Teste F-parcial 1 / 16
|
|
|
- Luiz Fernando Anjos Coelho
- 9 Há anos
- Visualizações:
Transcrição
1 Teste F-parcial
2 Ingredientes A hipótese nula, H 0, define o modelo restrito. A hipótese alternativa, H a : H 0 é falsa, define o modelo irrestrito. SQR r : soma de quadrado dos resíduos associada à estimação dos parâmetros do modelo restrito (modelo definido sob H 0 ); SQR ir : soma de quadrado dos resíduos associada ao modelo irrestrito; g: número de restrições a serem testadas, sob H 0 ; O teste F-parcial para H 0 é definido por F = SQR r SQR ir g SQR ir n p onde p é o número de coeficientes na regressão irrestrita (incluindo, potencialmente, o intercepto/constante).
3 Distribuição F Sob a hipótese nula e, ainda, admitindo a validade das suposições MLR.1 a MLR.6, a estatística F acima segue uma distribuição F-de-Snedecor: F g;n p com g e n p graus de liberdade.
4 O teste F-parcial pode ser utilizado como: Forma de verificar a contribuição de uma ou mais variáveis explicativas (regressoras/independentes) como se estas fossem as últimas variáveis que entram no modelo; Critério de seleção da melhor equação de regressão.
5 Exemplo temco.txt O gerente de uma empresa terceirizada, responsável pelo recrutamento e seleção de novos funcionários para a empresa TEMCO, acredita que os salários dos funcionários da TEMCO sofrem um acréscimo médio de 700,00 dólares, por ano a mais na empresa, e que a experiência prévia na função não tem impacto no salário, uma vez que a TEMCO mantém uma política de contratar recém-formados e trabalhadores sem experiência, pois prefere fornecer um treinamento customizado aos recém-contratados, ceteris paribus.
6 Para tanto, a análise inferencial deve ser feita a partir da estimação dos parâmetros de um modelo de regress ao linear múltipla que apresenta educ, anosemp e expprev como regressores e salario como regressando. Adotando um nível de significância de 5%, a desconfiança do gerente procede ou não.
7 Modelos Modelo irrestrito: salario i = β 0 + β 1 educ i + β 2 anosemp i + β 3 expprev i + ε i Hipóteses de interesse: H 0 : (β 2, β 3 ) = (700, 0) versus H a : (β 2, β 3 ) (700, 0) Modelo restrito: salario i = β 0 + β 1 educ i + 700anosemp i + ε i ou (salario i 700anosemp i ) = β 0 + β 1 educ i + ε i
8 data = read.table("temco.txt",header=true) attach(data) n=nrow(data) # Modelo irrestrito reg.irr = lm(salario~educ+anosemp+expprev) summary(reg.irr) anova(reg.irr) SQR.irr = sum(reg.irr$res^2) # Modelo restrito y = SALARIO-700*ANOSEMP reg.r = lm(y~educ) summary(reg.r) anova(reg.r) SQR.r = sum(reg.r$res^2) # F test num = (SQR.r-SQR.irr)/2 den = SQR.irr/(n-4) Ftest = num/den
9 Modelo irrestrito Call: lm(formula = SALARIO ~ EDUC + ANOSEMP + EXPPREV) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) e-14 *** EDUC e-05 *** ANOSEMP e-05 *** EXPPREV Signif. codes: 0 *** ** 0.01 * Residual standard error: 5799 on 42 degrees of freedom Multiple R-squared: ,Adjusted R-squared: F-statistic: on 3 and 42 DF, p-value: 2.262e-12
10 Modelo irrestrito Analysis of Variance Table Response: SALARIO Df Sum Sq Mean Sq F value Pr(>F) EDUC e-12 *** ANOSEMP e-05 *** EXPPREV Residuals Signif. codes: 0 *** ** 0.01 *
11 Modelo restrito Call: lm(formula = y ~ EDUC) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) < 2e-16 *** EDUC e-07 *** --- Signif. codes: 0 *** ** 0.01 * Residual standard error: 5675 on 44 degrees of freedom Multiple R-squared: ,Adjusted R-squared: F-statistic: on 1 and 44 DF, p-value: 1.302e-07
12 Modelo restrito Analysis of Variance Table Response: y Df Sum Sq Mean Sq F value Pr(>F) EDUC e-07 *** Residuals Signif. codes: 0 *** ** 0.01 *
13 Como g = 2, n p = 46 4 = 42, SQR ir = SQR r = F test = Rejeita-se H 0 se o teste F parcial, isto é, F = for maior que o valor crítico da distribuição F 2,42 ao nível de significância α. Se α = 0.05, é fácil 1 verificar que F2, = Se α = 0.10, é fácil verificar que F2, = Como F é menor que F ,42 (ou F ,42 ), não temos evidência para rejeitar a hipótese nula ao nível de 5% (ou 10%) de significância. 1 Em R usa-se a função qf: qf(0.95,2,42)
14 Vamos fazer juntos? O sindicato, ao qual pertencem os funcionários da empresa TEMCO, afirma ao diretor que deve haver um acréscimo médio anual de U$ 2.700,00 quando aumenta-se conjuntamente 1 ano no tempo de empresa e 1 ano de estudo aps o 2o grau, mantendo-se o tempo de experiência prévia fixo. Conclua se a empresa segue a norma com 95% de confiança.
