Introdução em Probabilidade e Estatística II
|
|
|
- Vergílio de Almeida
- 6 Há anos
- Visualizações:
Transcrição
1 Introdução em Probabilidade e Estatística II Lista 6 Exercicio 1 O tempo residual do efeito de um agrotóxico está sendo analisado. Estudos anteriores, com produtos similares, indicam que o modelo exponencial em que a probabilidade do tempo residual nos intervalos [0, 1), [1, 2), [2, 3), [3, 4), [4, 5), [5, 6) e [6, ) são, respectivamente, 0.283; 0.203; 0.146; 0.104; 0.075; e é adequado. Para verificar se esse modelo também é indicado para o agrotóxico em estudo, foi feita uma análise em laboratório de uma amostra de 300 aplicações do agrotóxico, obtendo os seguintes resultados: Faixas de Frequência Frequência tempo observada (O i ) esperada (E i = N p i ) I 1 = [0, 1) I 2 = [1, 2) I 3 = [2, 3) I 4 = [3, 4) I 5 = [4, 5) I 6 = [5, 6) I 7 = [6, ) Tabela 1: Tabela de frequências. (a) Se o modelo exponencial for adequado, quantas amostras são esperadas com tempo residual no intervalo [3, 4). E 1
2 no intervalo [0, 1)? E quantas foram observadas em cada caso?. Se o modelo for adequado, no intervalo [3, 4) se espera uma frequência de No intervalo [0, 1) se espera uma frequência de Nos outros casos ver tabela 1. (b) Formule as hipóteses estatísticas H e A de um teste de hipóteses apropriado ao problema. Hipóteses nula e alternativa: As hipóteses para o modelo são: H: O modelo exponencial é adequado. p I1 = 0.283, p I2 = 0.203,..., p I6 = 0.054, p I7 = A: Existem i, j tal que p Ii p Ij, ou equivalentemente, o modelo exponencial não é adequado. (c) Para o teste das hipóteses formuladas acima, obtenha o valor observado da estatística χ 2 (especifique o número de graus de liberdade) e o correspondente nível descritivo (valor P). A estatística do teste de aderência é χ 2 = 7 i=1 (O i E i ) 2 E i. Onde χ 2 χ 2 q com q = 7 1 = 6 graus de liberdade. 2
3 O nivel descriptivo ou valor P : P = P(χ 2 6 χ 2 obs ). Para calular χ 2 obs usamos a tabela 1. Assim obtemos χ 2 obs = Usando a tabela da distribuição χ 2 6, obtemos P = P(χ 2 6 χ 2 obs) 2.5%. (d) Com base no valor encontrado para o nível descritivo, qual é a conclusão sobre suas hipóteses, considerando nível de significância de 5%? Nível de significância: α = 5% Como P = 2.5% < 5% rejeitamos a hipotese nula H, isto é, não podemos usar o modelo exponencial para o novo agrotóxico. Temos evidencia que modelo exponencial não é adequado. Exercicio 2 Um certo jornal faz pesquisas sobre temas polêmicos entre seus leitores. Em uma dessas pesquisas, o sofrimento animal foi um tema abordado. A pergunta feita aos leitores citava um artigo do filósofo Adam Shriver, publicado recentemente no periódico Neuroethics. A pergunta feita aos leitores foi: O filósofo Adam Shriver afirma em um novo artigo que a biotecnologia deveria criar animais incapazes de sentir dor para serem usados em pecuária. Você concorda com a ideia? O leitor deveria escolher uma dentre as alternativas abaixo: 1. Sim. É moralmente correto fazer todo o possível para evitar dor e sofrimento em animais. 3
4 2. Depende. Isso só vale se a biotecnologia eliminar também o sofrimento mental de viver em confinamento. Não é apenas a dor física do abate e de maus tratos que afeta animais de fazenda. 3. Não. A questão moral vai além da dor. Os humanos não devem ter o direito de manipular nem matar animais. 4. Não. Criar animais sem dor é perda de tempo. Não há diferença entre matar vegetais e animais só porque uns podem sentir dor e outros não. 5. Não concordo com nenhuma das alternativas acima. De 700 leitores que responderam essa pesquisa, os seguintes resultados foram encontrados: Medio Superior Posgraduação Total completo completo completo Total Tabela 2: Resultados da pesquisa. (a) Dê uma estimativa para a proporção de leitores deste jornal que concordam com a resposta (3) entre os que têm apenas o ensino médio completo. Calcule também uma estimativa 4
