Testes de cointegração
|
|
|
- Evelyn Barros Amaro
- 8 Há anos
- Visualizações:
Transcrição
1 Testes de cointegração Avaliando a existência de relação de conintegração entre séries temporais Wilson Freitas Quant Developer
2 Recursos index.rmd 2/13
3 Teste de Engle & Granger (EG)
4 Teste de Engle & Granger Objetivo: testar a existência de cointegração entre duas séries temporais I(1) ( y1,t e y2,t) Rodar a regressão (MQO) y 1,t = α + β y 2,t + ε1,t Realizar teste de raiz unitária (RU) para os resíduos εˆ1,t = y 1,t αˆ βˆy2,t sob o seguinte modelo εˆ1,t = ϕ εˆ1,t 1 + η t Onde as seguintes hipóteses devem ser testadas. H0 H1 : tem RU 7 não há cointegração εˆ1,t : não tem RU 7 há cointegração εˆ1,t O teste de raiz unitária sobre os resíduos deve ser realizado sem drift e sem tendência deterministica. ˆ Os resíduos ε1,t necessariamente terão média nula, exceto nos casos em que a amostra é pequena e possui um valor absolute alto. ε1,t ˆ 4/13
5 Teste de Engle & Granger (valores críticos) Os valores críticos do teste RU para os resíduos são diferentes dos utilizados no teste RU-ADF. Isso acontece porque os testes RU são realizados sobre uma série temporal observada e aqui o teste é realizado sobre uma série temporal estimada, obtida através do processo de estimação de e. αˆ βˆ Se tivessemos os valores reais de α e β poderiamos utilizá-los para obter os resíduos e assim executar o teste de raiz unitária sobre eles utilizando os mesmos valores críticos utilizados no teste ADF. Felizmente MacKinnon obteve estes valores críticos para os testes de cointegração (MacKinnon, J.G. (2010), "Critical Values for Cointegration Tests," Queen s Economics Department Working Paper No. 1227). 5/13
6 Teste de Engle & Granger (particularidades) Consideremos o processo gerador: z t z t 1 η t. = α + β + Quando o processo gerador da série temporal é sem drift, α = 0, a estatística do teste RU tem uma distribuição de Dickey-Fuller (DF). α 0 N(0,1) Quando a estatística do teste RU é, assintoticamente, e em amostras pequenas (finitas) esta distribuição talvez possa ser aproximada da distribuição de DF. No teste de EG a distribuição da estatística do teste de RU depende de α (do modelo y 1,t = α + β y 2,t + ε1,t α = 0 α 0 ), no entanto, as tabelas assumem e isso pode gerar erros quando. Uma forma de evitar a dependência em α na distribuição da estatística de teste é introduzir um termo de tendência deterministica na regressão y 1,t = α0t + α + β y 2,t + ε1,t Assim a distribuição da estatística torna-se invariante a α deterministica. embora seja diferente do caso sem a tendência Dessa maneira, temos 2 variantes para o teste de EG: com drift e com tendência deterministica. 6/13
7 Teste de Engle & Granger Curiosidades Qualquer variável pode ser escolhida como regressor, podemos escolher tanto y1,t quanto y2,t. No limite o teste pode ser realizado com ambas as variáveis, separadamente, para tornar a análise mais robusta. Este teste pode ser realizado ainda para avaliar a existência de cointegração em N simultâneamente. séries temporais Dúvidas Quando faz sentido utilizar a tendência deterministica? Engle & Yoo (1991) argumentam que existem boas razões para introduzir tendência deterministica. É importante notar que essa diferença na modelagem é referente a regressão na qual os resíduos são estimados e sob os quais o teste de RU é executado. 7/13