15 Modelo irrestrito: Modelos salario i = β 0 + β 1 educ i + β 2 anosemp i + β 3 expprev i + ε i Hipóteses de interesse: H 0 : β 1 + β 2 = 2700 versus H a : β 1 + β Modelo restrito: salario i = β 0 + (2700 β 2 )educ i + β 2 anosemp i + β 3 expprev i + ε i ou (salario i 2700educ i ) = β 0 +β 2 (anosemp-educ i )+β 3 expprev i +ε i
16 # Modelo irrestrito reg.irr = lm(salario~educ+anosemp+expprev) summary(reg.irr) anova(reg.irr) SQR.irr = sum(reg.irr$res^2) # Modelo restrito y = SALARIO-2700*EDUC x = ANOSEMP-EDUC reg.r = lm(y~x+expprev) summary(reg.irr) anova(reg.irr) SQR.r = sum(reg.r$res^2) # F test num = (SQR.r-SQR.irr)/1 den = SQR.irr/(n-4) Ftest = num/den Ftest [1]
Teste F-parcial 1 / 16
Teste F-parcial A hipótese nula, H 0, define o modelo restrito. Ingredientes SQR r : soma de quadrado dos resíduos sob H 0. R 2 r: coeficiente de determinação sob H 0. g: número de restrições a serem testadas
BIE5782. Unidade 7: INTRODUÇÃO AOS MODELOS LINEARES
BIE5782 Unidade 7: INTRODUÇÃO AOS MODELOS LINEARES ROTEIRO 1.Motivação 2. Método dos mínimos quadrados 3. Ajuste no R: função lm 4. Resultado no R: objeto lm 5. Premissas, interpretação e diagnóstico 6.
UNIVERSIDADE FEDERAL DA FRONTEIRA SUL Campus CERRO LARGO. PROJETO DE EXTENSÃO Software R: de dados utilizando um software livre.
UNIVERSIDADE FEDERAL DA FRONTEIRA SUL Campus CERRO LARGO PROJETO DE EXTENSÃO Software R: Capacitação em análise estatística de dados utilizando um software livre. Fonte: https://www.r-project.org/ Módulo
b) Teste a hipótese de efeito significante do tamanho da população sobre a venda do produto, na presença de renda per capita
Exemplo 1 (continuação a Estime por intervalo de 95% de confiança, o aumento do número médio de lotes vendidos devido a 1000 pessoas a mais na população, mantendo a renda per capita fixa b Teste a hipótese
Gabarito Lista 2 LES0773 Estatística III. Os resultados dessa regressão são apresentados na seguinte tabela:
Gabarito Lista 2 LES0773 Estatística III Exercício 1) Utilizando a ferramenta Análise de Dados e a sua função Regressão, foi realizada uma regressão levando em consideração os gastos com PD como variável
Capacitação em R e RStudio PROJETO DE EXTENSÃO. Software R: capacitação em análise estatística de dados utilizando um software livre.