5 para essa proporção entre os leitores com pós-graduação completa. Proporção de leitores deste jornal que concordam com a resposta (3) entre os que têm apenas o ensino médio completo = Proporção de leitores deste jornal que concordam com a resposta (3) entre os que têm posgraduação completo = (b) Se a escolaridade não interfere na opinião dos leitores deste jornal sobre sofrimento animal, quantos leitores com ensino superior completo você esperaria que escolhessem a alternativa (5)? E quantos leitores com ensino médio? Quantos foram observados?. Neste problema temos duas variaveis X: resposta da pesquisa, Y: escolaridade das pessoas. Supondo que as variaveis X, Y são independientes, temos e E 5,superior = E 5,ensino medio = = = (c) Formule as hipótese H e A adequadas a esta situação. 5
6 Hipóteses nula e alternativa: H: As variaveis X, Y são independentes. A: As variaveis X, Y não são independentes. (d) Por meio de um teste estatístico apropriado, conclua sobre suas hipóteses calculando o nível descritivo. Utilize um nível de significância de 5%. Comente. A estatística do teste de independência é χ 2 = 5 i=1 3 j=1 (O ij E ij ) 2 E ij. Onde χ 2 χ 2 q com q = (5 1) (3 1) = 8 graus de liberdade. Nivel descritivo: P = P(χ 2 8 χ 2 obs ). Calculando todos os valores E ij obtemos χ 2 obs = então P = P(χ ) = 48%. Regra de decisão: Se P α, então rejeitamos H. Se P > α, então aceitamos H. Como P = P(χ ) = 48% > 5%, existe evidencia na amostra para aceitar a independência das variaveis X e Y. Exercicio 3 Uma pesquisa realizada entre estudantes da USP foi conduzida 6
7 no ano de 2009, sendo que um dos objetivos era verificar a existência de associação entre a área do curso e o uso de álcool. Para isso, uma amostra de 3715 alunos foi selecionada e os alunos responderam um questionário. Dos 958 alunos de cursos da área biológica (exceto medicina), 623 disseram ter utilizado álcool nos últimos 30 dias. Dentre os alunos de ciências exatas, 457 disseram não ter ingerido álcool nos últimos 30 dias e, finalmente, 962 dos 1373 alunos de cursos de ciências humanas disseram ter ingerido bebidas alcoólicas nos últimos 30 dias. (a) Escreva as informações da pesquisa em uma tabela de distribuição conjunta de frequências. No Si Total Biologia Exatas Humanas Total Tabela 3: Resultados da pesquisa. Os números vermelhos são os valores esperados sob hipotese H (b) Qual é a proporção de alunos que disseram ter ingerido álcool nos últimos 30 dias? Dentre os alunos de ciências humanas, qual é essa proporção? 7
8 Proporção de alunos que disseram ter ingerido álcool nos últimos 30 dias = Proporção dentre os alunos de ciências humanas que disseram ter ingerido álcool nos últimos 30 dias = (c) Formule hipóteses H e A adequadas para a situação Neste problema temos duas variaveis X: uso do alcool, Y: área do curso. Hipóteses nula e alternativa: H: As variaveis X, Y são independentes. A: As variaveis X, Y não são independentes. (d) Se não há associação entre área do curso e uso de álcool, quantos alunos do curso de ciências exatas espera-se que usem álcool? E exatas, usam alcool = = (e) Por meio do nível descritivo, conclua sobre suas hipóteses, adotando um nível de significância igual a 1%. Qual o número de graus de liberdade associado ao teste utilizado? 8
9 A estatística do teste de independência é 3 2 χ 2 (O ij E ij ) 2 =. E ij i=1 j=1 Onde χ 2 χ 2 q com q = (3 1) (2 1) = 2 graus de liberdade. Nivel descritivo: P = P(χ 2 2 χ 2 obs ). Calculando todos os valores E ij obtemos χ 2 obs = então P = P(χ ) 3%. Regra de decisão: Se P α, então rejeitamos H. Se P > α, então aceitamos H. Como P = P(χ ) = 3% > 1%, existe evidencia na amostra para aceitar a independência das variaveis X e Y. Exercicio 4 Quatro máquinas de grande porte trabalham de forma independente e ao fim da jornada de trabalho, são vistoriadas pelo controle de qualidade e, se necessário, as máquinas são ajustadas. Das informações arquivadas pela empresa, sorteamos 22 dias e anotamos o número de máquinas que sofreram ajuste nesses dias. Os dados são apresentados na tabela abaixo. O engenheiro de manutenção pretende verificar se o número de máquinas ajustadas em um dia segue uma distribuição binomial com n = 4 e p = 0.1. Especifique as hipóteses estatísticas H e A apropriadas e conclua com base no nível descritivo, considerando nível de significância de 4%. 9
