MATEMÁTICA. Questões selecionadas de provas diversas
|
|
|
- Pedro Henrique Casqueira
- 7 Há anos
- Visualizações:
Transcrição
1 MATEMÁTICA Questões selecionadas de provas diversas 01. De acordo com uma pesquisa realizada pela Organização das Nações Unidas (ONU), a fabricação de um microcomputador exige, no mínimo, 240 kg de combustível e 22 kg de produtos químicos. Considerando-se essas informações, é correto afirmar que, para fabricar uma centena de microcomputadores serão gastos, no mínimo: a) 240 kg de combustível. b) 2,4 toneladas de combustível. c) 24 toneladas de combustível d) 220 kg de produtos químicos. e) 22 toneladas de produtos químicos. 02. Uma peça de lona retangular tem 10m de comprimento e 1,2m de largura. Qual é o número máximo de pedaços quadrados, de 0,25m² de área, que podem ser cortados dessa peça? a) 48; b) 44; c) 40; d) 30; e) De uma peça quadrada de madeira de 2,2m de lado, um marceneiro recortou um tampo de mesa perfeitamente redondo, com o maior diâmetro possível. Qual a área aproximada, em m², desse tampo de madeira? a) 15,2; b) 13,8; c) 9,6; d) 6,9; e) 3, O piso de uma varanda retangular é coberto por ladrilhos quadrados como mostra a figura acima. Se o perímetro do piso é 7,2 metros, o lado de cada ladrilho, em cm, mede: a) 40; b) 38; c) 36; d) 30; e) 24.
2 05. Pedrinho precisava construir um cubo de papel de 16cm de aresta para um trabalho escolar. Ele desenhou o cubo planificado em uma folha de cartolina para depois recortá-lo e montá-lo, colando suas faces com fita adesiva, como mostra a figura. Observe que a largura e o comprimento da planificação coincidem com as dimensões da folha de cartolina que Pedrinho utilizou. Assim, conclui se que as dimensões da folha de cartolina, em cm, eram: a) 32 e 48; b) 38 e 54; c) 48 e 54; d) 48 e 64; e) 64 e Dos 100 candidatos inscritos em um concurso que estudaram no curso preparatório A, 75 foram aprovados no concurso, enquanto que dos 100 candidatos inscritos no concurso que estudaram no curso preparatório B, 65 foram aprovados nesse concurso. Se desejarmos testar a hipótese estatística de que a proporção de aprovação dos dois cursos é a mesma, obtenha o valor mais próximo da estatística do teste, que tem aproximadamente uma distribuição qui quadrado com um grau de liberdade. a) 1,21. b) 1,44. c) 1,85. d) 2,38. e) 2, Uma distribuição de freqüência com dados agrupados em classe forneceu os pontos médios de classes m e as respectivas freqüências absolutas f abaixo: m f Calcule a média aritmética simples dos dados. a) 52. b) 52,25. c) 53,35. d) 54,15. e) 55.
3 08. Apesar de uma característica numérica supostamente possuir distribuições com variâncias diferentes em duas populações distintas, deseja-se testar a hipótese estatística da igualdade das duas médias. Assim, da primeira população retira-se uma amostra aleatória simples de tamanho 9 e da segunda população retira-se outra amostra aleatória simples independente de tamanho 16. A característica medida na amostra da primeira população tem média 83 e desvio-padrão amostral 7, enquanto a característica medida na amostra da segunda população tem média 81 e desviopadrão amostral 8. Obtenha o valor mais próximo do erro padrão da diferença estimada entre as médias. a) 1,05. b) 1,92. c) 2,26. d) 2,82. e) 3, Sendo X uma variável aleatória uniformemente distribuída no intervalo [0,1], determine sua variância. a) 1/2. b) 1/3. c) 1/4. d) 1/6. e) 1/ Um fabricante divulga que a característica principal de seu produto tem uma média de unidades. Um pesquisador, duvidando desta afi rmação, encontrou uma característica média de 935 e desvio-padrão amostral de 130 examinando uma amostra aleatória simples de tamanho 9 destes produtos. Calcule o valor mais próximo da estatística t para testar a hipótese nula de que a média da característica principal do produto é 1 000, admitindo que a característica tem uma distribuição normal. a) -1,5. b) -1,78. c) -1,89. d) -1,96. e) -2, C GABARITO Total de combustíveis = 240 x100 = kg = 24 toneladas Total de produtos químicos = 22kg x 100 = 200 kg