8 Gerando séries claramente cointegradas set.seed(12345) e1 <- rnorm(250, mean = 0, sd = 0.5) e2 <- rnorm(250, mean = 0, sd = 0.5) u.ar3 <- arima.sim(model = list(ar = c(0.6, -0.2, 0.1)), n = 250, innov = e1) y2 <- cumsum(e2) y1 <- u.ar * y2 8/13
9 Passo 1 Estimar regressão entre variáveis y1e y2. lr <- lm(y1 ~ y2) summary(lr) ## ## Call: ## lm(formula = y1 ~ y2) ## ## Residuals: ## Min 1Q Median 3Q Max ## ## ## Coefficients: ## Estimate Std. Error t value Pr(> t ) ## (Intercept) *** ## y < 2e-16 *** ## --- ## Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: on 248 degrees of freedom ## Multiple R-squared: 0.914, Adjusted R-squared: ## F-statistic: 2.64e+03 on 1 and 248 DF, p-value: <2e-16 9/13
10 Resíduos da regressão 10/13
11 Passo 2 Testar a existência de raiz unitária nos resíduos. library(urca) ur <- ur.df(y = residuals(lr), lags = 4, type = "none", selectlags = "BIC") ur@teststat ## tau1 ## statistic Valores críticos ## 1pct 5pct 10pct ## tau Não podemos aceitar a hipótese nula de existência de raiz unitária, portanto, não podemos rejeitar a hipótese de que as séries são cointegradas. 11/13
12 Resíduos do teste de raiz unitária 12/13
13 Testes de cointegração www github github.com/wilsonfreitas
Testes de raiz unitária
Testes de raiz unitária Avaliando estacionariedade em séries temporais financeiras Wilson Freitas Quant Developer Recursos index.rmd 2/20 Testes de Raiz Unitária Definição do teste de raiz unitária Existem
Teste F-parcial 1 / 16
Teste F-parcial Ingredientes A hipótese nula, H 0, define o modelo restrito. A hipótese alternativa, H a : H 0 é falsa, define o modelo irrestrito. SQR r : soma de quadrado dos resíduos associada à estimação
Teste F-parcial 1 / 16
Teste F-parcial A hipótese nula, H 0, define o modelo restrito. Ingredientes SQR r : soma de quadrado dos resíduos sob H 0. R 2 r: coeficiente de determinação sob H 0. g: número de restrições a serem testadas
Introdução Regressão linear Regressão de dados independentes Regressão não linear. Regressão. Susana Barbosa
Regressão Susana Barbosa Mestrado em Ciências Geofísicas 2012-2013 Regressão linear x : variável explanatória y : variável resposta Gráfico primeiro! Gráfico primeiro! Gráfico primeiro! Modelo linear x
Gabarito Trabalho 2. Variable Coefficient Std. Error t-statistic Prob.
Gabarito Trabalho 2 1. Estimando o modelo Date: 06/10/10 Time: 04:00 Sample: 2003M01 2008M01 Included observations: 70 C -2.046423 5.356816-0.382022 0.7038 LN_IPC_BR 2.041714 1.150204 1.775089 0.0811 LN_IPC_AR
Gabarito Lista 2 LES0773 Estatística III. Os resultados dessa regressão são apresentados na seguinte tabela:
Gabarito Lista 2 LES0773 Estatística III Exercício 1) Utilizando a ferramenta Análise de Dados e a sua função Regressão, foi realizada uma regressão levando em consideração os gastos com PD como variável
Segundo Trabalho de Econometria 2009
Segundo Trabalho de Econometria 2009 1.. Estimando o modelo por Mínimos Quadrados obtemos: Date: 06/03/09 Time: 14:35 Sample: 1995Q1 2008Q4 Included observations: 56 C 0.781089 0.799772 0.97664 0.3332
Análise de Carteiras usando o R - Parte 6
Análise de Carteiras usando o R - Parte 6 Bibliografia BKM, cap. 9 Claudio Lucinda FEA/USP Testando o CAPM Testando o CAPM Vamos nesta apresentação usar os dados dos fundos para repassar os testes do CAPM.
BIE5782. Unidade 7: INTRODUÇÃO AOS MODELOS LINEARES
BIE5782 Unidade 7: INTRODUÇÃO AOS MODELOS LINEARES ROTEIRO 1.Motivação 2. Método dos mínimos quadrados 3. Ajuste no R: função lm 4. Resultado no R: objeto lm 5. Premissas, interpretação e diagnóstico 6.