UFFS Universidade Federal da Fronteira Sul Campus Cerro Largo PROJETO DE EXTENSÃO Software R: capacitação em análise estatística de dados utilizando um software livre Fonte: https://www.r-project.org/
Introdução Regressão linear Regressão de dados independentes Regressão não linear. Regressão. Susana Barbosa
Regressão Susana Barbosa Mestrado em Ciências Geofísicas 2012-2013 Regressão linear x : variável explanatória y : variável resposta Gráfico primeiro! Gráfico primeiro! Gráfico primeiro! Modelo linear x
Variável dependente Variável independente Coeficiente de regressão Relação causa-efeito
Unidade IV - Regressão Regressões Lineares Modelo de Regressão Linear Simples Terminologia Variável dependente Variável independente Coeficiente de regressão Relação causa-efeito Regressão correlação Diferença
Testes de cointegração
Testes de cointegração Avaliando a existência de relação de conintegração entre séries temporais Wilson Freitas Quant Developer Recursos index.rmd 2/13 Teste de Engle & Granger (EG) Teste de Engle & Granger
MRLM COM COVARIÁVEIS CATEGÓRICAS. criar uma variável dummy para representar uma categoria da variável. variável dummy: assume só dois valores: 0 ou 1
MRLM COM COVARIÁVEIS CATEGÓRICAS Como quantificar o efeito das categorias de uma variável sobre a resposta Y? (exemplo: efeito de sexo masculino/feminino sobre salário) criar uma variável dummy para representar
ME613 - Análise de Regressão
ME613 - Análise de Regressão Parte 2 Propriedades dos estimadores Samara F. Kiihl - IMECC - UNICAMP Suposições do modelo de regressão linear simples Suposições do modelo de regressão linear simples Até
Testes de raiz unitária
Testes de raiz unitária Avaliando estacionariedade em séries temporais financeiras Wilson Freitas Quant Developer Recursos index.rmd 2/20 Testes de Raiz Unitária Definição do teste de raiz unitária Existem
Regressão linear múltipla
Regressão linear múltipla Universidade Estadual de Santa Cruz Ivan Bezerra Allaman Introdução A regressão múltipla é uma generalização da regressão simples, visto que, há mais de uma variável explicativa
MEDIÇÃO DA QUALIDADE DO VINHO BRANCO NORTE PORTUGUÊS
Universidade Federal do Paraná Departamento de Estatística MEDIÇÃO DA QUALIDADE DO VINHO BRANCO NORTE PORTUGUÊS CE225 - Modelos Lineares Generalizados Francielle Przibiciem de Mattos GRR20124686 Guilherme
Lista de Exercicios 3
Departamento de Física é Matemática. USP-RP. Prof. Rafael A. Rosales 3 de junho de 2009 Lista de Exercicios 3 ANOVA. Regressão Linear Simples Exercício 77. Três diferentes bancos possuem agências de mesmo
Análise de Carteiras usando o R - Parte 6
Análise de Carteiras usando o R - Parte 6 Bibliografia BKM, cap. 9 Claudio Lucinda FEA/USP Testando o CAPM Testando o CAPM Vamos nesta apresentação usar os dados dos fundos para repassar os testes do CAPM.
CE062c José Luiz Padilha da Silva e Cesar Augusto Taconeli 13 de setembro de 2018
CE062c José Luiz Padilha da Silva e Cesar Augusto Taconeli 13 de setembro de 2018 Examplo usando gamlssnp(): dados de cérebros de animais O tamanho do cérebro (brain) e peso corporal (body) foram registrados
Análise de Regressão Linear no Pacote R
Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Análise de Regressão Linear no Pacote R Gabriela Domingues do Amaral Vanessa Loureiro Silva Edna Afonso Reis
Estatística II Licenciatura em Gestão. Parte I
Estatística II Licenciatura em Gestão 1 o semestre 2015/2016 ER - 03/02/2016 09:00 Nome N o Espaço reservado a classificações A utilização do telemóvel, em qualquer circunstância, é motivo suficiente para
Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste
Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Erica Castilho Rodrigues 2 de Setembro de 2014 Erro Puro 3 Existem dois motivos pelos quais os pontos observados podem não cair na reta
BIOESTATÍSTICA. Análise de regressão
BIOESTATÍSTICA Análise de regressão Análise de correlação Existe uma associação estatística entre duas variáveis? As duas variáveis são independentes ( ou seja, qual o grau da variação das duas juntas)?