4 02. A A = 10 x 1,2 = 12 m 2 Número máximo de pedaços quadrados = 03. E O maior diâmetro possível é igual ao lado do quadrado. Diâmetro = 2,2 m Raio = 1,1 m Área do círculo = πr 2 A = (1,1) 2. 3,14 = 1,21. 3,14 3,8 04. A Perímetro = 7,2 m = 720 cm 2. (5x + 4x) = x = 720
5 18x = 720 x = 720/18 x = 40 cm 05. D 48 e D 07. C 08. B 09. C 10. A
MATEMÁTICA
MATEMÁTICA 01. Um avião parte de determinada cidade às 10h 25min e chega a seu destino às 16h 10min. Qual a duração desse vôo? a) 5h 25min; b) 5h 45min; c) 5h 55min; d) 6h 45min; e) 6h 55min. 02. Um cano
C O L É G I O F R A N C O - B R A S I L E I R O
C O L É G I O F R A N C O - B R A S I L E I R O Nome: N.º: Turma: Professor: IRAN MARCELINO Ano: ª Data: / / 014 CONTEÚDO: LISTA DE RECUPERAÇÃO (MATEMÁTICA ) Equação modular Inequação modular Áreas de
Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança
Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://páginapessoal.utfpr.edu.br/ngsilva Estimação de Parâmetros Intervalo de Confiança Introdução A inferência estatística é o processo
3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo
3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo LISTA DE ESTUDO.. Áreas 1. Calcule a área da região mais escura. 2. Um quadrado tem área de 25 cm 2. O que
Prismas, Cubos e Paralelepípedos
Prismas, Cubos e Paralelepípedos 1. (Ufpa 01) Uma indústria de cerâmica localizada no município de São Miguel do Guamá no estado do Pará fabrica tijolos de argila (barro) destinados à construção civil.
a) R$ 8,20 b) R$ 8,40 c) R$ 8,60 d) R$ 8,80 e) R$ 9,00
Aula n ọ 03 01. Um engenheiro, precisando calcular a área de um terreno com forma quadrangular (conforme a figura abaixo), utilizou como referencial as duas ruas, A e B, que se cruzavam perpendicularmente.
PADRÃO DE RESPOSTA - MATEMÁTICA - GRUPOS I e J
PADRÃO DE RESPOSTA - MATEMÁTICA - GRUPOS I e J 1 a QUESTÃO: (,0 pontos) Avaliador Revisor Verifique se as afirmações abaixo são verdadeiras ou falsas Justifique sua resposta a) O número é irracional; (0,5
Universidade Federal Fluminense INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA
Universidade Federal Fluminense INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA Estatística Básica para Engenharia Prof. Mariana Albi 8 a Lista de Exercícios Assuntos: Inferência Estatística.
MATEMÁTICA LISTA DE PRISMAS
NOME: MÊS: SÉRIE:: 1 a TURMA: ENSINO: MÉDIO LISTA DE PRISMAS MATEMÁTICA 1) Observe o prisma regular hexagonal ilustrado na figura a seguir. A medida da aresta da base é 6 cm e a medida da altura é 10 cm.
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ANO 2017 PROFESSOR (a) DISCIPLINA Bruno Rezende Pereira Matemática ALUNO (a) SÉRIE 3º Ano do Ensino Médio
Lista de exercícios 06. Aluno (a) : Série: 2º ano (Ensino médio) Professor: Flávio Disciplina: Matemática
Lista de exercícios 06 Aluno (a) : Série: 2º ano (Ensino médio) Professor: Flávio Disciplina: Matemática No Anhanguera você é + Enem Observações: Data da entrega: 26/09/2015. A lista deverá apresentar
Matemática GEOMETRIA ESPACIAL. Professor Dudan
Matemática GEOMETRIA ESPACIAL Professor Dudan CUBO Um hexaedro é um poliedro com 6 faces, um paralelepípedo retângulo com todas as arestas congruentes ( a= b = c). Exemplo O volume de uma caixa cúbica
7º MATERIAL EXTRA 3º ANO PROF. PASTANA
7º MATERIAL EXTRA 3º ANO PROF. PASTANA ENEM /21 1. Um engenheiro para calcular a área de uma cidade, copiou sua planta numa folha de papel de boa qualidade, recortou e pesou numa balança de precisão, obtendo
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ANO 2015 PROFESSOR (a) DISCIPLINA Bruno Rezende Pereira Matemática ALUNO (a) SÉRIE 3º Ano do Ensino Médio
Medidas de Dispersão 1
Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Medidas de Dispersão 1 Introdução Uma breve reflexão sobre as medidas de tendência central permite-nos concluir que elas não
MATEMÁTICA. rascunho. NÍVEL: Médio DATA: 26/04/2015 QUESTÕES: 10
BANCA: VUNESP ÓRGÃO: Tribunal de Justiça de São Paulo (TJ/SP) CARGO: Escrevente Técnico Judiciário 65. Um determinado recipiente, com 40% da sua capacidade total preenchida com água, tem massa de 428 g.
