Nome: Turma: Processo
|
|
|
- Mirela Gabeira Cabreira
- 7 Há anos
- Visualizações:
Transcrição
1 Instituto Superior de Economia e Gestão Universidade de Lisboa Licenciaturas em Economia e em Finanças Econometria Época de Recurso 01/02/2017 Duração: 2 horas Nome: Turma: Processo Espaço reservado para classificações A utilização do telemóvel é motivo suficiente para anulação da prova. As perguntas de escolha múltipla valem 1 valor; respostas erradas são penalizadas em 0.25 valores. Pode usar a página 8 para continuar qualquer questão. Formalize devidamente todas as respostas. 1. Suponha que se pretende explicar o salário (sal) dos trabalhadores das empresas onde se incluem micro empresas (ME), pequenas e médias empresas (PME) e grandes empresas (GE). A base de dados de EViews contém 526 observações das variáveis sal, das três variáveis artificiais ME, PME, e GE, da variável mulher que assume o valor um se o trabalhador é do sexo feminino e das variáveis educ e ant que representam o número de anos de escolaridade e a antiguidade do trabalhador, respectivamente. a) [1.5] Foram especificados os seguintes modelos: log(sal) = α 0 + α 1 educ + α 2 ant + v (1) log(sal) = β 0 + β 1 mulher + β 2 educ + β 3 ant + β 4 ME educ + β 5 PME educ + u (2) Explique detalhadamente os efeitos que se pretendem captar com a especificação do modelo (2). 1
2 b) [2.0] Admita que se pretende testar se existem diferenças na equação salarial para homens e mulheres. Com esse objectivo, estimou-se o modelo (3), log(sal) = β 0 + β 1 mulher + β 2 educ + β 3 ant + u (3) Indique a equação que também necessita estimar para realizar esse teste (equação 4) e, com base no resultado obtido com o EViews abaixo apresentado, formalize o teste e retire a conclusão adequada. Wald Test: Equation: EQ04 Test Statistic Value df Probability F-statistic (2, 520) Null Hypothesis: C(5)=C(6)=0 2. Num estudo sobre os determinantes do consumo de produtos verdes (electrodomésticos de baixo consumo, energias alternativas, alimentos biológicos, ) foram estimados os dois modelos abaixo apresentados onde as variáveis têm o seguinte significado: conbio variável dummy com o valor 1 se a família consome produtos verdes ; rend rendimento médio da família; educ número de anos de escolaridade do chefe de família; filhos variável dummy com o valor 1 se a família tem filhos. 2
3 Modelo 1 Dependent Variable: CONBIO Method: ML - Binary Probit (Quadratic hill climbing) Included observations: 660 Variable Coefficient Std. Error z-statistic Prob. C REND EDUC FILHOS McFadden R-squared Mean dependent var S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood LR statistic Restr. log likelihood Prob(LR statistic) Avg. log likelihood Modelo 2 Dependent Variable: CONBIO Method: ML - Binary Probit (Quadratic hill climbing) Included observations: 660 Variable Coefficient Std. Error z-statistic Prob. C EDUC FILHOS McFadden R-squared Mean dependent var S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood LR statistic Restr. log likelihood Prob(LR statistic) Avg. log likelihood a) [2.0] Teste a significância individual do coeficiente da variável rendimento. 3