AULA 12 - Normalidade e Inferência em Regressão Múltipla - Parte 2
AULA 12 - Normalidade e Inferência em Regressão Múltipla - Parte 2 Susan Schommer Econometria I - IE/UFRJ Testes de hipóteses sobre combinação linear dos parâmetros Na aula passada testamos hipóteses sobre
FACULDADE DE ECONOMIA DO PORTO. Licenciatura em Economia E C O N O M E T R I A II
FACULDADE DE ECONOMIA DO PORTO Licenciatura em Economia E C O N O M E T R I A II (LEC310) NOTAS PRÉVIAS: Exame Final Época Normal 9 de Junho de 2006 1. A primeira parte da prova tem duração de 75 minutos
Quiz Econometria I versão 1
Obs: muitos itens foram retirados da ANPEC. Quiz Econometria I versão 1 V ou F? QUESTÃO 1 É dada a seguinte função de produção para determinada indústria: ln(y i )=β 0 + β 1 ln( L i )+β 2 ln( K i )+u i,
i j i i Y X X X i j i i i
Mario de Andrade Lira Junior lira.pro.br\wordpress lira.pro.br\wordpress Diferença Regressão - equação ligando duas ou mais variáveis Correlação medida do grau de ligação entre duas variáveis Usos Regressão
Regressão linear múltipla - Correlação parcial
Regressão linear múltipla - Correlação parcial trigo Matriz de correlações: trigo % matéria orgânica 40 103 32 1 58 192 45 28 50 300 39 5 72 420 46 11 61 510 34 14 69 630 38 2 63 820 32 12 % matéria orgânica
AULA 12 - Normalidade e Inferência em Regressão Múltipla - Parte 2
AULA 12 - Normalidade e Inferência em Regressão Múltipla - Parte 2 Susan Schommer Econometria I - IE/UFRJ Testes de hipóteses sobre combinação linear dos parâmetros Na aula passada testamos hipóteses sobre
LISTA 1. a) Ache o salário médio e o numero médio de anos de estudo da amostra. Qual é o desvio-padrão de educ?
LISTA 1 Curso: Economia 4ECO Disciplina: Econometria Período letivo: 2016/1 Professor: Hedibert Freitas Lopes - www.hedibert.org Monitora: Paloma Vaissman Uribe - [email protected] Questão 1 Utilizando
Análise de Regressão Linear Múltipla VII
Análse de Regressão Lnear Múltpla VII Aula 1 Hej et al., 4 Seções 3. e 3.4 Hpótese Lnear Geral Seja y = + 1 x 1 + x +... + k x k +, = 1,,..., n. um modelo de regressão lnear múltpla, que pode ser escrto
UNIVERSIDADE FEDERAL DO RIO GRANDE Instituto de Matemática, Estatística e Física Programa de Pós-Graduação em Modelagem Computacional
UNIVERSIDADE FEDERAL DO RIO GRANDE Instituto de Matemática, Estatística e Física Programa de Pós-Graduação em Modelagem Computacional MINICURSO DE CORRELAÇÃO, REGRESSÃO LINEAR SIMPLES E ANOVA Ministrantes:
Econometria Aplicada com uso do R
Econometria Aplicada com uso do R Alexandre Rodrigues Loures Universidade Federal da Paraíba Centro de Ciências Sociais Aplicadas Programa de Pós-Graduação em Economia 10 de maio de 2015 LOURES, A. R.