COLÉGIO DE SANTA TERESINHA Ficha de Trabalho n.º1- Matemática 6.ºAno Nome: N.º Turma:
COLÉGIO DE SANTA TERESINHA Ficha de Trabalho n.º1- Matemática 6.ºAno Nome: N.º Turma: 1. Determina a área da figura, em centímetros quadrados. Apresenta o resultado arredondado às unidades. Não efetues
2. (Uerj) Um quadrado ABCD de centro O está situado sobre um plano.ב Esse plano contém o segmento OV, perpendicular a BC, conforme ilustra a imagem:
1. (Insper) Uma empresa fabrica porta-joias com a forma de prisma hexagonal regular, com uma tampa no formato de pirâmide regular, como mostrado na figura. As faces laterais do porta-joias são quadrados
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ANO 2016 PROFESSOR (a) DISCIPLINA Bruno Rezende Pereira Matemática ALUNO (a) SÉRIE 3º Ano do Ensino Médio
Matemática. Geometria plana
Matemática Geometria plana 01.Os valores que podem representar os lados de um triângulo obtusângulo são a) 1 cm, 2 cm e 3 cm. b) 2 cm, 3 cm e 4 cm. c) 3 cm, 4 cm e 5 cm. d) 4 cm, 5 cm e 6 cm. e) 5 cm,
Matéria: Matemática Assunto: Volume Prof. Dudan
Matéria: Matemática Assunto: Volume Prof. Dudan Matemática VOLUME DEFINIÇÃO As medidas de volume possuem grande importância nas situações envolvendo capacidades de sólidos. Podemos definir volume como
1. Encontre a equação das circunferências abaixo:
Nome: nº Professor(a): Série: 2ª EM. Turma: Data: / /2013 Nota: Sem limite para crescer Exercícios de Matemática II 2º Ano 2º Trimestre 1. Encontre a equação das circunferências abaixo: 2. Determine o
AD = 2DE. 01. (Eear 2019) Se ABC é um triângulo retângulo em A, o valor de n é. a) 22. b) c) 22 d)16
SIMULADO VII 01. (Eear 019) Se ABC é um triângulo retângulo em A, o valor de n é a) 3 b) 16 3 c) d)16 0. (G1 - ifal 017) Calcule o valor de m na figura: Onde C é o centro do círculo de raio 10. a)1. b).
ESTIMAÇÃO DE PARÂMETROS
ESTIMAÇÃO DE PARÂMETROS Um dos principais objetivos da estatística inferencial consiste em estimar os valores de parâmetros populacionais desconhecidos (estimação de parâmetros) utilizando dados amostrais.
Medidas de Dispersão. Prof.: Joni Fusinato
Medidas de Dispersão Prof.: Joni Fusinato [email protected] [email protected] 1 Dispersão Estatística As medidas de posição (média, mediana, moda) descrevem características dos valores numéricos
Intervalos de Confiança
Universidade Federal do Paraná - Departamento de Estatística Projeto de Extensão Estatística com Recursos Computacionais Lista de Exercícios: Capitulos 4 Intervalos de Confiança Observação: Interpretar
Estatística II. Intervalo de Confiança Lista de Exercícios
Estatística II Intervalo de Confiança Lista de Exercícios 1. IC da Média com a Variância Populacional Desconhecida De 50.000 válvulas fabricadas por uma companhia, retira-se uma amostra de 400 válvulas,
3 O ANO EM. Lista de Recuperação tri2. Matemática II RAPHAEL LIMA
3 O ANO EM Matemática II RAPHAEL LIMA Lista de Recuperação tri2 1. Uma indústria de cerâmica localizada no município de São Miguel do Guamá no estado do Pará fabrica tijolos de argila (barro) destinados
PROBLEMAS DE OTIMIZAÇÃO in ESCOLA VIRTUAL
PROBLEMAS DE OTIMIZAÇÃO in ESCOLA VIRTUAL 1. Classifica as seguintes afirmações em verdadeiras (V) ou falsas (F). Na figura estão representados, num referencial o.n. xoy a reta r de equação x = 4, e o
Matemática - 3C12/14/15/16/26 Lista 2
Matemática - 3C12/14/15/16/26 Lista 2 Poliedros Convexos 1) Determine qual é o poliedro convexo e fechado que tem 6 vértices e 12 arestas. 2) Determine o nº de vértices de dodecaedro convexo que tem 20
singular Exercícios-Paralelepípedo