Tabela 1 - Teste de Dickey-Fuller para série log-preço futuro. Teste ADF 0, ,61% Tabela 2 - Teste de Dickey-Fuller para série log-preço à vista
32 5. Resultados 5.1. Séries Log-preço Para verificar se as séries logaritmo neperiano dos preços (log-preço) à vista e futuro e as séries logaritmo neperiano dos retornos (log-retorno) à vista e futuro
ME613 - Análise de Regressão
ME613 - Análise de Regressão Parte 2 Propriedades dos estimadores Samara F. Kiihl - IMECC - UNICAMP Suposições do modelo de regressão linear simples Suposições do modelo de regressão linear simples Até
CE062c José Luiz Padilha da Silva e Cesar Augusto Taconeli 13 de setembro de 2018
CE062c José Luiz Padilha da Silva e Cesar Augusto Taconeli 13 de setembro de 2018 Examplo usando gamlssnp(): dados de cérebros de animais O tamanho do cérebro (brain) e peso corporal (body) foram registrados
UNIVERSIDADE FEDERAL DA FRONTEIRA SUL Campus CERRO LARGO. PROJETO DE EXTENSÃO Software R: de dados utilizando um software livre.
UNIVERSIDADE FEDERAL DA FRONTEIRA SUL Campus CERRO LARGO PROJETO DE EXTENSÃO Software R: Capacitação em análise estatística de dados utilizando um software livre. Fonte: https://www.r-project.org/ Módulo
Capacitação em R e RStudio PROJETO DE EXTENSÃO. Software R: capacitação em análise estatística de dados utilizando um software livre.
UFFS Universidade Federal da Fronteira Sul Campus Cerro Largo PROJETO DE EXTENSÃO Software R: capacitação em análise estatística de dados utilizando um software livre Fonte: https://www.r-project.org/
b) Teste a hipótese de efeito significante do tamanho da população sobre a venda do produto, na presença de renda per capita
Exemplo 1 (continuação a Estime por intervalo de 95% de confiança, o aumento do número médio de lotes vendidos devido a 1000 pessoas a mais na população, mantendo a renda per capita fixa b Teste a hipótese
AULA 17 - Variáveis binárias
AULA 17 - Variáveis binárias Susan Schommer Econometria I - IE/UFRJ Variáveis binárias A variável binária (ou dummy) é um simples exemplo de variável aleatória, o qual é chamada de função indicadora de
Regressão linear múltipla
Regressão linear múltipla Universidade Estadual de Santa Cruz Ivan Bezerra Allaman Introdução A regressão múltipla é uma generalização da regressão simples, visto que, há mais de uma variável explicativa
FACULDADE DE ECONOMIA DO PORTO. Licenciatura em Economia E C O N O M E T R I A II
FACULDADE DE ECONOMIA DO PORTO Licenciatura em Economia E C O N O M E T R I A II (LEC310) NOTAS PRÉVIAS: Exame Final Época Normal 9 de Junho de 2006 1. A primeira parte da prova tem duração de 75 minutos
Econometria Aplicada com uso do R
Econometria Aplicada com uso do R Alexandre Rodrigues Loures Universidade Federal da Paraíba Centro de Ciências Sociais Aplicadas Programa de Pós-Graduação em Economia 10 de maio de 2015 LOURES, A. R.