4 b) [1.5] Prove que o efeito parcial médio da variável rendimento e o coeficiente do rendimento no modelo 1 têm o mesmo sinal. c) Após a estimação do modelo 2 foram escritas as seguintes instruções de EViews: scalar X=@cnorm(c(1)+c(2)*14+c(3)) scalar Y=@cnorm(c(1)+c(2)*14) scalar Z=X-Y tendo-se obtido Z = Então, relativamente ao efeito parcial médio (EPM) da variável filho, pode concluir-se que: EPM = 0.052/660. EPM = Para obter o EPM de filhos, a última instrução deveria ser: scalar Z=@mean(X-Y). Nenhuma das respostas anteriores é correcta. 3. [2.0] Sejam y t e x t séries estacionárias em tendência. Dispondo de observações trimestrais, pretende-se estimar um modelo de elasticidade constante. Esse modelo deverá permitir uma comparação fácil da evolução de y t no terceiro trimestre relativamente ao quarto e evitar resultados espúrios. Especifique esse modelo, definindo as variáveis que necessitar empregar, e indicando a hipótese nula do teste referido. 4
5 4. Pretende-se testar a presença de autocorrelação de primeira ordem nos erros u t do modelo y t = β 0 + β 1 x t + β 2 x t 1 + β 3 y t 1 + u t, t = 1, 2,, 42, onde y t e x t são séries estacionárias sem tendência. a) [1.5] Indique a regressão auxiliar que necessita estimar para realizar o teste e complete as instruções de Eviews que permitem estimar essa regressão: Quick / Estimate equation / y c x x(-1) y(-1) Proc / Make residual series / RES b) Admita que a estimação da regressão auxiliar utilizando as últimas 41 observações forneceu os seguintes resultados: R 2 = 0.249, F statistic = 2.977, SSR = Então c) encontram-se provas estatísticas da sua presença ao nível de 5%. d) a informação fornecida relativamente à regressão auxiliar não permite realizar o teste. e) não se encontram provas estatísticas da sua presença ao nível de 5%. f) a omissão do termo de tendência no modelo inicial torna a inferência inválida. 5. Seja o modelo y t = β 0 + β 1 x t + β 2 x t 1 + β 3 x t 2 + u t, onde E[u t y t 1, y t 2, x t, x t 1, x t 2, ] = 0. Então pode concluir-se que o mais provável é que u t = ρu t 1 + e t, com ρ 0. E[y t y t 1, y t 2, x t, x t 1, x t 2, ] = β 0 + β 1 x t + β 2 x t 1 + β 3 x t 2. os regressores são estritamente exógenos. o modelo FDL(3) é preferível ao modelo FDL(2). 6. Admita que, com base no modelo da questão 5, pretende-se testar se o multiplicador de longo prazo é igual ao multiplicador de curto prazo (ou de impacto). Então a hipótese nula do teste é: H 0 : β 1 + β 2 + β 3 = 0. H 0 : β 0 = β 1 + β 2 + β 3. H 0 : β 1 = β 2 + β 3. H 0 : β 2 + β 3 = 0. 5
6 7. Admita que, com observações trimestrais, foi estimado o seguinte modelo: lsub t = t T2 t 0.036T3 t 0.034T4 t + u t, onde lsub t representa o logaritmo dos pedidos de subsídio de desemprego nos EUA, t é o termo de tendência e Tj t, j = 2,3,4 são as dummies sazonais. Então, depois de removida a sazonalidade, N estima-se que os pedidos de subsídio de desemprego diminuem, em média, aproximadamente 1.4% por trimestre em torno da tendência. estima-se que os pedidos de subsídio de desemprego diminuem, em média, aproximadamente 1.4% por trimestre durante o período em análise. e depois de removida a tendência, estima-se que, em média, os pedidos de subsídio de desemprego diminuem aproximadamente 1.4% por trimestre. estima-se que, em média, os pedidos de subsídio de desemprego diminuem, aproximadamente 0.014% no quarto trimestre. 8. Suponha que (y t, x t )~CI(1,1) e que y t = βx t + u t é a regressão de cointegração. Então é FALSO que: a inferência habitual sobre o parâmetro de cointegração, com base no estimador OLS, seja, em geral, válida. o estimador OLS de β seja consistente. y t βx t seja um processo estacionário e fracamente dependente. o melhor modelo dinâmico seja um modelo de correcção de erros. 