singular Prof. Liana Turma: C17-27 Lista mínima de exercícios para revisão das unidades 1,2 e : Poliedros Exercícios-Prismas 1. Determine a área da base, a área lateral, a área total e o volume de um prisma
PROFESSOR: Guilherme Franklin Lauxen Neto LISTA DE ESFERA
ALUNO TURMA: 2 Ano DATA / /205 PROFESSOR: Guilherme Franklin Lauxen Neto DEVOLUTIVA: / /205 LISTA DE ESFERA ) (UFJF-MG) Um reservatório de água tem a forma de um hemisfério acoplado a um cilindro circular,
Exercícios e problemas propostos 1. A fotografia é de uma escultura, o Cubo da Ribeira, no
Tema 6 Sólidos geométricos 15 Exercícios e problemas propostos 1. A fotografia é de uma escultura, o Cubo da Ribeira, no Porto. O cubo tem metros de aresta. Determina: 1.1 o volume do cubo, em m ; 1. a
Unidade 6 Geometria: polígonos e circunferências
Sugestões de atividades Unidade 6 Geometria: polígonos e circunferências 9 MATEMÁTICA Matemática. Considere um decágono regular dividido em 0 triângulos isósceles congruentes, conforme a figura a seguir..
Medidas de Dispersão. Prof.: Joni Fusinato
Medidas de Dispersão Prof.: Joni Fusinato [email protected] [email protected] 1 Dispersão Estatística As medidas de posição (média, mediana, moda) descrevem características dos valores numéricos
10 11 Escola Municipal Francis Hime SÓLIDOS GEOMÉTRICOS 6º ANO Nome: 1601 Geometria: Uma ciência de muitos povos A geometria, assim como as ciências, nasceu das necessidades e das observações do homem.
Interbits SuperPro Web
POLÍGONOS REGULARES 1. No estudo da distribuição de torres em uma rede de telefonia celular, é comum se encontrar um modelo no qual as torres de transmissão estão localizadas nos centros de hexágonos regulares,
Material de aula. Régua Compasso Par de esquadros (30 e 45 ) Borracha Lápis ou lapiseira Papel sulfite ou caderno de desenho
Desenho Técnico Material de aula Régua Compasso Par de esquadros (30 e 45 ) Borracha Lápis ou lapiseira Papel sulfite ou caderno de desenho Geometria Conversão de unidades Polígonos e sólidos Escala Desenho
Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba Professor Gilmar Bornatto
Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba 1. Para fazer uma caixa sem tampa com um único pedaço de papelão, utilizou-se um retângulo de 16 cm de largura por 30 cm
PROCESSO SELETIVO 2015
PROCESSO SELETIVO 2015 Anos 01/12/2014 INSTRUÇÕES 1. Confira, abaixo, o seu número de inscrição, turma e nome. Assine no local indicado. 2. Aguarde autorização para abrir o caderno de prova. Antes de iniciar
, ,08.x x m x 40 0,08
ENEM - 001 01. Um engenheiro, para calcular a área de uma cidade, copiou sua planta numa folha de papel de boa qualidade, recortou e pesou numa balança de precisão, obtendo 40 g. Em seguida, recortou,
Atividade extra. Exercício 1. Exercício 2. Matemática e suas Tecnologias Matemática
Atividade extra Exercício 1 Duas esferas de raios distintos se interceptam formando um conjunto com mais de um ponto na interseção. Qual a figura geométrica formada por esse conjunto de pontos? (a) Esfera
MATEMÁTICA OFICINA ALEXSANDRO KESLLER PAZ NA ESCOLA ÁLGEBRA
ALEXSANDRO KESLLER MATEMÁTICA OFICINA ÁLGEBRA PAZ NA ESCOLA 14.03.2019 MATEMÁTICA BÁSICA Conhecimentos Álgebricos Medidas de comprimento Transformações de unidades de medidas de comprimento Conhecimentos
TER EXERCICIOS. 5) Uma sala de aula contém 38 alunos e, dentre eles, 18 são meninas. Assim, podemos afirmar que:
Nome: nº: 7º ano: do Ensino Fundamental Professores: Edilaine, Luiz Carlos e Matheus TER Razão EXERCICIOS 1) A idade de Pedro é 30 anos e a idade de Josefa é 45 anos. Qual é a razão entre as idades de
Nome: N.º: Endereço: Data: Telefone: PARA QUEM CURSA O 8 Ọ ANO DO ENSINO FUNDAMENTAL EM 2018 Disciplina: MATEMÁTICA
