Teoria de Sistemas Lineares I

Tamanho: px
Começar a partir da página:

Download "Teoria de Sistemas Lineares I"

Transcrição

1 Teoria de Sistemas Lineares I Prof. Aguinaldo S.e Silva, Universidade Federal de Santa Catarina

2 Observabilidade Conceito dual à controlabilidade. Considere a equação dinâmica de dimensão n, p entradas e q saídas ẋ y = Ax + Bu = Cx + Du com A R n n, B R n p, C R q n e D R q p Definição: A equação de estado acima ou o par (A,C) é observável se, para qualquer estado inicial x(), existir um tempo finito t 1 tal que o conhecimento da entrada u e da saída y no intervalo [,t 1 ] seja suficiente para se determinar de maneira única x().

3 Exemplo i + u + 1 Ω x + 1 Ω y 1 Ω C 1 Ω Se a entrada é zero, a saída y é sempre zero independentemente da tensão inicial no capacitor. O sistema não é observável.

4 Exemplo L x 1 u R 1 R 2 C + x 2 + y Variáveis de estado: corrente no indutor x 1 e tensão no capacitor x 2 Se u =, x 1 () = x 1 e x 2 () =, a saída y = x 2 é igual a zero. Qualquer condição inicial x() = [ a ] com u = produz a mesma saída y =. Não é possível determinar o estado inicial (não observável).

5 A saída do sistema para uma condição inicial x() e uma entrada u(t) é da dada por y(t) = C exp(at)x() + C t exp[a(t τ)]bu(τ)dτ + Du(t) Assumindo y e u conhecidos, a única incógnita é x(). Portanto C exp(at)x() = ȳ ȳ y(t) C t t exp[a(t τ)]bu(τ)dτ Du(t)

6 Estudar o observabilidade resume-se a obter x() a partir de u(t) e y(t). Se u, a saída ȳ(t) reduz-se a (resposta à entrada nula) y(t) = C exp(at)x() Um sistema é observável se e somente se o estado inicial x() pode ser determinado de maneira única a partir da resposta à entrada nula durante um intervalo de tempo. Note que para um t fixo, com q < n, a matriz C exp(at) tem rank no máximo igual a q e, conseqüentemente, nulidade n q ou maior, e as soluções não são únicas.

7 Teorema O sistema é observável se e somente se a matriz n n W o (t) = t exp(a τ)c C exp(aτ)dτ for não singular para qualquer t >. Prova: Pré-multiplicando C exp(at)x() = ȳ(t) por exp(a t)c e integrando no intervalo [,t 1 ] tem-se ( t1 ) t1 exp(a t)c C exp(at)dt x() = exp(a t)c ȳ(t)dt Se W o (t 1 ) é não singular, x() único é dado por t1 x() = Wo 1 (t 1 ) exp(a t)c ȳ(t)dt

8 Isso mostra que se W o (t) é não singular para qualquer t > então o sistema é observável. Agora, mostra-se que se W o (t 1 ) é singular (ou, equivalentemente, semidefinda positiva) para todo t 1 >, então o sistema não é observável. Se W o (t 1 ) é semidefinda positiva, existe v R n 1 não nulo tal que v W o (t 1 )v = = t1 t1 v exp(a t)c C exp(at)vdt C exp(at)v 2 dt = o que implica C exp(at)v para todo t [,t 1 ].

9 Se u, as condições iniciais x 1 () = v e x 2 () = produzem a mesma saída y(t) = C exp(at)x 1 () = C exp(at)x 2 () e portanto o sistema não é observável.

10 Teorema (Dualidade) O par (A,B) é controlável se e somente se o par (A,B ) for observável. Prova: (A,B) controlável se e somente se W c (t) = t exp(aτ)bb exp(a τ)dτ for não singular para qualquer t >. O par (A,B ) é observável se e somente se, trocando A por A e C por B W o (t) = t for não singular para qualquer t >. exp(aτ)bb exp(a τ)dτ

11 Teorema As afirmações abaixo são equivalentes. 1) O par (A,C) é observável. 2) A matriz n n W o (t) = t exp(a τ)c C exp(aτ)dτ é não-singular t >. 3) A matriz de observabilidade nq n (comando obsv no Matlab) O = C CA. CA n 1 tem rank n (rank completo de colunas)

12 4) A matriz (n + q) n [ λi A C tem rank n (rank completo de colunas) para todo autovalor λ de A. 5) Se todos os autovalores de A têm parte real negativa, então ] A W o + W o A = C C tem solução única e é definida positiva. Essa solução é chamada de Gramiano de observabilidade e pode ser expressa como W o = exp(a τ)c C exp(aτ)dτ