RESUMO DO CAPÍTULO 3 DO LIVRO DE WOOLDRIDGE ANÁLISE DE REGRESSÃO MÚLTIPLA: ESTIMAÇÃO
RESUMO DO CAPÍTULO 3 DO LIVRO DE WOOLDRIDGE ANÁLISE DE REGRESSÃO MÚLTIPLA: ESTIMAÇÃO Regressão simples: desvantagem de apenas uma variável independente explicando y mantendo ceteris paribus as demais (ou
INTRODUÇÃO A ECONOMETRIA
INTRODUÇÃO A ECONOMETRIA Análise de regressão e uso do Eviews Introdução O modelo de regressão linear se utiliza para estudar a relação que existe entre uma variável dependente e uma ou várias variáveis
AULA 8 - MQO em regressão múltipla:
AULA 8 - MQO em regressão múltipla: Definição, Estimação e Propriedades Algébricas Susan Schommer Econometria I - IE/UFRJ Regressão Múltipla: Definição e Derivação A partir de agora vamos alterar o nosso
AULAS 14 E 15 Modelo de regressão simples
1 AULAS 14 E 15 Modelo de regressão simples Ernesto F. L. Amaral 30 de abril e 02 de maio de 2013 Avaliação de Políticas Públicas (DCP 046) Fonte: Wooldridge, Jeffrey M. Introdução à econometria: uma abordagem
Módulo 16- Análise de Regressão
Módulo 6 Análise de Regressão Módulo 6- Análise de Regressão Situação Problema Um grupo de investidores estrangeiros deseja aumentar suas atividades no Brasil. Considerando a conjuntura econômica de moeda
Modelos de Regressão Múltipla - Parte VII
1 Modelos de Regressão Múltipla - Parte VII Erica Castilho Rodrigues 26 de Janeiro de 2016 2 3 Vimos como ajustar um modelo não linear fazendo transformações das variáveis, como, por exemplo Y = exp{β
5.3 Experimentos fatoriais a dois fatores (Revisando...)
5. Experimentos Fatoriais 5.3 Experimentos fatoriais a dois fatores (Revisando...) Modelo de Efeitos Y ijk = µ+τ i +β j +(τβ) ij +ɛ ijk, i = 1, 2,..., a j = 1, 2,..., b k = 1, 2,..., n Ambos os fatores
Nome: Turma: Processo
Instituto Superior de Economia e Gestão Universidade de Lisboa Licenciaturas em Economia e em Finanças Econometria Época de Recurso 01/02/2017 Duração: 2 horas Nome: Turma: Processo Espaço reservado para
Estatística Aplicada II. } Regressão Linear
Estatística Aplicada II } Regressão Linear 1 Aula de hoje } Tópicos } Regressão Linear } Referência } Barrow, M. Estatística para economia, contabilidade e administração. São Paulo: Ática, 007, Cap. 7
Modelos Lineares Generalizados
unificação metodológica Alexandre Adalardo de Oliveira PlanECO 2017 1 of 43 03/29/2017 11:47 AM Conceitos estrutura do erro preditora linear função de ligação 2 of 43 03/29/2017 11:47 AM Função de ligação
Segundo Trabalho de Econometria 2009
Segundo Trabalho de Econometria 2009 1.. Estimando o modelo por Mínimos Quadrados obtemos: Date: 06/03/09 Time: 14:35 Sample: 1995Q1 2008Q4 Included observations: 56 C 0.781089 0.799772 0.97664 0.3332
Econometria Lista 1 Regressão Linear Simples
Econometria Lista 1 Regressão Linear Simples Professores: Hedibert Lopes, Priscila Ribeiro e Sérgio Martins Monitores: Gustavo Amarante e João Marcos Nusdeo Exercício 1 (2.9 do Wooldridge 4ed - Modificado)
BIE5782 Uso da Linguagem R para Análise de Dados em Ecologia
BIE5782 Uso da Linguagem R para Análise de Dados em Ecologia Paulo Inácio Prado Rodrigo Santinelo Pereira Alexandre Adalardo de Oliveira Página: http://cmq.esalq.usp.br/wiki/doku.php?id=biometria:r-tutor:curso2008