Nome: N.º: Endereço: Data: Telefone: E-mail: Colégio PARA QUEM CURSA O 8 Ọ ANO DO ENSINO FUNDAMENTAL EM 018 Disciplina: MATEMÁTICA Prova: DESAFIO NOTA: QUESTÃO 16 Qual é o valor da expressão? 016 1 01
Física Geral - Laboratório. Aula 2: Organização e descrição de dados e parâmetros de dispersão e correlação
Física Geral - Laboratório Aula 2: Organização e descrição de dados e parâmetros de dispersão e correlação 1 Física Geral - Objetivos Ao final do período, o aluno deverá ser capaz de compreender as principais
Estatística e Probabilidade. Aula 11 Cap 06
Aula 11 Cap 06 Intervalos de confiança para variância e desvio padrão Confiando no erro... Intervalos de Confiança para variância e desvio padrão Na produção industrial, é necessário controlar o tamanho
UNITAU APOSTILA PRISMAS
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PRISMAS Nome: nº: blog.portalpositivo.com.br/capitcar 1 PRISMAS São os poliedros convexos que têm duas faces paralelas e congruentes (chamadas
Medidas de Dispersão ou variabilidade
Medidas de Dispersão ou variabilidade A média - ainda que considerada como um número que tem a faculdade de representar uma série de valores - não pode, por si mesma, destacar o grau de homogeneidade ou
Testes Propostos 15B e 16B: Triângulos e Quadriláteros
urso de Matemática Testes Propostos 15 e 16: Triângulos e Quadriláteros 01. om três segmentos e comprimentos iguais a 10cm, 12cm e 23cm... é possível apenas formar um triângulo retângulo é possível formar
UPE/VESTIBULAR/2002 MATEMÁTICA
UPE/VESTIBULAR/00 MATEMÁTICA 01 Os amigos Neto, Maria Eduarda, Daniela e Marcela receberam um prêmio de R$ 1000,00, que deve ser dividido, entre eles, em partes inversamente proporcionais às respectivas
2ª Lista de Exercícios - Problemas de Otimização
Cálculo Diferencial e Integral II Prof. Robson Rodrigues www.rodrigues.mat.br 2ª Lista de Exercícios - Problemas de Otimização Problema 1. Utilizando 40 m de tela e um muro como um dos lados, deseja-se
1ª Lista de Exercícios - Problemas de Otimização
Cálculo Diferencial e Integral II Prof. Robson Rodrigues www.robson.mat.br email: [email protected] 1ª Lista de Exercícios - Problemas de Otimização Problema 1. Utilizando 40 m de tela e um muro como
Resposta: A Matemática B 2ª série 1º trimestre Prismas Tarefa 10
2011 - Matemática B 2ª série 1º trimestre Prismas Tarefa 9 1) As dimensões de um paralelepípedo retângulo são 12 cm, 15 cm e 16 cm. A área total(em cm²) e a medida da diagonal (em cm) são iguais, respectivamente
UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS
UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS Departamento de Estatística Tarciana Liberal MEDIDAS DE DISPERSÃO As medidas de posição apresentadas fornecem a informação dos dados apenas a nível pontual,
ÁREA. 8 cm 3 cm. 6 cm 4 cm. 02- Determine a área de um triângulo cuja base mede 8 cm e a altura, 5,2 cm.
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 6º ANO - ENSINO FUNDAMENTAL ============================================================================================== 01- Determine
LISTA P1T2. Cilindros. Professores: Leonardo. Matemática. 2ª Série
Matemática Professores: Leonardo 2ª Série LISTA P1T2 Cilindros 1- Um fabricante de caixas - d água pré moldadas deseja produzi-las na forma cilíndrica, com 2 metros de altura e interna e capacidade de
VOLUME DE PIRÂMIDES E CONES
VOLUME DE PIRÂMIDES E CONES PLANO DE TRABALHO 2 CURSO DE FORMAÇÃO CONTINUADA EM MATEMÁTICA FUNDAÇÃO CECIERJ / CONSÓRCIO CEDERJ PROJETO SEEDUC MATEMÁTICA 2º ANO 3º BIMESTRE / 2012 PLANO DE TRABALHO TAREFA
Assine e coloque seu número de inscrição no quadro abaixo. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta.