9. [2.0] Para analisar as propriedades univariadas da série da taxa de desemprego (y) de um país europeu, foram estimadas as equações abaixo apresentadas, com base em dados anuais, onde DY = Y t Y t 1 e T + 1. Dependent Variable: DY Variable Coefficient Std. Error t-statistic Prob. C T Y(-1) DY(-1) Dependent Variable: DY Variable Coefficient Std. Error t-statistic Prob. C T Y(-1) Dependent Variable: DY Variable Coefficient Std. Error t-statistic Prob. C Y(-1) DY(-1)
7 Dependent Variable: DY Variable Coefficient Std. Error t-statistic Prob. C Y(-1) Indique o objectivo das estimações apresentadas e justificando devidamente as suas opções, retire a conclusão apropriada. (Nota: formalize os testes de hipóteses que realizar). 7
8 10. [1.5] Considere o processo y t = ρy t 1 + e t, onde ρ < 1 e e t são variáveis aleatórias independentes e identicamente distribuídas. Admitindo que o valor inicial de y t é y 0 e que y 0 e e t estão correlacionados, mostre que y t 1 não é um regressor contemporaneamente exógeno. Continuação da questão 8
Nome: Turma: Processo
Instituto Superior de Economia e Gestão Universidade de Lisboa Econometria Época Normal 02/06/2016 Duração: 2 horas Nome: Turma: Processo Espaço reservado para classificações A utilização do telemóvel
Licenciaturas em Economia e em Finanças Econometria ER 26/06/2015 Duração 2 horas
Licenciaturas em Economia e em Finanças Econometria ER 26/06/2015 Duração 2 horas Nome: Número: Notas: A utilização do telemóvel é motivo suficiente para anulação da prova. As perguntas de escolha múltipla
Nome: Número: Espaço reservado para classificações
Instituto Superior de Economia e Gestão Universidade de Lisboa Licenciaturas em Economia e em Finanças Econometria - Época Normal - 07/01/2015 Duração 2 horas Nome: Número: Notas: A utilização do telemóvel
FACULDADE DE ECONOMIA DO PORTO. Licenciatura em Economia E C O N O M E T R I A II
FACULDADE DE ECONOMIA DO PORTO Licenciatura em Economia E C O N O M E T R I A II (LEC310) NOTAS PRÉVIAS: Exame Final Época Normal 9 de Junho de 2006 1. A primeira parte da prova tem duração de 75 minutos
Instituto Superior de Economia e Gestão Universidade de Lisboa Econometria Época Normal 08/06/2017 Duração 2 horas
1 NOME: Instituto Superior de Economia e Gestão Universidade de Lisboa Econometria Época Normal 08/06/2017 Duração 2 horas Espaço Reservado para Classificações A utilização de qualquer meio de telecomunicação
FACULDADE DE ECONOMIA DO PORTO. Licenciatura em Economia E C O N O M E T R I A II
FACULDADE DE ECONOMIA DO PORTO Licenciatura em Economia E C O N O M E T R I A II (LEC310) NOTAS PRÉVIAS: Exame Final 08 de Junho de 2005 1. A I Parte da prova tem duração de 90 minutos e é constituída
ECONOMETRIA EXERCÍCIOS DO CAPÍTULO 2
ECONOMETRIA EXERCÍCIOS DO CAPÍTULO 2 1. Exercício 7C.8 de W (6th edition), apenas as alíneas i) a iv). 2. Exercício 7.7 de W. 3. Exercício 8C.7 de W, apenas a alínea i). 4. Exercício 17.1 de W. 5. Exercício
Instituto Superior de Economia e Gestão Universidade Técnica de Lisboa Econometria Época de Recurso 2/Julho/2013 Duração 2 horas
Instituto Superior de Economia e Gestão Universidade Técnica de Lisboa Econometria Época de Recurso 2/Julho/2013 Duração 2 horas NOME: Processo Espaço Reservado para Classificações A utilização do telemóvel