BIE5782 Uso da Linguagem R para Análise de Dados em Ecologia
BIE5782 Uso da Linguagem R para Análise de Dados em Ecologia Paulo Inácio Prado Rodrigo Santinelo Pereira Alexandre Adalardo de Oliveira Página: http://cmq.esalq.usp.br/wiki/doku.php?id=biometria:r-tutor:curso2008
Séries Temporais e Modelos Dinâmicos. Econometria. Marcelo C. Medeiros. Aula 12
em Econometria Departamento de Economia Pontifícia Universidade Católica do Rio de Janeiro Aula 12 Regressão com Variáveis Não-Estacionárias Considere três processos estocásticos definidos pelas seguintes
7 Análise dos Dados e Cálculos
71 7 Análise dos Dados e Cálculos 7.1 Validade dos Processos Estocásticos 7.1.1 Teste de Dickey-Fuller De início, para verificar a rejeição de hipótese de que as séries seguem um MGB foi realizado um teste
MODELOS ECONOMÉTRICOS PARA DADOS DE ALTA- FREQUENCIA: TEORIA E APLICAÇÕES
MODELOS ECONOMÉTRICOS PARA DADOS DE ALTA- FREQUENCIA: TEORIA E APLICAÇÕES Aluno: Thiago Portugal Frotté Orientador: Marcelo Cunha Medeiros Introdução Atualmente a previsão de eventos econômicos está em
Nome: Turma: Processo
Instituto Superior de Economia e Gestão Universidade de Lisboa Licenciaturas em Economia e em Finanças Econometria Época de Recurso 01/02/2017 Duração: 2 horas Nome: Turma: Processo Espaço reservado para
1 AULA 3 - MODELO DE REGRESSÃO LINEAR
1 AULA 3 - MODELO DE REGRESSÃO LINEAR 1.1 Análise exploratória Fazer um modelo de regressão linear envolve modelar uma variável de desfecho contínua em função de uma ou mais variáveis explanatórias. Como
Econometria IV Modelos Lineares de Séries Temporais. Fernando Chague
Econometria IV Modelos Lineares de Séries Temporais Fernando Chague 2016 Estacionariedade Estacionariedade Inferência estatística em séries temporais requer alguma forma de estacionariedade dos dados Intuição:
Lista de Exercicios 3
Departamento de Física é Matemática. USP-RP. Prof. Rafael A. Rosales 3 de junho de 2009 Lista de Exercicios 3 ANOVA. Regressão Linear Simples Exercício 77. Três diferentes bancos possuem agências de mesmo
Estatística Aplicada II. } Regressão Linear
Estatística Aplicada II } Regressão Linear 1 Aula de hoje } Tópicos } Regressão Linear } Referência } Barrow, M. Estatística para economia, contabilidade e administração. São Paulo: Ática, 007, Cap. 7
Nome: Número: Espaço reservado para classificações
Instituto Superior de Economia e Gestão Universidade de Lisboa Licenciaturas em Economia e em Finanças Econometria - Época Normal - 07/01/2015 Duração 2 horas Nome: Número: Notas: A utilização do telemóvel
Séries Temporais e Modelos Dinâmicos. Econometria. Marcelo C. Medeiros. Aula 9
em Econometria Departamento de Economia Pontifícia Universidade Católica do Rio de Janeiro Aula 9 Data Mining Equação básica: Amostras finitas + muitos modelos = modelo equivocado. Lovell (1983, Review
Regressão linear múltipla - Correlação parcial
Regressão linear múltipla - Correlação parcial trigo Matriz de correlações: trigo % matéria orgânica 40 103 32 1 58 192 45 28 50 300 39 5 72 420 46 11 61 510 34 14 69 630 38 2 63 820 32 12 % matéria orgânica
Monitoria Sessão 8. Verônica Santana FEA-USP 23/05/2017
Monitoria Sessão 8 Verônica Santana FEA-USP 23/05/2017 1 Modelos de Dados em Painel dados
Monitoria Sessão 4. Verônica Santana FEA-USP 25/04/2017
Monitoria Sessão 4 Verônica Santana FEA-USP 25/04/2017 1 Endogeneidade Por enquanto, focaremos nossa análise no ano de 2014. Importando os dados, selecionando as variáveis apenas para 2014 e calculando
Variável dependente Variável independente Coeficiente de regressão Relação causa-efeito
Unidade IV - Regressão Regressões Lineares Modelo de Regressão Linear Simples Terminologia Variável dependente Variável independente Coeficiente de regressão Relação causa-efeito Regressão correlação Diferença
MEDIÇÃO DA QUALIDADE DO VINHO BRANCO NORTE PORTUGUÊS
Universidade Federal do Paraná Departamento de Estatística MEDIÇÃO DA QUALIDADE DO VINHO BRANCO NORTE PORTUGUÊS CE225 - Modelos Lineares Generalizados Francielle Przibiciem de Mattos GRR20124686 Guilherme
Nome: Turma: Processo
Instituto Superior de Economia e Gestão Universidade de Lisboa Econometria Época Normal 02/06/2016 Duração: 2 horas Nome: Turma: Processo Espaço reservado para classificações A utilização do telemóvel
Módulo 16- Análise de Regressão
Módulo 6 Análise de Regressão Módulo 6- Análise de Regressão Situação Problema Um grupo de investidores estrangeiros deseja aumentar suas atividades no Brasil. Considerando a conjuntura econômica de moeda
ÉLIA YATHIE MATSUMOTO (180720)
Trabalho apresentado como parte da avaliação da disciplina Econometria das Séries de Tempo, ministrada pelo Prof. Paulo Picchetti no 3 trimestre de 2007 para o curso MPFE-FGV. Uma abordagem econométrica
UNIVERSIDADE FEDERAL DO RIO GRANDE Instituto de Matemática, Estatística e Física Programa de Pós-Graduação em Modelagem Computacional
UNIVERSIDADE FEDERAL DO RIO GRANDE Instituto de Matemática, Estatística e Física Programa de Pós-Graduação em Modelagem Computacional MINICURSO DE CORRELAÇÃO, REGRESSÃO LINEAR SIMPLES E ANOVA Ministrantes:
Econometria Semestre
Econometria Semestre 2010.01 174 174 21.4. PROCESSOS ESTOCÁSTICOS INTEGRADOS O passeio aleatório é apenas um caso particular de uma classe de processos estocásticos conhecidos como processos integrados.