13 Índices de Observabilidade Índices de Observabilidade Considere A R n n e C R q n com C de rank completo de linhas (se não for o caso, alguma linha redundante pode ser eliminada). Se (A,C) for observável, a matriz de observabilidade O tem rank n e, conseqüentemente, n linhas linearmente independentes (de um total de nq linhas). Seja c i a i-ésima linha de C. De maneira dual à controlabilidade, se uma linha associada a c m torna-se linearmente dependente, todas as demais linhas subseqüentes também o serão. Seja ν m o númerod e linhas LI associadas a c m. Se O tem rank n, ν 1 + ν ν q = n e {ν 1,ν 2,...,ν p } são índices de observabilidade e ν = max {ν 1,ν 2,...,ν p } é o índice de observabilidade de (A,C).

14 Índices de Observabilidade (A,C) observável = o índice de observabilidade ν é o menor inteiro tal que C CA ρ(o ν ) = ρ(. ) = n CA ν 1 O intervalo para ν é dado por n/q ν min ( n,n q + 1) sendo n o grau do polinômio mínimo de A. q = rank (C)

15 Índices de Observabilidade Corolário O par (A,C) com A R n n e ρ(c) = q é observável se e somente se a matriz C CA O n q+1 =. CA n q tiver rank n

16 Índices de Observabilidade Teorema A observabilidade é invariante sob qualquer transformação de equivalência.

17 Índices de Observabilidade Teorema O conjunto de índices de observabilidade do par (A,C) é invariante sob qualquer transformação de equivalência e para qualquer re-ordenamento das linhas de C. Diferenciando C exp(at)x() = ȳ(t) e tomando t =, tem-se C CA. CA ν 1 x() = O νx() = ỹ() ȳ() ȳ(). ȳ (ν 1) ()

18 Índices de Observabilidade Uma solução x() existe se ỹ() estiver no range de O ν. Se (A,C) é observável, O ν tem rank completo de colunas e a solução é única. x() = [O O] 1 O ỹ() Note que para a determinação do vetor ỹ() (contendo as derivadas) é necessário o conhecimento de ȳ(t) na vizinhança de t =.

19 Sistemas Equivalentes Sistemas Equivalentes Considere o sistema ẋ = Ax + Bu y = Cx + Du Seja x = Px com P não singular. Então x = Ā x + Bu y = C x + Du Ā = PAP 1 ; B = PB ; C = CP 1 ; D = D é um sistema equivalente.

20 Sistemas Equivalentes (A,B) controlável (Ā, B) controlável (A,C) observável (Ā, C) observável Todas as propriedades (estabilidade, controlabilidade e observabilidade) são preservadas pela transformação de equivalência. As matrizes de controlabilidade e de observabilidade se relacionam da seguinte forma C = PC ; Ō = OP 1

21 Decomposição Canônica Decomposição Canônica Teorema: Considere um sistema de dimensão n com ρ(c) = ρ( [ B AB e forme a matriz n n A n 1 B ] = n 1 < n P 1 [ q 1 q n1 q n ] cujas primeiras n 1 colunas são quaisquer n 1 colunas LI de C e as demais são escolhidas arbitrariamente de modo que P seja não singular.

22 Decomposição Canônica Então, a transformação de equivalência x = Px transforma o sistema em [ ] [ x c Āc Ā = 12 x c Ā c y = [ Cc ][ xc x c C c ] [ x c x c com Ā c R n 1 n 1 e Ā c R (n n 1) (n n 1 ). A sub-equação de dimensão n 1 ] [ Bc + ] + Du ] u x c = Āc x c + B c u ȳ = C c x c + Du é controlável e tem a mesma matriz de transferência do sistema original.

23 Decomposição Canônica Prova A transformação x = P 1 x realiza uma mudança de representação do estado da base ortonormal para a base Q P 1 = {q 1,...,q n1,...,q n }. A i-ésima coluna de Ā é a representação de Aq i na base {q 1,...,q n1,...,q n }. Para i = 1,...,n 1, os vetores Aq i são LD no conjunto {q 1,...,q n1 } e são LI em {q n1 +1,...,q n }, o que explica a forma da matriz Ā. As colunas de B são a representação das colunas de B em relação à base {q 1,...,q n1,...,q n }. Mas as colunas de B dependem apenas de {q 1,...,q n1 }, o que explica a forma de B. Note que se B R n p tem rank p e se suas colunas são escolhidas como as primeiras p colunas de P 1, então a parte superior de B será a matriz identidade de ordem p.