1 Prezado(a) candidato(a): Assine e coloque seu número de inscrição no quadro abaixo. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta. Nº de Inscrição Nome Q U E S T Ã
CENPRO - CONCURSOS MILITARES E TÉCNICOS 4ª REVISÃO DE MATEMÁTICA - CURSO PREPARATÓRIO CMBH Nome Completo: 22/10/12
4ª REVISÃO DE MATEMÁTICA - CURSO PREPARATÓRIO CMBH 013 Nome Completo: /10/1 Instruções ao candidato: * Esta prova é composta de 0 questões de múltipla escolha; * A duração da prova é de horas, incluindo
DATA DA ENTREGA: 23/05/2018
Disciplina: MATEMÁTICA Segmento: Ensino Fundamental Série: 9º Ano Turma: Valor: 5,0 Pontos Assunto: Roteiro de Estudos Para Recuperação da I Etapa/08 Aluno (a): Nº: Nota: Professor (a): W. Leão Querido
Intervalos de Confiança
Intervalos de Confiança INTERVALOS DE CONFIANÇA.1 Conceitos básicos.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição numérica de
CENTRO EDUCACIONAL SESC CIDADANIA
CENTRO EDUCACIONAL SESC CIDADANIA Prof. (a): Heloísa Andréia LRR MATEMÁTICA III 2º TRIMESTRE Se não existe esforço, não existe progresso (F. Douglas) ENSINO MÉDIO Aluno(a): SÉRIE 3ª TURMA DATA: / /2017
50h, se 0 h 8 p(h) = 75(h 8) + 400, se 8 < h (h 10) + 550, se 10 < h 24
QUESTÕES-AULA 31 1. Uma empresa paga R $ 50, 00 por hora trabalhada se o número de horas estiver entre 0 e 8. Quando o número de horas é maior do que oito e menor do que 10, paga-se 50 % a mais por hora
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Funções e Gráficos Generalidades. Funções polinomiais. Função módulo.
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Funções e Gráficos Generalidades. Funções polinomiais. Função módulo. Trabalho de casa nº 14 1. Um cilindro como o da figura tem 10 cm de
Ciências da Natureza e Matemática
1 CEDAE Acompanhamento Escolar 2 CEDAE Acompanhamento Escolar 1.(UFG/2013) Um chapeuzinho, distribuído em uma festa, tem a forma de um cone circular reto e, quando planificado, fornece um semicírculo com
MATEMÁTICA. 3 o Série Prof. Tiago. Aluno (a): Nº. a) 50,24 m² b) 25,12 m² c) 12,56 m² d) 100,48 m² e) 200,96 m². a) 50m 2
p s MATEMÁTICA o Série Prof. Tiago Lista: 01 Data: 16 / 07 / 019 Aluno (: Nº A figura abaixo exibe um círculo de raio r que tangencia internamente um setor circular de raio R e ângulo central. Para = 60º,
TRABALHO 3 o TRIMESTRE
TRABALHO o TRIMESTRE Disciplina: Matemática 1 Série: o Turma: ( ) Am / ( ) Az Data: 251115 Professor: Sérgio Tambellini Ensino: Médio Trimestre: o Valor: 1,5 pto Nome: n o : Nome: n o : Nota: Nome: n o
CRONOGRAMA DE RECUPERAÇÃO ATIVIDADE DE RECUPERAÇÃO
CRONOGRAMA DE RECUPERAÇÃO SÉRIE: 1ª série do EM DISCIPLINA: MATEMÁTICA 2 Cadernos Assuntos 3 e 4 Áreas e perímetros de figuras planas Lei dos senos e cossenos Trigonometria no triângulo retângulo Teorema
Lista de exercícios 05 Aluno (a): Turma: 2ª série: (Ensino médio) Professor: Flávio Disciplina: Matemática
Lista de exercícios 05 Aluno (a): Turma: 2ª série: (Ensino médio) Professor: Flávio Disciplina: Matemática Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações: Data da entrega
Probabilidade e Estatística
Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Introdução Hipóteses Estatísticas São suposições quanto ao valor de um parâmetro populacional
Sólidos Inscritos e Circunscritos 3.º Ano
Sólidos Inscritos e Circunscritos 3.º Ano 1. (Fuvest 2013) Os vértices de um tetraedro regular são também vértices de um cubo de aresta 2. A área de uma face desse tetraedro é a) 2 3 b) 4 c) 3 2 d)3 3
Professor Diego - Tarefa 13
Professor Diego - Tarefa 1 01. Um fino pedaço de madeira, homogêneo e com espessura constante, tem o formato de um triângulo equilátero de lado 4 cm e pesa 0 gramas. Um outro pedaço da mesma madeira, com
(A) 389 (B) 399 (C) 409 (D) 419 (E) 429
Destinatários: alunos dos 10. o e 11. o anos de escolaridade Duração: 1h 0min Nome: Turma: Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões estão agrupadas em
Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Cilindro. Professores Cleber Assis e Tiago Miranda
Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera Cilindro. 3 ano/e.m. Professores Cleber Assis e Tiago Miranda Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera.