Instituto Superior de Economia e Gestão Universidade Técnica de Lisboa Econometria Época Normal 9/01/2013 Duração 2 horas
Instituto Superior de Economia e Gestão Universidade Técnica de Lisboa Econometria Época Normal 9/01/2013 Duração 2 horas NOME: Turma: Processo Espaço Reservado para Classificações A utilização do telemóvel
FACULDADE DE ECONOMIA DO PORTO. Curso de Mestrado em Economia MÉTODOS ECONOMÉTRICOS (ECON703)
FACULDADE DE ECONOMIA DO PORTO Curso de Mestrado em Economia MÉTODOS ECONOMÉTRICOS (ECON703) Exame Final 9 de Janeiro de 2006 NOTAS PRÉVIAS: 1. A prova tem três horas de duração. 2. Apenas é permitida
FACULDADE DE ECONOMIA DO PORTO. Curso de Mestrado em Economia MÉTODOS ECONOMÉTRICOS (EC706)
FACULDADE DE ECONOMIA DO PORTO Curso de Mestrado em Economia MÉTODOS ECONOMÉTRICOS (EC706) Exame Final 10 de Janeiro de 2005 NOTAS PRÉVIAS: 1. A prova tem três horas de duração. 2. Apenas é permitida a
ECONOMETRIA I. I (11 valores)
Faculdade de Economia Universidade Nova de Lisboa ECONOMETRIA I Exame de 1ª Época 14 de Janeiro de 2005 Duração: 2 horas I (11 valores) Com base numa amostra aleatória de 88 alunos que fizeram o exame
ECONOMETRIA I. I (12 valores)
Faculdade de Economia Universidade Nova de Lisboa ECONOMETRIA I Exame de 2ª Época 26 de Janeiro de 2005 Duração: 2 horas I (12 valores) ATENÇÃO: Para as 10 primeiras questões deste grupo existem 4 opções
Exercícios de Econometria ISEG Universidade de Lisboa
ISEG Universidade de Lisboa Artur Silva Lopes 1 Capítulo 1 Variáveis Explicativas Binárias ( Dummy ) Exercícios prioritários: 1, 5, 7, 9, 10, 12 e 14. 1. Exercício 7.1 do livro de Wooldridge, 6 a edição
ECONOMETRIA EXERCÍCIOS DO CAPÍTULO 2
ECONOMETRIA EXERCÍCIOS DO CAPÍTULO 2 1. Exercício C7.8 de W (4th edition), apenas as alíneas i) a iv). 2. Exercício 7.7 de W. 3. Exercício C8.7 de W, com excepção da questão sobre WLS em ii). 4. Exercício
Segundo Trabalho de Econometria 2009
Segundo Trabalho de Econometria 2009 1.. Estimando o modelo por Mínimos Quadrados obtemos: Date: 06/03/09 Time: 14:35 Sample: 1995Q1 2008Q4 Included observations: 56 C 0.781089 0.799772 0.97664 0.3332
ECONOMETRIA EXERCÍCIOS DO CAPÍTULO 6
ECONOMETRIA EXERCÍCIOS DO CAPÍTULO 6 1. Exercício C18.13 i) a iv) de W. 2. Exercício C18.2 de W. 3. (Exercício 9 do exame de ER de 25/6/2010.) Com dados anuais de 1952 a 2009, pretendese analisar as propriedades
FACULDADE DE ECONOMIA DO PORTO. Licenciatura em Economia E C O N O M E T R I A II
FACULDADE DE ECONOMIA DO PORTO Licenciatura em Economia E C O N O M E T R I A II (LEC310) NOTAS PRÉVIAS: Exame Final Época de Recurso 01 de Outubro de 2007 1. A I Parte da prova tem duração de 90 minutos
ESTIMAÇÃO PELO MÉTODO ORDINÁRIO DE MÍNIMOS QUADRADOS (OLS)
ESTIMAÇÃO PELO MÉTODO ORDINÁRIO DE MÍNIMOS QUADRADOS (OLS) 1 No quadro abaixo, reproduzem-se os resultados de uma estimação realizada com o programa informático EViews. Alguma da informação fornecida pelo
Instituto Superior de Economia e Gestão Universidade Técnica de Lisboa Econometria Época Normal 17/06/2013 Duração: 2 horas. Nome Turma: Processo:
Insiuo Superior de Economia e Gesão Universidade Técnica de Lisboa Economeria Época Normal 7/6/3 Duração: horas Nome Turma: Processo: Espaço reservado para classificações Noas: a uilização do elemóvel
Gabarito Trabalho 2. Variable Coefficient Std. Error t-statistic Prob.