Aula 2 Uma breve revisão sobre modelos lineares
Aula Uma breve revisão sobre modelos lineares Processo de ajuste de um modelo de regressão O ajuste de modelos de regressão tem como principais objetivos descrever relações entre variáveis, estimar e testar
MAE0325 - Séries Temporais
MAE0325 - Séries Temporais Fernando Henrique Ferraz Pereira da Rosa Vagner Aparecido Pedro Junior 26 de setembro de 2004 E7p80. Considere a série A (M-ICV): Lista 1 1 (a) teste a existência de tendência,
Monitoria Sessão 4. Verônica Santana FEA-USP 25/04/2017
Monitoria Sessão 4 Verônica Santana FEA-USP 25/04/2017 1 Endogeneidade Por enquanto, focaremos nossa análise no ano de 2014. Importando os dados, selecionando as variáveis apenas para 2014 e calculando
AULA 17 - Variáveis binárias
AULA 17 - Variáveis binárias Susan Schommer Econometria I - IE/UFRJ Variáveis binárias A variável binária (ou dummy) é um simples exemplo de variável aleatória, o qual é chamada de função indicadora de
1 AULA 3 - MODELO DE REGRESSÃO LINEAR
1 AULA 3 - MODELO DE REGRESSÃO LINEAR 1.1 Análise exploratória Fazer um modelo de regressão linear envolve modelar uma variável de desfecho contínua em função de uma ou mais variáveis explanatórias. Como
Exame de Recorrência de Métodos Estatísticos. Departamento de Matemática Universidade de Aveiro
Exame de Recorrência de Métodos Estatísticos Departamento de Matemática Universidade de Aveiro Data: 6/6/6 Duração: 3 horas Nome: N.º: Curso: Regime: Declaro que desisto Classificação: As cotações deste
AULAS 17 E 18 Análise de regressão múltipla: estimação
1 AULAS 17 E 18 Análise de regressão múltipla: estimação Ernesto F. L. Amaral 22 e 24 de outubro de 2013 Avaliação de Políticas Públicas (DCP 046) Fonte: Cohen, Ernesto, e Rolando Franco. 2000. Avaliação
AULA 05 Análise de regressão múltipla: inferência
1 AULA 05 Análise de regressão múltipla: inferência Ernesto F. L. Amaral 19 de julho de 2013 Análise de Regressão Linear (MQ 2013) www.ernestoamaral.com/mq13reg.html Fonte: Wooldridge, Jeffrey M. Introdução
Esse material foi extraído de Barbetta (2007 cap 13)
Esse material foi extraído de Barbetta (2007 cap 13) - Predizer valores de uma variável dependente (Y) em função de uma variável independente (X). - Conhecer o quanto variações de X podem afetar Y. Exemplos
Capítulo 7. Experimentos com dois ou três Fatores de Interesse. Gustavo Mello Reis José Ivo Ribeiro Júnior
Capítulo 7 Experimentos com dois ou três Fatores de Interesse Gustavo Mello Reis José Ivo Ribeiro Júnior Universidade Federal de Viçosa Departamento de Informática Setor de Estatística Viçosa 2007 Capítulo
INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO PORTO Ano lectivo 2009/20010 EXAME: DATA 24 / 02 / NOME DO ALUNO:
INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO PORTO Ano lectivo 2009/20010 Estudos de Mercado EXAME: DATA 24 / 02 / 20010 NOME DO ALUNO: Nº INFORMÁTICO: TURMA: PÁG. 1_ PROFESSOR: ÉPOCA: Grupo I (10
Monitoria Sessão 8. Verônica Santana FEA-USP 23/05/2017
Monitoria Sessão 8 Verônica Santana FEA-USP 23/05/2017 1 Modelos de Dados em Painel dados
ANÁLISE ECONOMÉTRICA DO CONSUMO DE CARNE BOVINA NA REGIÃO METROPOLITANA DE BELÉM UTILIZADO O SOFTWARE EVIEWS 3.0.