10 frequência Tabela 4: Resultados da pesquisa. Os números vermelhos são os valores esperados sob hipotese H Tamanho da amostra: n = 22 Hipóteses nula e alternativa: H: O número de máquinas ajustadas em um dia segue uma distribuição binomial com n = 4 e p = 0.1. A: O número de máquinas ajustadas em um dia NÃO segue uma distribuição binomial com n = 4 e p = 0.1. A estatística do teste de aderência é 5 χ 2 (O i E i ) 2 =. E i i=0 Onde χ 2 χ 2 q com q = (5 1) = 4 graus de liberdade. Nivel descritivo: P = P(χ 2 4 χ 2 obs ). Calculando todos os valores E i obtemos χ 2 obs = 10, 367 então P = P(χ , 367) 4%. Regra de decisão: Se P α, então rejeitamos H. Se P > α, então aceitamos H. Como P = P(χ , 367) 4%, não há evidencia na amostra para aceitar que o número de máquinas ajustadas em um dia segue uma distribuição binomial com n = 4 e p =
MAE116 Noções de Estatística
Exercício 1 (Estimação) Um agente de viagens deseja estimar a proporção de clientes satisfeitos com os serviços da agência. (a) Determine o tamanho da amostra necessário para que o erro cometido na estimação
MAE0229 Introdução à Probabilidade e Estatística II
Exercício A fim de comparar os salários médios anuais de executivos e executivas de uma determinada cidade, amostras aleatórias de n = 26 executivos e n 2 = 24 executivas foram coletadas obtendose os valores
Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo
Testes de Hipóteses Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução e notação Em geral, intervalos de confiança são a forma mais
2. Testes de Independência
. Testes de Independência Objetivo: Verificar se existe independência entre duas variáveis medidas nas mesmas unidades experimentais. Exemplo 3: A Associação de Imprensa do Estado de São Paulo fez um levantamento
Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo
Testes de Hipóteses Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução e notação Em geral, intervalos de confiança são a forma mais
Análise de Aderência e de Associação
Análise de Aderência e de Associação Capítulo 14, Estatística Básica (Bussab & Morettin, 8a Edição) Capítulo 8, Introdução Computacional à Probabilidade e Estatística (Pedrosa & Gama, Porto Editora) 8a
- Testes Qui-quadrado - Aderência e Independência
- Testes Qui-quadrado - Aderência e Independência 1 1. Testes de Aderência Objetivo: Testar a adequabilidade de um modelo probabilístico a um conjunto de dados observados Exemplo 1: Segundo Mendel (geneticista
Aula 16: Análise de Aderência e Associação
Aula 16: Análise de Aderência e Associação Professor: José Luiz Padilha da Silva email: [email protected] Departamento de Estatística Universidade Federal do Paraná Curitiba, 2018 José Luiz Padilha da
- Testes Qui-quadrado - Aderência e Independência
- Testes Qui-quadrado - Aderência e Independência 1 1. Testes de Aderência Objetivo: Testar a validade de um modelo probabilístico discreto a um conjunto de dados observados Exemplo 1: Segundo Mendel (geneticista
Introdução em Probabilidade e Estatística II
Introdução em Probabilidade e Estatística II Lista 7 Exercicio Em estudo genético um gene A foi destacado para detectar uma doença. Se dita que em pessoas doentes (pacientes) este gene mostra atividade
- Testes Qui-quadrado - Aderência e Independência
- Testes Qui-quadrado - Aderência e Independência 1 1. Testes de Aderência Objetivo: Testar a adequabilidade de um modelo probabilístico a um conjunto de dados observados Exemplo 1: Segundo Mendel (geneticista
Métodos Quantitativos para Ciências Sociais Professor: Marcos Vinicius Pó
Lista 2 - Amostragem - Testes de aderência, homogeneidade, independência - Testes ANOVA Parte 1: AMOSTRAS E AMOSTRAGEM 1.1. A empresa Highwaytohell deseja conhecer o tempo médio de vida de seus pneus.