Gabarito Trabalho 2 1. Estimando o modelo Date: 06/10/10 Time: 04:00 Sample: 2003M01 2008M01 Included observations: 70 C -2.046423 5.356816-0.382022 0.7038 LN_IPC_BR 2.041714 1.150204 1.775089 0.0811 LN_IPC_AR
INTRODUÇÃO A ECONOMETRIA
INTRODUÇÃO A ECONOMETRIA Análise de regressão e uso do Eviews Introdução O modelo de regressão linear se utiliza para estudar a relação que existe entre uma variável dependente e uma ou várias variáveis
Estatística II Licenciatura em Gestão TESTE I
Estatística II Licenciatura em Gestão 1 o semestre 2015/2016 14/01/2016 09:00 Nome N o Espaço reservado a classificações A utilização do telemóvel, em qualquer circunstância, é motivo suficiente para a
Capítulo 3. O Modelo de Regressão Linear Simples: Especificação e Estimação
Capítulo 3 O Modelo de Regressão Linear Simples: Especificação e Estimação Introdução Teoria Econômica Microeconomia: Estudamos modelos de oferta e demanda (quantidades demandadas e oferecidas dependem
ANÁLISE ECONOMÉTRICA DO CONSUMO DE CARNE BOVINA NA REGIÃO METROPOLITANA DE BELÉM UTILIZADO O SOFTWARE EVIEWS 3.0.
ANÁLISE ECONOMÉTRICA DO CONSUMO DE CARNE BOVINA NA REGIÃO METROPOLITANA DE BELÉM UTILIZADO O SOFTWARE EVIEWS 3.0. Arnold Estephane Castro de Souza Aron Weber da Silva Pinheiro Elizabeth Cristina Silva
Estatística II Licenciatura em Gestão. Parte I
Estatística II Licenciatura em Gestão 1 o semestre 2015/2016 ER - 03/02/2016 09:00 Nome N o Espaço reservado a classificações A utilização do telemóvel, em qualquer circunstância, é motivo suficiente para
Tabela 1 - Teste de Dickey-Fuller para série log-preço futuro. Teste ADF 0, ,61% Tabela 2 - Teste de Dickey-Fuller para série log-preço à vista
32 5. Resultados 5.1. Séries Log-preço Para verificar se as séries logaritmo neperiano dos preços (log-preço) à vista e futuro e as séries logaritmo neperiano dos retornos (log-retorno) à vista e futuro
AULA 17 - Variáveis binárias
AULA 17 - Variáveis binárias Susan Schommer Econometria I - IE/UFRJ Variáveis binárias A variável binária (ou dummy) é um simples exemplo de variável aleatória, o qual é chamada de função indicadora de
INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO Estatística II - Licenciatura em Gestão Época de Recurso - Parte prática (14 valores) 24/01/2011.
INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO Estatística II - Licenciatura em Gestão Época de Recurso - Parte prática (14 valores) 24/01/2011 Nome: Nº Espaço reservado para a classificação (não escrever aqui)
Séries Temporais e Modelos Dinâmicos. Econometria. Marcelo C. Medeiros. Aula 9
em Econometria Departamento de Economia Pontifícia Universidade Católica do Rio de Janeiro Aula 9 Data Mining Equação básica: Amostras finitas + muitos modelos = modelo equivocado. Lovell (1983, Review
SÉRIE CADERNOS ECONÔMICOS
1 UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE ECONOMIA CURSO DE CIÊNCIAS ECONÔMICAS SÉRIE CADERNOS ECONÔMICOS GUIA RÁPIDO PARA O EVIEWS Texto didático n.1 Autores: André Carraro Gabrielito Menezes
Econometria - Lista 5
Econometria - Lista 5 Professores: Hedibert Lopes, Priscila Ribeiro e Sérgio Martins Monitores: Gustavo Amarante e João Marcos Nusdeo Exercício 1 Utilizando a base de dados disponível em TEMCOPROD.wtf1,
7 Análise dos Dados e Cálculos
71 7 Análise dos Dados e Cálculos 7.1 Validade dos Processos Estocásticos 7.1.1 Teste de Dickey-Fuller De início, para verificar a rejeição de hipótese de que as séries seguem um MGB foi realizado um teste
INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO PORTO Ano lectivo 2009/20010 EXAME: DATA 24 / 02 / NOME DO ALUNO:
INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO PORTO Ano lectivo 2009/20010 Estudos de Mercado EXAME: DATA 24 / 02 / 20010 NOME DO ALUNO: Nº INFORMÁTICO: TURMA: PÁG. 1_ PROFESSOR: ÉPOCA: Grupo I (10
Paulo Jorge Silveira Ferreira. Princípios de Econometria