ANÁLISE ECONOMÉTRICA DO CONSUMO DE CARNE BOVINA NA REGIÃO METROPOLITANA DE BELÉM UTILIZADO O SOFTWARE EVIEWS 3.0. Arnold Estephane Castro de Souza Aron Weber da Silva Pinheiro Elizabeth Cristina Silva
Modelo de Regressão Múltipla
Modelo de Regressão Múltipla Modelo de Regressão Linear Simples Última aula: Y = α + βx + i i ε i Y é a variável resposta; X é a variável independente; ε representa o erro. 2 Modelo Clássico de Regressão
Estatística II Licenciatura em Gestão TESTE I
Estatística II Licenciatura em Gestão 1 o semestre 2015/2016 14/01/2016 09:00 Nome N o Espaço reservado a classificações A utilização do telemóvel, em qualquer circunstância, é motivo suficiente para a
EPGE / FGV MFEE - ECONOMETRIA Monitoria 03-09/05/2008 (GABARITO)
EPGE / FGV MFEE - ECONOMETRIA Monitoria 03-09/05/2008 (GABARITO) Eduardo P. Ribeiro [email protected] Professor Ilton G. Soares [email protected] Monitor 01. Use os dados em WAGE1 para estimar a seguinte
AULAS 14 E 15 Modelo de regressão simples
1 AULAS 14 E 15 Modelo de regressão simples Ernesto F. L. Amaral 18 e 23 de outubro de 2012 Avaliação de Políticas Públicas (DCP 046) Fonte: Wooldridge, Jeffrey M. Introdução à econometria: uma abordagem
ME613 - Análise de Regressão
ME613 - Análise de Regressão Parte 11 Critérios para Seleção de Modelos Samara F. Kiihl - IMECC - UNICAMP file:///users/imac/documents/github/me613-unicamp/me613-unicamp.github.io/aulas/slides/parte11/parte11.html#1
AULAS 21 E 22 Análise de Regressão Múltipla: Estimação
1 AULAS 21 E 22 Análise de Regressão Múltipla: Estimação Ernesto F. L. Amaral 28 de outubro e 04 de novembro de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Cohen, Ernesto, e Rolando Franco. 2000. Avaliação
Modelos ARCH e GARCH Aula 8. Morettin e Toloi, 2006, Capítulo 1 e 14 Morettin, 2011, Capítulo 1 e 5 Bueno, 2011, Capítulo 8
Modelos ARCH e GARCH Aula 8 Morettin e Toloi, 2006, Capítulo 1 e 14 Morettin, 2011, Capítulo 1 e 5 Bueno, 2011, Capítulo 8 Motivação Pesquisadores que se dedicam a prever séries temporais, tais como preços
Análise de Regressão Múltipla: Mínimos Quadrados Ordinários
1 Análise de Regressão Múltipla: Mínimos Quadrados Ordinários Ernesto F. L. Amaral Magna M. Inácio 26 de agosto de 2010 Tópicos Especiais em Teoria e Análise Política: Problema de Desenho e Análise Empírica
Gabarito da 1 a Lista de Exercícios de Econometria II
Gabarito da 1 a Lista de Exercícios de Econometria II Professor: Rogério Silva Mattos Monitor: Delano H. A. Cortez Questão 1 Considerando que o modelo verdadeiro inicialmente seja o seguinte: C = a + 2Y
Princípios em Planejamento e Análise de Dados Ecológicos. Regressão linear. Camila de Toledo Castanho
Princípios em Planejamento e Análise de Dados Ecológicos Regressão linear Camila de Toledo Castanho 217 Conteúdo da aula 1. Regressão linear simples: quando usar 2. A reta de regressão linear 3. Teste
AULA 03 Análise de regressão múltipla: estimação
1 AULA 03 Análise de regressão múltipla: estimação Ernesto F. L. Amaral 17 de julho de 2013 Análise de Regressão Linear (MQ 2013) www.ernestoamaral.com/mq13reg.html Fonte: Cohen, Ernesto, e Rolando Franco.
Correlação e Regressão
Correlação e Regressão Vamos começar com um exemplo: Temos abaixo uma amostra do tempo de serviço de 10 funcionários de uma companhia de seguros e o número de clientes que cada um possui. Será que existe
TÉCNICAS EXPERIMENTAIS APLICADAS EM CIÊNCIA DO SOLO
TÉCNICAS EXPERIMENTAIS APLICADAS EM CIÊNCIA DO SOLO Mario de Andrade Lira Junior lira.pro.br\wordpress REGRESSÃO X CORRELAÇÃO Diferença Regressão - equação ligando duas ou mais variáveis Correlação medida
Análise de Regressão Linear Múltipla. Wooldridge, 2011 Capítulo 3 tradução da 4ª ed.
Análise de Regressão Linear Múltipla Wooldridge, 2011 Capítulo 3 tradução da 4ª ed. Introdução Como pode ser visto anteriormente, o modelo de regressão linear simples, com uma variável explicativa (regressor),
CORRELAÇÃO E REGRESSÃO
CORRELAÇÃO E REGRESSÃO Permite avaliar se existe relação entre o comportamento de duas ou mais variáveis e em que medida se dá tal interação. Gráfico de Dispersão A relação entre duas variáveis pode ser