MODELOS DE REGRESSÃO E DECOMPOSIÇÃO PARA DESCREVER O CONSUMO RESIDENCIAL DE ENERGIA ELÉTRICA NO BRASIL ENTRE 1985 E 2013
MODELOS DE REGRESSÃO E DECOMPOSIÇÃO PARA DESCREVER O CONSUMO RESIDENCIAL DE ENERGIA ELÉTRICA NO BRASIL ENTRE 1985 E 2013 Maria José CharfuelanVillarreal Universidade Federal do ABC OBJETIVO Identificar
Capítulo 5. Modelos de Confiabilidade. Gustavo Mello Reis José Ivo Ribeiro Júnior
Capítulo 5 Modelos de Confiabilidade Gustavo Mello Reis José Ivo Ribeiro Júnior Universidade Federal de Viçosa Departamento de Informática Setor de Estatística Viçosa 007 Capítulo 5 Modelos de Confiabilidade
Análise da Regressão múltipla: Inferência. Aula 4 6 de maio de 2013
Análise da Regressão múltipla: Inferência Revisão da graduação Aula 4 6 de maio de 2013 Hipóteses do modelo linear clássico (MLC) Sabemos que, dadas as hipóteses de Gauss- Markov, MQO é BLUE. Para realizarmos
PREVISÃO DE PREÇO DO QUILO DO CAFÉ ARÁBICA: UMA APLICAÇÃO DOS MODELOS ARIMA E GARCH
VI Simpósio de Pesquisa dos Cafés do Brasil PREVISÃO DE PREÇO DO QUILO DO CAFÉ ARÁBICA: UMA APLICAÇÃO DOS MODELOS ARIMA E GARCH Alan Figueiredo de Arêdes 1 ; Matheus Wemerson Gomes Pereira ; Erly Cardo
INTRODUÇÃO A ECONOMETRIA
INTRODUÇÃO A ECONOMETRIA Análise de regressão e uso do Eviews Introdução O modelo de regressão linear se utiliza para estudar a relação que existe entre uma variável dependente e uma ou várias variáveis
Estatística II Licenciatura em Gestão. Parte I
Estatística II Licenciatura em Gestão 1 o semestre 2015/2016 ER - 03/02/2016 09:00 Nome N o Espaço reservado a classificações A utilização do telemóvel, em qualquer circunstância, é motivo suficiente para
FACULDADE DE ECONOMIA DO PORTO. Curso de Mestrado em Economia MÉTODOS ECONOMÉTRICOS (EC706)
FACULDADE DE ECONOMIA DO PORTO Curso de Mestrado em Economia MÉTODOS ECONOMÉTRICOS (EC706) Exame Final 10 de Janeiro de 2005 NOTAS PRÉVIAS: 1. A prova tem três horas de duração. 2. Apenas é permitida a
Correlação e Regressão
Correlação e Regressão Vamos começar com um exemplo: Temos abaixo uma amostra do tempo de serviço de 10 funcionários de uma companhia de seguros e o número de clientes que cada um possui. Será que existe
Modelos Lineares Generalizados
unificação metodológica Alexandre Adalardo de Oliveira PlanECO 2017 1 of 43 03/29/2017 11:47 AM Conceitos estrutura do erro preditora linear função de ligação 2 of 43 03/29/2017 11:47 AM Função de ligação
UM INVESTIGAÇÃO SOBRE A IMPORTÂNCIA DOS CONTRATOS FUTUROS NA FORMAÇÃO DE PREÇOS À VISTA DO PETRÓLEO BRUTO
UM INVESTIGAÇÃO SOBRE A IMPORTÂNCIA DOS CONTRATOS FUTUROS NA FORMAÇÃO DE PREÇOS À VISTA DO PETRÓLEO BRUTO Erick Meira de Oliveira Pontifícia Universidade Católica do Rio de Janeiro [email protected]