Paulo Jorge Silveira Ferreira Princípios de Econometria FICHA TÉCNICA TÍTULO: Princípios de Econometria AUTOR: Paulo Ferreira ISBN: 978-84-9916-654-4 DEPÓSITO LEGAL: M-15833-2010 IDIOMA: Português EDITOR:
Teste F-parcial 1 / 16
Teste F-parcial Ingredientes A hipótese nula, H 0, define o modelo restrito. A hipótese alternativa, H a : H 0 é falsa, define o modelo irrestrito. SQR r : soma de quadrado dos resíduos associada à estimação
Teste F-parcial 1 / 16
Teste F-parcial A hipótese nula, H 0, define o modelo restrito. Ingredientes SQR r : soma de quadrado dos resíduos sob H 0. R 2 r: coeficiente de determinação sob H 0. g: número de restrições a serem testadas
Quiz Econometria I versão 1
Obs: muitos itens foram retirados da ANPEC. Quiz Econometria I versão 1 V ou F? QUESTÃO 1 É dada a seguinte função de produção para determinada indústria: ln(y i )=β 0 + β 1 ln( L i )+β 2 ln( K i )+u i,
O IBOVESPA E O CÂMBIO NOS DEZ ANOS DE TAXA
O IBOVESPA E O CÂMBIO NOS DEZ ANOS DE TAXA FLUTUANTE JOSÉ WELISSON ROSSI* O objetivo principal deste estudo é comparar o comportamento das séries dos ativos taxa de câmbio e valor das ações das empresas
ÉLIA YATHIE MATSUMOTO (180720)
Trabalho apresentado como parte da avaliação da disciplina Econometria das Séries de Tempo, ministrada pelo Prof. Paulo Picchetti no 3 trimestre de 2007 para o curso MPFE-FGV. Uma abordagem econométrica
Gabarito Lista 2 LES0773 Estatística III. Os resultados dessa regressão são apresentados na seguinte tabela:
Gabarito Lista 2 LES0773 Estatística III Exercício 1) Utilizando a ferramenta Análise de Dados e a sua função Regressão, foi realizada uma regressão levando em consideração os gastos com PD como variável
Análise Multivariada Aplicada à Contabilidade
Mestrado e Doutorado em Controladoria e Contabilidade Análise Multivariada Aplicada à Contabilidade Prof. Dr. Marcelo Botelho da Costa Moraes www.marcelobotelho.com [email protected] Turma: 2º / 2016 1 Agenda
ANÁLISE ECONOMÉTRICA DA DEMANDA DE CARNE DE FRANGO A PARTIR DO EVIEWS 3.0
ANÁLISE ECONOMÉTRICA DA DEMANDA DE CARNE DE FRANGO A PARTIR DO EVIEWS 3.0 Azael de Souza Ribeiro Daniel Meireles de Amorim Flávio Sabathé Vera Niels Kim da Silva Tahara Heriberto Wagner Amanajás Pena UEPA
Econometria Lista 1 Regressão Linear Simples
Econometria Lista 1 Regressão Linear Simples Professores: Hedibert Lopes, Priscila Ribeiro e Sérgio Martins Monitores: Gustavo Amarante e João Marcos Nusdeo Exercício 1 (2.9 do Wooldridge 4ed - Modificado)
Estimação de Variáveis Instrumentais e Mínimos Quadrados de Dois Estágios. Wooldridge, Cápítulo 15
Estimação de Variáveis Instrumentais e Mínimos Quadrados de Dois Estágios Wooldridge, Cápítulo 5 Variáveis Instrumentais () 2 Variáveis Instrumentais Considere o seguinte modelo de regressão linear múltipla
Econometria. Regressão Linear Simples Lista de Exercícios
Econometria Regressão Linear Simples Lista de Exercícios 1. Formas funcionais e coeficiente de explicação Um corretor de imóveis quer compreender a relação existente entre o preço de um imóvel e o tamanho,
AULAS 14 E 15 Modelo de regressão simples
1 AULAS 14 E 15 Modelo de regressão simples Ernesto F. L. Amaral 30 de abril e 02 de maio de 2013 Avaliação de Políticas Públicas (DCP 046) Fonte: Wooldridge, Jeffrey M. Introdução à econometria: uma abordagem
Módulo 16- Análise de Regressão
Módulo 6 Análise de Regressão Módulo 6- Análise de Regressão Situação Problema Um grupo de investidores estrangeiros deseja aumentar suas atividades no Brasil. Considerando a conjuntura econômica de moeda
Regressão múltipla: problemas adicionais. Unidades de medida. Unidades de medida. Unidades de medida salário em dólares (*1000) Unidades de medida
Regressão múltipla: problemas adicionais y = β 0 + β x + β x +... β k x k + u Capítulo 6: 6., 6. Capítulo 7: 7., 7. Efeitos da dimensão dos dados nas estatísticas MQO Alterando a escala de y levará a uma