Teste Qui-Quadrado para Independência Texto criado na data. 7 de novembro de 2018
Teste Qui-Quadrado para Independência Texto criado na data 7 de novembro de 2018 Exemplo 1. Um exemplo típico do tema Teste de Independência. Os resultados da classificação de pessoas segundo a cor dos
MAE Introdução à Probabilidade e Estatística II Resolução Lista 5
MAE 229 - Introdução à Probabilidade e Estatística II Resolução Lista 5 Professor: Pedro Morettin e Profa. Chang Chian Exercício 1 (a) De uma forma geral, o desvio padrão é usado para medir a dispersão
Testes de Aderência, Homogeneidade e Independência
Testes de Aderência, Homogeneidade e Independência Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais O que é um teste de hipótese? Queremos saber se a evidência que temos em mãos significa
TESTES DE HIPÓTESES. Conceitos, Testes de 1 proporção, Testes de 1 média
TESTES DE HIPÓTESES Conceitos, Testes de 1 proporção, Testes de 1 média 1 Testes de Hipóteses População Conjectura (hipótese) sobre o comportamento de variáveis Amostra Decisão sobre a admissibilidade
Testes de hipóteses. Wagner H. Bonat Fernando P. Mayer Elias T. Krainski
Testes de hipóteses Wagner H. Bonat Fernando P. Mayer Elias T. Krainski Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação 07/06/2018 WB, FM, EK ( LEG/DEST/UFPR
X ~ Binomial (n ; p) H: p = p 0 x A: p p 0 (ou A: p > p 0 ou A: p < p 0 ) { X k 1 } U { X k 2 } (ou { X k } ou { X k }) x RC não rejeitamos H
NOÇÕES DE TESTE DE HIPÓTESES (II) Nível Descritivo valor P Resumo X ~ Binomial (n ; p) (1) Estabelecer as hipóteses sobre p: H: p = p 0 x A: p p 0 (ou A: p > p 0 ou A: p < p 0 ) (2) Escolher um nível de
Medidas de associação entre duas variáveis qualitativas
Medidas de associação entre duas variáveis qualitativas Hoje vamos analisar duas variáveis qualitativas (categóricas) conjuntamente com o objetivo de verificar se existe alguma relação entre elas. Vamos
TESTES NÃO PARAMÉTRICOS (para mediana/média)
MAE212: Introdução à Probabilidade e à Estatística II - Profas. Beti e Chang (2012) 1 TESTES NÃO PARAMÉTRICOS (para mediana/média) Os métodos de estimação e testes de hipóteses estudados até agora nessa
AULA 04 Teste de hipótese
1 AULA 04 Teste de hipótese Ernesto F. L. Amaral 03 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal
Testes de Aderência, Homogeneidade e Independência
Testes de Aderência, Homogeneidade e Independência Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais O que é um teste de hipótese? Queremos saber se a evidência que temos em mãos significa
Testes de Aderência, Homogeneidade e Independência
Testes de Aderência, Homogeneidade e Independência Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais O que é um teste de hipótese? Queremos saber se a evidência que temos em mãos significa
AULA 05 Teste de Hipótese
1 AULA 05 Teste de Hipótese Ernesto F. L. Amaral 03 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario F. 2008. Introdução
7 Teste de Hipóteses
7 Teste de Hipóteses 7-1 Aspectos Gerais 7-2 Fundamentos do Teste de Hipóteses 7-3 Teste de uma Afirmação sobre a Média: Grandes Amostras 7-4 Teste de uma Afirmação sobre a Média : Pequenas Amostras 7-5
Métodos Quantitativos para Ciências Sociais Professor: Marcos Vinicius Pó
Lista 2 - Amostragem - Testes de aderência, homogeneidade, independência - Testes ANOVA Parte 1: AMOSTRAS E AMOSTRAGEM 1.1. A empresa Highwaytohell deseja conhecer o tempo médio de vida de seus pneus.