Simulado enem. Matemática e suas Tecnologias. Volume 2. distribuição gratuita
Simulado 015 enem G a b a r i t o ạ série Matemática e suas Tecnologias Volume distribuição gratuita Simulado Enem 015 Questão 1 Matemática e suas Tecnologias Gabarito: Alternativa D ( A ) Incorreta. O
MATEMÁTICA OFICINA ALEXSANDRO KESLLER PAZ NA ESCOLA ÁLGEBRA
ALEXSANDRO KESLLER MATEMÁTICA OFICINA ÁLGEBRA PAZ NA ESCOLA 21.03.2019 MATEMÁTICA BÁSICA Conhecimentos Álgebricos Medidas de comprimento Transformações de unidades de medidas de comprimento Conhecimentos
1. (Enem 2011) A figura seguinte mostra um modelo de sombrinha muito usado em países orientais.
1. (Enem 2011) A figura seguinte mostra um modelo de sombrinha muito usado em países orientais. Esta figura é uma representação de uma superfície de revolução chamada de a) pirâmide. b) semiesfera. c)
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 23/04/12 PROFESSOR: MALTEZ
RSOLUÇÃO VLIÇÃO MTMÁTI o NO O NSINO MÉIO T: /0/1 PROSSOR: MLTZ Um terreno será vendido através de um plano de pagamentos mensais em que o primeiro pagamento de R$ 500,00 será feito 1 mês após a compra,
Lista 21 - GEOMETRIA ESPACIAL (Esfera e Pirâmides)
Lista 1 - GEOMETRIA ESPACIAL (Esfera e Pirâmides) 1) Certa quantidade de queijo é vendida em embalagens esféricas com tamanhos. A embalagem menor tem capacidade pra 50g de queijo, e seu raio é a metade
Exercícios de Revisão
Professor: Cassio Kiechaloski Mello Disciplina: Matemática Exercícios de Revisão Geometria Analítica Geometria Plana Geometria Espacial Números Complexos Polinômios Na prova de recuperação final, não será
Matemática aplicada à administração LISTA 06
Matemática aplicada à administração LISTA 06 (1) Encontre o intervalo(s) em que f(x) é crescente, decrescente, côncava para cima e côncava para baixo. (a) f(x) = -x 2 +8x+7 Resposta: crescente no intervalo
Lista de exercícios 06 Aluno (a): Turma: 9º ano (Ensino fundamental) Professor: Flávio Disciplina: Matemática
Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações: É fundamental a apresentação de uma lista legível, limpa e organizada. Rasuras podem invalidar a lista. Nas questões que
mat.ufrgs..ufrgs.br br/~viali/ mat.ufrgs..ufrgs.br
Prof. Lorí Viali, Dr. http://www. ://www.mat mat.ufrgs..ufrgs.br br/~viali/ viali@mat mat.ufrgs..ufrgs.br Média Uma amostra Proporção Variância Dependentes Diferença de médias m Duas amostras Independentes
Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos
Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos Candidatura de 206 Exame de Matemática Tempo para realização da prova: 2 horas Tolerância: 30 minutos Material admitido: material de escrita
SUMÁRIO. Prefácio, Espaço amostrai, Definição de probabilidade, Probabilidades finitas dos espaços amostrais fin itos, 20
SUMÁRIO Prefácio, 1 3 1 CÁLCULO DAS PROBABILIDADES, 15 1.1 Introdução, 15 1.2 Caracterização de um experimento aleatório, 15 1.3 Espaço amostrai, 16 1.4 Evento, 17 1.5 Eventos mutuamente exclusivos, 17
Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF
Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF 01) Observando a figuras e simplesmente contando, determine o número de faces, arestas e o vértices
deseja refazer a cerca com duas voltas de arame liso ao redor de todo o pasto.