MRLM COM COVARIÁVEIS CATEGÓRICAS. criar uma variável dummy para representar uma categoria da variável. variável dummy: assume só dois valores: 0 ou 1
MRLM COM COVARIÁVEIS CATEGÓRICAS Como quantificar o efeito das categorias de uma variável sobre a resposta Y? (exemplo: efeito de sexo masculino/feminino sobre salário) criar uma variável dummy para representar
Testes de Raiz Unitária para Dados em Painel
Aula 7 Bibliografia: Stata, 2017. help xtunitroot. From Stata/SE 13 (accessed on Oct. 23, 2018). Pesaran, M.H. (2015). Time series and panel data econometrics. Oxford: Oxford University Press. Rafael S.
UNIVERSIDADE FEDERAL DE JUIZ DE FORA FACULDADE DE ECONOMIA ÍNDICE IBOVESPA: UMA ANÁLISE ECONOMÉTRICA. Leonardo Maia Coelho. Lucas Cavalcanti Rodrigues
UNIVERSIDADE FEDERAL DE JUIZ DE FORA FACULDADE DE ECONOMIA ÍNDICE IBOVESPA: UMA ANÁLISE ECONOMÉTRICA Leonardo Maia Coelho Lucas Cavalcanti Rodrigues Marina Oliveira Belarmino de Almeida Priscila Medeiros
Capítulo 3. O Modelo de Regressão Linear Simples: Especificação e Estimação
Capítulo 3 O Modelo de Regressão Linear Simples: Especificação e Estimação Introdução Teoria Econômica Microeconomia: Estudamos modelos de oferta e demanda (quantidades demandadas e oferecidas dependem
AMOSTRAGEM COMPLEXA. Bases de Dados IAN-AF Tutorial para análise ponderada recorrendo aos softwares SPSS e R
AMOSTRAGEM COMPLEXA Bases de Dados IAN-AF Tutorial para análise ponderada recorrendo aos softwares SPSS e R 1 Conteúdo Nota introdutória... 3 1. Software SPSS... 4 2. Software R... 16 Referências [1] R
Licenciaturas em Economia e em Finanças Econometria ER 26/06/2015 Duração 2 horas
Licenciaturas em Economia e em Finanças Econometria ER 26/06/2015 Duração 2 horas Nome: Número: Notas: A utilização do telemóvel é motivo suficiente para anulação da prova. As perguntas de escolha múltipla
Modelo Linear Generalizado Distribuição de Poisson
Valeska Andreozzi 1 Modelo Linear Generalizado Distribuição de Poisson Problema 1 O objetivo desta aula é exemplificar a modelagem de dados de contagem. Vamos ilustrar como os modelos lineares generalizados
5.3 Experimentos fatoriais a dois fatores (Revisando...)
5. Experimentos Fatoriais 5.3 Experimentos fatoriais a dois fatores (Revisando...) Modelo de Efeitos Y ijk = µ+τ i +β j +(τβ) ij +ɛ ijk, i = 1, 2,..., a j = 1, 2,..., b k = 1, 2,..., n Ambos os fatores
Análise de Regressão Linear no Pacote R
Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Análise de Regressão Linear no Pacote R Gabriela Domingues do Amaral Vanessa Loureiro Silva Edna Afonso Reis
ME613 - Análise de Regressão
ME613 - Análise de Regressão Parte 11 Critérios para Seleção de Modelos Samara F. Kiihl - IMECC - UNICAMP file:///users/imac/documents/github/me613-unicamp/me613-unicamp.github.io/aulas/slides/parte11/parte11.html#1