Testes de Hipóteses para. uma Única Amostra. Objetivos de Aprendizagem. 9.1 Teste de Hipóteses. UFMG-ICEx-EST-027/031 07/06/ :07
-027/031 07/06/2018 10:07 9 ESQUEMA DO CAPÍTULO 9.1 TESTE DE HIPÓTESES 9.2 TESTES PARA A MÉDIA DE UMA DISTRIBUIÇÃO NORMAL, VARIÂNCIA CONHECIDA 9.3 TESTES PARA A MÉDIA DE UMA DISTRIBUIÇÃO NORMAL, VARIÂNCIA
Testes de Hipótese PARA COMPUTAÇÃO
Testes de Hipótese MONITORIA DE ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO Testes de Hipóteses Um teste de hipótese é uma técnica de análise usada para estimar se uma hipótese sobre a população está correta,
Estimação e Testes de Hipóteses
Estimação e Testes de Hipóteses 1 Estatísticas sticas e parâmetros Valores calculados por expressões matemáticas que resumem dados relativos a uma característica mensurável: Parâmetros: medidas numéricas
Estatística Aplicada. Teste de hipóteses ou teste de significância Cap. 11
Estatística Aplicada Teste de hipóteses ou teste de significância Cap. 11 Conceito Objetivo: decidir se uma afirmação sobre um parâmetro populacional é verdadeira a partir de informações obtidas de uma
- Testes Qui-quadrado. - Aderência e Independência
- Testes Qui-quadrado - Aderência e Independência 1 1. Testes de Aderência Objetivo: Testar a adequabilidade de um modelo probabilístico a um conjunto de dados observados Exemplo 1: 1 Genética Equilíbrio
Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Teste de Hipóteses
Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Teste de Hipóteses Professora Renata Alcarde Sermarini Piracicaba maio 2014 Renata Alcarde Sermarini Estatística Geral 5 de Junho
Métodos Quantitativos para Ciências Sociais Professor: Marcos Vinicius Pó. Categoria O 1 O 2 O 3 O 4 Freqüência
Lista 2 - Testes de aderência, homogeneidade, independência - Testes ANOVA Parte 1: ADERÊNCIA, HOMOGENEIDADE E INDEPENDÊNCIA 1.1. Um modelo de estudos de populações considera que elas podem ser classificadas
Conceitos Básicos Teste t Teste F. Teste de Hipóteses. Joel M. Corrêa da Rosa
2011 O 1. Formular duas hipóteses sobre um valor que é desconhecido na população. 2. Fixar um nível de significância 3. Escolher a Estatística do Teste 4. Calcular o p-valor 5. Tomar a decisão mediante
Stela Adami Vayego Estatística II CE003/DEST/UFPR
Resumo 1 Teste de hipóteses não paramétricos Os métodos não-paramétricos fazem poucas suposições sobre a natureza das distribuições dos dados. Não exige que as distribuições nas populações sejam normais,
Testes para dados categóricos
Testes para dados categóricos Teste de homogeneidade Objetivo: testar se existe diferença entre frequências observadas (O ij ) e frequências esperadas (E ij ). Dados amostrais: amostras aleatórias independentes
TESTE DE HIPÓTESES NÍVEL DESCRITIVO
TESTE DE HIPÓTESES NÍVEL DESCRITIVO Exemplo 2: A diretoria de uma escola acredita que neste ano a proporção p de alunos usuários da Internet é maior que os 70% encontrados no ano anterior. Se uma pesquisa
Estimação parâmetros e teste de hipóteses. Prof. Dr. Alberto Franke (48)
Estimação parâmetros e teste de hipóteses Prof. Dr. Alberto Franke (48) 91471041 Intervalo de confiança para média É um intervalo em que haja probabilidade do verdadeiro valor desconhecido do parâmetro
TESTE DO QUI-QUADRADO DE INDEPENDÊNCIA
TESTE DO QUI-QUADRADO DE INDEPENDÊNCIA Suponha que numa amostra aleatória de tamanho n de uma dada população são observados dois atributos ou características A e B (qualitativas ou quantitativas), uma