Atividade extra Exercício 1 Uma fazenda tem um pasto em formato retangular, de 95m de comprimento por 65m de largura. O proprietário deseja refazer a cerca com duas voltas de arame liso ao redor de todo
POLÍGONOS REGULARES. Segmento: ENSINO MÉDIO. Tipo de Atividade: LISTA DE EXERCÍCIOS. 06/2017 Turma: 2 A
Segmento: ENSINO MÉDIO Disciplina: GEOMETRIA Tipo de Atividade: LISTA DE EXERCÍCIOS Prof. Marcelo 06/017 Turma: A POLÍGONOS REGULARES 1) Considere um quadrado com 3 cm de lado, inscrito em um círculo.
XXVII Olimpíada de Matemática da Unicamp Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas
Gabarito da Prova da Primeira Fase Nível Alfa 1 Questão 1 Na disciplina de Matemática serão realizadas duas provas durante o primeiro semestre A primeira prova com peso 2 e a segunda prova com peso 3 Caso
Onde: É no triângulo retângulo que vale a máxima Pitagórica: O quadrado da. a b c
1 Sumário TRIGONOMETRIA... GEOMETRIA ESPACIAL...8 Geometria Plana Fórmulas Básicas...8 Prismas... 11 Cilindro... 18 Pirâmide... 1 Cone... 4 Esferas... 7 REFERÊNCIAS BIBLIOGRÁFICAS... TRIGONOMETRIA Trigonometria
x + 2 com o eixo dos x, respectivamente.
PASES 1 a ETAPA TRIÊNIO 004-006 1 o DIA GABARITO 1 1 MATEMÁTICA QUESTÕES DE 01 A 10 01. Sejam A e B os pontos de interseção dos gráficos das funções f ( x) = 1 x + e g ( x) = 1 x + com o eixo dos x, respectivamente.
MATEMÁTICA. O aluno achou interessante e continuou a escrever, até a décima linha. Somando os números dessa linha, ele encontrou:
MATEMÁTICA Passando em uma sala de aula, um aluno verificou que, no quadro-negro, o professor havia escrito os números naturais ímpares da seguinte maneira: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 O aluno
DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA)
1. Sabe-se que o nível de significância é a probabilidade de cometermos um determinado tipo de erro quando da realização de um teste de hipóteses. Então: a) A escolha ideal seria um nível de significância
Exercícios de Revisão
Exercícios de Revisão Lista de Exercícios 14.05.015 1. A cerâmica constitui-se em um artefato bastante presente na história da humanidade. Uma de suas várias propriedades é a retração (contração), que
SIMULADO DE GEOMETRIA OBMEP ª FASE. NÍVEL 1 6 e 7 anos do Ensino Fundamental. Nome completo do aluno:
LEMIN - Laboratório de Educação Matemática Isaac Newton Professor Coordenador: Cristiano Rodolfo Tironi Rua da Integração, 386 - Centro - Massaranduba (SC) www.leminsc.com.br email: [email protected]
a) 6m b) 7m c) 8m d) 9m e) 10 m
Geometria Espacial II Exercícios 1. (G1 - ifsc 015) Um galão de vinho de formato cilíndrico tem raio da base igual a m e altura m. Se 40% do seu volume está ocupado por vinho, é CORRETO afirmar que a quantidade
NOCÕES DE GEOMETRIA APROVADOS CURSO PREPARATÓRIO RESOLUÇÃO DE QUESTÕES BANCA FGV PARTE 3 RACIOCÍNIO MATEMÁTICO - PROF. LUCÉLIA TAVEIRA ALUNO: FONE:
APROVADOS CURSO PREPARATÓRIO RESOLUÇÃO DE QUESTÕES BANCA FGV PARTE 3 RACIOCÍNIO MATEMÁTICO - PROF. LUCÉLIA TAVEIRA ALUNO: FONE: SITE: www.cursoaprovados.com.br FANPAGE: CURSO PREPARATÓRIO APROVADOSAPROVADOS
Disciplina: Matemática Data da entrega: 21/11/2014.
Lista de Exercícios - 08 Aluno (a): Nº. Professor: Flávio Série: 2º (Ensino médio) Disciplina: Matemática Data da entrega: 21/11/2014. Observação: A lista deverá apresentar capa e enunciados. 1. Uma pirâmide
