMOSTRAS E AMOSTRAGEM 1.1. A empresa Highwaytohell deseja conhecer o tempo médio de vida de seus pneus.
Associação entre variáveis categóricas e IC95%
Associação entre variáveis categóricas e IC95% Andréa Homsi Dâmaso Programa de pós-graduação em Epidemiologia UFPEL Biotecnologia: Bioestatística e Delineamento Experimental Aula de hoje Teste do qui-quadrado
Inferência Estatística Básica. Teste de Hipóteses para uma média populacional Cálculo do Valor p
Inferência Estatística Básica Teste de Hipóteses para uma média populacional Cálculo do Valor p Exemplo 1 Um restaurante compra frangos abatidos inteiros com peso médio de 3 Kg há vários anos de um mesmo
Delineamento e Análise Experimental Aula 3
Aula 3 Castro Soares de Oliveira Teste de hipótese Teste de hipótese é uma metodologia estatística que permite tomar decisões sobre uma ou mais populações baseando-se no conhecimento de informações da
Variável dependente Variável independente Coeficiente de regressão Relação causa-efeito
Unidade IV - Regressão Regressões Lineares Modelo de Regressão Linear Simples Terminologia Variável dependente Variável independente Coeficiente de regressão Relação causa-efeito Regressão correlação Diferença
Aula 5. Teste de Hipóteses II. Capítulo 12, Bussab&Morettin Estatística Básica 7ª Edição
Aula 5. Teste de Hipóteses II. Capítulo 12, Bussab&Morettin Estatística Básica 7ª Edição Procedimento teste de hipótese para proporção. Resumo. (1) Estabelecer as hipóteses: H: p = p 0 contra uma das alternativas
Testes de Hipóteses para. uma Única Amostra. Objetivos de Aprendizagem. 9.1 Teste de Hipóteses. UFMG-ICEx-EST-027/031 07/06/ :07
-027/031 07/06/2018 10:07 9 ESQUEMA DO CAPÍTULO 9.1 TESTE DE HIPÓTESES 9.2 TESTES PARA A MÉDIA DE UMA DISTRIBUIÇÃO NORMAL, VARIÂNCIA CONHECIDA 9.3 TESTES PARA A MÉDIA DE UMA DISTRIBUIÇÃO NORMAL, VARIÂNCIA
Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo
Testes de Hipóteses Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução e notação Em geral, intervalos de confiança são a forma mais
Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística. Princípios de Bioestatística.
Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Inferência Estatística: Inferência Básica Princípios de Bioestatística decidindo na presença de incerteza Aula
Testes de Hipótese PARA COMPUTAÇÃO
Testes de Hipótese MONITORIA DE ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO Testes de Hipóteses Um teste de hipótese é uma técnica de análise usada para estimar se uma hipótese sobre a população está correta,
Métodos Quantitativos para Ciências Sociais Professor: Marcos Vinicius Pó
Lista 2 - Amostragem - Testes de aderência, homogeneidade, independência - Testes ANOVA Parte 1: AMOSTRAS E AMOSTRAGEM 1.1. A empresa Highwaytohell deseja conhecer o tempo médio de vida de seus pneus.
Aula prática 4 Parte I - Correlação e regressão linear simples
Aula prática 4 Parte I - Correlação e regressão linear simples Para esta aula prática vamos trabalhar com dados de um estudo cujo objetivo foi verificar a associação entre atividade física, aptidão cardiorrespiratória
Teste de Cochran (Homogeneidade de Variância)
ara o modelo heterocedástico, vamos inicialmente testar as hipóteses Os métodos mais utilizados são os testes de Cochran, Bartlett e de Levene. Teste de Cochran (Homogeneidade de Variância) O teste de
Conceitos Básicos Teste t Teste F. Teste de Hipóteses. Joel M. Corrêa da Rosa
2011 O 1. Formular duas hipóteses sobre um valor que é desconhecido na população. 2. Fixar um nível de significância 3. Escolher a Estatística do Teste 4. Calcular o p-valor 5. Tomar a decisão mediante
Teste Chi-Quadrado de Independência. Prof. David Prata Novembro de 2016
Teste Chi-Quadrado de Independência Prof. David Prata Novembro de 2016 Duas Variáveis Categóricas Análise de variância envolve o exame da relação entre uma variável categórica explicativa e uma variável
Estatística Descritiva (III) Associação entre Variáveis
Estatística Descritiva (III) Associação entre Variáveis 1 Associação entre variáveis qualitativas Tabelas de Contingência 2 Exemplo: Suponha que queiramos analisar o comportamento conjunto das variáveis
Capítulo 9 - Regressão Linear Simples (RLS): Notas breves
Capítulo 9 - Regressão Linear Simples RLS: Notas breves Regressão Linear Simples Estrutura formal do modelo de Regressão Linear Simples RLS: Y i = β 0 + β 1 x i + ε i, 1 onde Y i : variável resposta ou
Modelos de Regressão Linear Simples - parte III
1 Modelos de Regressão Linear Simples - parte III Erica Castilho Rodrigues 20 de Setembro de 2016 2 3 4 A variável X é um bom preditor da resposta Y? Quanto da variação da variável resposta é explicada
Análise de Dados Categóricos Tabelas 2 2
1/49 Análise de Dados Categóricos Tabelas 2 2 Enrico A. Colosimo/UFMG Depto. Estatística - ICEx - UFMG 2/49 Tabela 2 2: Exemplo Exemplo: Fischl et al. (1987) publicaram o primeiro relato de um ensaio clínico
( ) = σ 2. Capítulo 8 - Testes de hipóteses. 8.1 Introdução
Capítulo 8 - Testes de hipóteses 8.1 Introdução Nos capítulos anteriores vimos como estimar um parâmetro desconhecido a partir de uma amostra (obtendo estimativas pontuais e intervalos de confiança para