Econometria. Econometria ( ) O modelo de regressão linear múltipla. O modelo de regressão linear múltipla. Aula 2-26/8/2010
Aula - 6/8/010 Econometria Econometria 1. Hipóteses do Modelo de RLM O modelo de regressão linear múltipla Estudar a relação entre uma variável dependente e uma ou mais variáveis independentes. Forma genérica:
Variável dependente Variável independente Coeficiente de regressão Relação causa-efeito
Unidade IV - Regressão Regressões Lineares Modelo de Regressão Linear Simples Terminologia Variável dependente Variável independente Coeficiente de regressão Relação causa-efeito Regressão correlação Diferença
Análise de Regressão Múltipla com informação qualitativa: variáveis binárias (dummy)
Análise de Regressão Múltipla com informação qualitativa: variáveis binárias (dummy) 1 Como descrever informações qualitativas? Fatores qualitativos podem ser incorporados a modelos de regressão. Neste
Associação entre duas variáveis
Associação entre duas variáveis Questões de interesse: Será que duas variáveis são independentes ou pelo contrário dependentes? E se forem dependentes, qual o tipo e grau de dependência? Existem diversas
Econometria - Lista 6
Econometria - Lista 6 Professores: Hedibert Lopes, Priscila Ribeiro e Sérgio Martins Monitores: Gustavo Amarante e João Marcos Nusdeo Exercício 1 A curva de Phillips desempenha um papel fundamental na
Prova de Estatística
UNIVERSIDADE FEDERAL DO PARÁ CURSO DE MESTRADO EM ECONOMIA PROCESSO SELETIVO 2010 Prova de Estatística INSTRUÇÕES PARA A PROVA Leia atentamente as questões. A interpretação das questões faz parte da prova;
M l u t l i t c i oli l n i e n arid i a d de
Multicolinearidade 1 Multicolinearidade Quando existem relação linear exata entre as variáveis independentes será impossível calcular os estimadores de MQO. O procedimento MQO utilizado para estimação
Aula 2 Tópicos em Econometria I. Porque estudar econometria? Causalidade! Modelo de RLM Hipóteses
Aula 2 Tópicos em Econometria I Porque estudar econometria? Causalidade! Modelo de RLM Hipóteses A Questão da Causalidade Estabelecer relações entre variáveis não é suficiente para a análise econômica.
Regressão múltipla: Unidades de medida. Unidades de medida. Unidades de medida salário em dólares (*1000) Unidades de medida
Efeitos da dimensão dos dados nas estatísticas MQO Regressão múltipla: y = β 0 + β x + β x +... β k x k + u Alterando a escala de y levará a uma correspondente alteração na escala dos coeficientes e dos
FATORES EXPLICATIVOS DO SALDO DA BALANÇA COMERCIAL DO BRASIL 1990 A 1997
Economia e Desenvolvimento, nº 11, março/2000 Artigo Acadêmico FATORES EXPLICATIVOS DO SALDO DA BALANÇA COMERCIAL DO BRASIL 1990 A 1997 Zenir Adornes da Silva * Resumo: Neste artigo, analisa-se a influência
Introdução Regressão linear Regressão de dados independentes Regressão não linear. Regressão. Susana Barbosa
Regressão Susana Barbosa Mestrado em Ciências Geofísicas 2012-2013 Regressão linear x : variável explanatória y : variável resposta Gráfico primeiro! Gráfico primeiro! Gráfico primeiro! Modelo linear x
ISCTE Instituto Superior de Ciências do Trabalho e da Empresa
ISCTE Instituto Superior de Ciências do Trabalho e da Empresa Licenciatura em Gestão Exame de 2ª Época de Estatística II Duração: 2h +30m Nota: Não são prestados esclarecimentos durante a prova! Só é permitida
Endogeneidade, Variáveis Instrumentais e Modelos de Equações Estruturais
1 Endogeneidade, Variáveis Instrumentais e Modelos de Equações Estruturais Ernesto F. L. Amaral Magna M. Inácio 21 de outubro de 2010 Tópicos Especiais em Teoria e Análise Política: Problema de Desenho
Instituto Universitário de Lisboa (ISCTE-IUL) Licenciaturas em Gestão e Finanças & Contabilidade Estatística II - Exame de 1ª época
Instituto Universitário de Lisboa (ISCTE-IUL) Licenciaturas em Gestão e Finanças & Contabilidade Estatística II - Exame de 1ª época Duração: 2h +30m Nota: Não são prestados esclarecimentos durante a prova!