INFERÊNCIA ESTATÍSTICA. ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p
INFERÊNCIA ESTATÍSTICA ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p Objetivo Estimar uma proporção p (desconhecida) de elementos em uma população, apresentando certa característica de interesse, a partir
Teste de Hipóteses Paramétricos
Teste de Hipóteses Paramétricos Fundamentos de um teste de hipóteses Como construir testes de hipóteses para uma média. Como construir testes de hipóteses para uma proporção. Como construir testes de hipóteses
6. NOÇÕES DE INFERÊNCIA ESTATÍSTICA
6. NOÇÕES DE INFERÊNCIA ESTATÍSTICA 2019 Problemas de inferência Inferir significa fazer afirmações sobre algo desconhecido. A inferência estatística tem como objetivo fazer afirmações sobre uma característica
6. NOÇÕES DE INFERÊNCIA ESTATÍSTICA
6. NOÇÕES DE INFERÊNCIA ESTATÍSTICA 214 Problemas de inferência Inferir significa fazer afirmações sobre algo desconhecido. A inferência estatística tem como objetivo fazer afirmações sobre uma característica
Aula 5. Teste de Hipóteses II. Capítulo 12, Bussab&Morettin Estatística Básica 7ª Edição
Aula 5. Teste de Hipóteses II. Capítulo 12, Bussab&Morettin Estatística Básica 7ª Edição Procedimento teste de hipótese para proporção. Resumo. (1) Estabelecer as hipóteses: H: p = p 0 contra uma das alternativas
MOQ 13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel
MOQ 13 PROBABILIDADE E ESTATÍSTICA Professor: Rodrigo A. Scarpel [email protected] www.mec.ita.br/~rodrigo Programa do curso: Semanas 1 3 4 5 6 7 8 9 10 11 1 13 14 15 e 16 Introdução à probabilidade (eventos,
LISTA DE EXERCICIOS 3
INTRODUÇÃO À ESTATÍSTICA - ET101 LISTA DE EXERCICIOS 3 PROF. JOSÉ CERDA-HERNÁNDEZ (1) Um jornal de uma determinada cidade tem 200 jornaleiros cadastrados. 20 jornaleiros vendem em média cinquenta jornais
Inferência Estatística
Inferência Estatística procura os argumentos estatísticos para fazer afirmações sobre as características de uma população, com base em informações dadas por amostras. Exemplo 1: observe como uma cozinheira
Intervalos de Confiança
Intervalos de Confiança INTERVALOS DE CONFIANÇA.1 Conceitos básicos.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição numérica de
CONHECIMENTOS ESPECÍFICOS
CONHECIMENTOS ESPECÍFICOS Em uma grande escola, 10% dos alunos são comprovadamente fracos. Um teste educacional conseguiu identificar corretamente 80% entre aqueles que são fracos e 85% entre aqueles que
1. (a) Lembre-se que a média de uma variável aleatória discreta é uma média ponderada de seus valores, com as probabilidades sendo os pesos.
GET00172 - Fundamentos de Estatística Aplicada Gabarito da Lista de Exercícios Inferência rofa. Ana Maria Farias 1. a Lembre-se que a média de uma variável aleatória discreta é uma média ponderada de seus
Stela Adami Vayego DEST/UFPR
Testes de hipóteses não paramétricos Os métodos não-paramétricos fazem poucas suposições sobre a natureza das distribuições dos dados. Não exige que as distribuições nas populações sejam normais, nem são
Universidade Federal Fluminense INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA
Universidade Federal Fluminense INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA Estatística Básica para Engenharia Prof. Mariana Albi 8 a Lista de Exercícios Assuntos: Inferência Estatística.
CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO
CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO Ana Paula Araujo Correa Eder Queiroz Newton Trevisan DEFINIÇÃO É um teste de hipóteses que se destina a encontrar um valor da dispersão para duas variáveis
Razão para rejeitar H 0
Processo do teste de hipótese Hipótese de pesquisa: a idade média da população é 5 H : μ = 5 H 1 : μ 5 É X = improvável se μ =5? População Selecionar amostra aleatória Sim: Rejeite Ho Para definir pouco
mat.ufrgs..ufrgs.br br/~viali/ mat.ufrgs..ufrgs.br
Prof. Lorí Viali, Dr. http://www. ://www.mat mat.ufrgs..ufrgs.br br/~viali/ viali@mat mat.ufrgs..ufrgs.br Média Uma amostra Proporção Variância Dependentes Diferença de médias m Duas amostras Independentes
AULA 8 Experimentos multinomiais e tabelas de contingência
1 AULA 8 Experimentos multinomiais e tabelas de contingência Ernesto F. L. Amaral 05 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas
Inferência Estatística. Tiago Viana Flor de Santana
ESTATÍSTICA BÁSICA Inferência Estatística Tiago Viana Flor de Santana www.uel.br/pessoal/tiagodesantana/ [email protected] sala 07 Curso: MATEMÁTICA Universidade Estadual de Londrina UEL Departamento
Lista Estimação Pontual Estatística Aplicada à Engenharia de Produção Prof. Michel H. Montoril
Exercício 1. (Kokoska, 2013) Estudos indicam que residências canadenses desperdiçam, aproximadamente, de 389 a 513 quilowatts-hora de eletricidade por ano. Esse desperdício é causado por aparelhos eletrônicos
NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional
NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional Métodos Estatísticos Métodos Estatísticos Estatística Descritiva Inferência Estatística Estimação Teste de Hipóteses TESTE
Distribuição F: testando a variância
Estatística plicada II Comparação das variâncias de Duas populações Normais UL 6/09/6 Prof a Lilian M. Lima Cunha Distribuição F: testando a variância -Testar igualdade de variâncias entre populações -
Testes de Hipótese para uma única Amostra - parte I
Testes de Hipótese para uma única Amostra - parte I 26 de Junho de 2014 Objetivos Ao final deste capítulo você deve ser capaz de: Estruturar problemas de engenharia como testes de hipótese. Entender os
EXPERIMENTAÇÃO ZOOTÉCNICA. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari
EXPERIMENTAÇÃO ZOOTÉCNICA Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari [email protected] CARACTERIZAÇÃO o Em alguns experimentos pode-se ter fatores que estão interferindo na variável resposta,
Probabilidade e Estatística
Probabilidade e Estatística Aula 9 Fundamentos de Testes de Hipóteses Leitura: Devore, Capítulo 8 Chap 9-1 Objetivos Neste capítulo, vamos aprender: Os princípios básicos de testes de hipóteses Estabelecer
Princípios de Bioestatística
Princípios de Bioestatística Análise de Variância Enrico A. Colosimo Departamento de Estatística Universidade Federal de Minas Gerais http://www.est.ufmg.br/~enricoc 2011 1 / 25 Introdução Existem muitas
Teste para a variância de uma normal. Tiago Viana Flor de Santana
ESTATÍSTICA BÁSICA Tiago Viana Flor de Santana www.uel.br/pessoal/tiagodesantana/ [email protected] sala 07 Universidade Estadual de Londrina UEL Departamento de Estatística DSTA Sumário 1 Santana,T.V.F.