4 Modelos de Regressão Dinâmica
4 Modelos de Regressão Dinâmica Nos modelos de regressão linear (Johnston e Dinardo, 1998) estudados comumente na literatura, supõe-se que os erros gerados pelo modelo possuem algumas características como:
ANDRADE, M. M. Introdução a Metodologia do Trabalho Científico. 7 ed. São Paulo: Atlas, 2005.
6 Bibliografia ALBUQUERQUE, A. P.; MORAES, M. C. Modelagem Econométrica para a Previsão do Preço Futuro do Cacau: Abordagem ARIMA. Revista Ciência Administração, v.13, n.2, p.193 207, Nov, Fortaleza, 2007.
AULA 03 Análise de regressão múltipla: estimação
1 AULA 03 Análise de regressão múltipla: estimação Ernesto F. L. Amaral 17 de julho de 2013 Análise de Regressão Linear (MQ 2013) www.ernestoamaral.com/mq13reg.html Fonte: Cohen, Ernesto, e Rolando Franco.
Gabarito - Lista 5 - Questões de Revisão
Gabarito - Lista 5 - Questões de Revisão Monitores: Camila Steffens e Matheus Rosso Parte I - Teoria assintótica 1. Enuncie a lei dos grandes números e o teorema central do limite. A LGN em sua expressão
Testes de cointegração
Testes de cointegração Avaliando a existência de relação de conintegração entre séries temporais Wilson Freitas Quant Developer Recursos index.rmd 2/13 Teste de Engle & Granger (EG) Teste de Engle & Granger
AULA 9 - MQO em regressão múltipla: Propriedades Estatísticas (Valor Esperado)
AULA 9 - MQO em regressão múltipla: Propriedades Estatísticas (Valor Esperado) Susan Schommer Econometria I - IE/UFRJ Valor esperado dos estimadores MQO Nesta aula derivamos o valor esperado dos estimadores
Econometria. Econometria MQO MQO. Resíduos. Resíduos MQO. 1. Exemplo da técnica MQO. 2. Hipóteses do Modelo de RLM. 3.
3. Ajuste do Modelo 4. Modelo Restrito Resíduos Resíduos 1 M = I- X(X X) -1 X Hipóteses do modelo Linearidade significa ser linear nos parâmetros. Identificação: Só existe um único conjunto de parâmetros
ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc.
ECONOMETRIA Prof. Patricia Maria Bortolon, D. Sc. Cap. 9 Modelos de Regressão com Variáveis Binárias Fonte: GUJARATI; D. N. Econometria Básica: 4ª Edição. Rio de Janeiro. Elsevier- Campus, 2006 Variáveis
AULAS 17 E 18 Análise de regressão múltipla: estimação
1 AULAS 17 E 18 Análise de regressão múltipla: estimação Ernesto F. L. Amaral 22 e 24 de outubro de 2013 Avaliação de Políticas Públicas (DCP 046) Fonte: Cohen, Ernesto, e Rolando Franco. 2000. Avaliação
AULAS 14 E 15 Modelo de regressão simples
1 AULAS 14 E 15 Modelo de regressão simples Ernesto F. L. Amaral 18 e 23 de outubro de 2012 Avaliação de Políticas Públicas (DCP 046) Fonte: Wooldridge, Jeffrey M. Introdução à econometria: uma abordagem