Estatística II Licenciatura em Gestão TESTE I
Estatística II Licenciatura em Gestão 1 o semestre 2015/2016 14/01/2016 09:00 Nome N o Espaço reservado a classificações A utilização do telemóvel, em qualquer circunstância, é motivo suficiente para a
Capítulo 2. Distribuições de Probabilidade Estimativas de parâmetros e tempos-atéfalha. Flávio Fogliatto
Capítulo 2 Distribuições de Probabilidade Estimativas de parâmetros e tempos-atéfalha Flávio Fogliatto 1 Ajustes de distribuições Em estudos de confiabilidade, dados são amostrados a partir de uma população
Análise de Dados Categóricos
Universidade Federal Fluminense Instituto de Matemática e Estatística Análise de Dados Categóricos Ana Maria Lima de Farias Fábio Nogueira Demarqui Departamento de Estatística Março 2017 Sumário 1 Análise
Lista Estimação Pontual Estatística Aplicada à Engenharia de Produção Prof. Michel H. Montoril
Exercício 1. (Kokoska, 2013) Estudos indicam que residências canadenses desperdiçam, aproximadamente, de 389 a 513 quilowatts-hora de eletricidade por ano. Esse desperdício é causado por aparelhos eletrônicos
Professora Ana Hermínia Andrade. Período
Teste de Hipóteses Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2016.1 Teste de Hipóteses O Teste de Hipóteses
Introdução a Estatística
Introdução a Estatística Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB [email protected] Introdução O curso foi dividido em três etapas: 1 vimos como
Delineamento e Análise Experimental Aula 3
Aula 3 Castro Soares de Oliveira Teste de hipótese Teste de hipótese é uma metodologia estatística que permite tomar decisões sobre uma ou mais populações baseando-se no conhecimento de informações da
Unidade IV Inferência estatística
6//5 Unidade IV Inferência estatística 4.. Introdução e histórico 4.. Conceitos fundamentais 4.3. Distribuições amostrais e Teorema central do limite 4.4. Estimação de parâmetros 4.5. Testes de hipóteses
NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional
NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional Estimação Teste de Hipóteses Qual é a probabilidade de "cara no lançamento de uma moeda? A moeda é honesta ou desequilibrada?
6. NOÇÕES DE INFERÊNCIA ESTATÍSTICA
6. NOÇÕES DE INFERÊNCIA ESTATÍSTICA 21 Problemas de inferência Inferir significa fazer afirmações sobre algo desconhecido. A inferência estatística tem como objetivo fazer afirmações sobre uma característica
A moeda é honesta ou é desequilibrada? Qual é a probabilidade de "cara"no lançamento de uma moeda?
Qual é a probabilidade de "cara"no lançamento de uma moeda? Qual é a proporção de eleitores favoráveis ao candidato A? A moeda é honesta ou é desequilibrada? O candidato A tem até 50% das intenções de
x P(X = x) 0,1 0,7 0,2
GET00172 Fundamentos de Estatística Aplicada Lista de Exercícios Inferência Profa. Ana Maria Farias CAPÍTULOS 1 e 2 1. Com objetivo de planejamento, um banco determinou a distribuição de probabilidade
UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL LISTA DE EXERCÍCIOS 2
UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL LISTA DE EXERCÍCIOS 2 Disciplina: Estatística II 1. Suponha que um engenheiro florestal deseja estimar a altura
(a) Teste e IC para Duas Variâncias. (b) Teste para médias. Duas Amostras de Teste T e IC
Exercício 1 Contexto: amostras independentes de populações normais (a) Teste e IC para Duas Variâncias Método Hipótese nula Variância(Primeiro) / Variância(Segundo) = 1 Hipótese alternativa Variância(Primeiro)
TESTE DE HIPÓTESE. Introdução
TESTE DE HIPÓTESE Introdução O teste de hipótese estatística objetiva decidir se uma afirmação sobre uma população, usualmente um parâmetro desta, é, ou não, apoiada pela evidência obtida dos dados amostrais.
SUMÁRIO. 1.1 Introdução, Conceitos Fundamentais, 2
SUMÁRIO 1 CONCEITOS BÁSICOS, 1 1.1 Introdução, 1 1.2 Conceitos Fundamentais, 2 1.2.1 Objetivo, 2 1.2.2 População e amostra, 2 1.3 Processos estatísticos de abordagem, 2 1.4 Dados estatísticos, 3 1.5 Estatística
Prof. Tiago Viana Flor de Santana
INFERÊNCIA ESTATÍSTICA Introdução Prof. Tiago Viana Flor de Santana www.uel.br/pessoal/tiagodesantana/ [email protected] sala 07 Universidade Estadual de Londrina UEL Departamento de Estatística DSTA
Parte 8 Testes de hipóteses Comparação de dois grupos
Parte 8 Testes de hipóteses Comparação de dois grupos Um objetivo frequente em estudos de diferentes áreas é a comparação de dois ou mais grupos (ou populações). Alguns exemplos: o Comparação dos salários