24 Decomposição Canônica Seja C a matriz de controlabilidade de (A,B). Então, tem-se ρ(c) = ρ( C) = n 1 e pode-se verificar que [ Bc Ā C = c Bc Ā n 1 B c c Āc n 1 ] B c [ C = c Ā n 1 B c c Āc n 1 B c ] } n 1 linhas } n n 1 linhas sendo C c a matriz de controlabilidade do par (Āc, B c ). Como as colunas de Āk c B c, para k n 1, são LD das colunas de C c, a condição ρ(c) = n 1 implica ρ( C) = n 1 e portanto a equação de dimensão n 1 é controlável.

25 Decomposição Canônica Resta mostrar que a equação de dimensão n 1 tem a mesma função de transferência do sistema original. Como a transformação de equivalência não altera a função de transferência, basta mostrar que a função de transferência do sistema de dimensão n 1 é igual à do sistema transformado. Note que [ ] [ 1 (si ) ] 1 si Āc Ā 12 Āc M = ( ) si 1 Ā c si Ā c com M = ( ) 1 ( ) 1 si Āc Ā 12 si Ā c

26 Decomposição Canônica Portanto a matriz de transferência do sistema transformado é [ Cc C c ] [ si Āc Ā12 si Ā c ] 1 [ Bc ] + D = [ ] [ ( ) ] 1 [ si Ā C c M Bc c C c ( ) 1 si Ā c ] + D = C c ( si Āc ) 1 B c + D

27 Decomposição Canônica Decomposição do espaço de estados não-controlável; dimensão n n 1 [ xc x c ] = [ xc ] + [ x c ] controlável; dimensão n 1

28 Decomposição Canônica Exemplo ẋ = 1 x rank (B) = 2 C 2 = [ B AB ] ρ(c 2 ) = ρ x = Px ; Ā = u ; y = [ ] x = 2 < 3 ; P 1 = Q = ; B = ; ; C = [ ]

29 Decomposição Canônica Sistema de dimensão n 1 = 2 x c = [ ] [ 1 x c + 1 ] u ; y = [ 1 2 ] x A função ctrbf transforma o sistema para a forma canônica controlável, mas com as colunas de P 1 na ordem inversa, resultando [ ] [ ] Ā c ; Bc Ā 21 Ā c

30 Decomposição Canônica Teorema: Decomposição Canônica Forma Dual Considere um sistema de dimensão n com C CA ρ(o) = ρ. = n 2 < n CA n 1 e forme a matriz n np cujas primeiras n 2 linhas são quaisquer n 2 linhas LI de O e as demais são escolhidas arbitrariamente de modo que P seja não singular. p 1. p n2. p n

31 Decomposição Canônica Então, x = Px transforma o sistema em [ ] [ ][ ] [ x o Āo xo Bo = + xō Ā 21 Āō xō Bō y = [ Co ][ ] x o + Du xō ] u Ā o R n 2 n 2 e Āō R (n n 2) (n n 2 ). A sub-equação de dimensão n 2 x o = Ā o x o + B o u ȳ = C o x o + Du é observável e tem a mesma matriz de transferência. Matlab: obsvf

32 Decomposição de Kalman Teorema (Decomposição de Kalman) Toda equação de estado pode ser transformada na forma canônica equivalente x co x cō x co x cō = Ā co Ā 21 Ā cō Ā 13 Ā 23 Ā 24 Ā co Ā 43 Ā cō x co x cō x co x cō + B co B cō u y = [ Cco C co Z ] x + Du x co : controlável e observável x cō : controlável e não observável x co : não controlável e observável x cō : não controlável e não observável

33 Decomposição de Kalman Equivalente (para estado inicial nulo) à equação de estado controlável e observável x co = Āco x co + B co u com a matriz de transferência y = C co x co + Du G(s) = C co (si Ā co ) 1 B co + D

34 Decomposição de Kalman CŌ u CO y CO C CŌ

35 Decomposição de Kalman descrição por função de transferência não é necessariamente equivalente à descrição por equações de estado Matlab: minreal

36 Decomposição de Kalman Exemplo 2 F 1 Ω + x 1 u x 2 1 H 1 H 1 Ω 1 Ω 2 F + x 1 Ω 3 1 Ω x 4 + y

37 Decomposição de Kalman Eliminando as variáveis de estado que não são controláveis e/ou não são observáveis: 1 Ω 1 Ω + u y 1 Ω 1 Ω

38 Decomposição de Kalman Função de transferência: y = u Equação de estado do circuito original (forma canônica controlável) ẋ = x + y = [ 1 ] x + u.5 u Parte controlável ẋ c = [.5 1 ] [.5 x c + ] u y = [ ] x c + u

39 Decomposição de Kalman Exemplo (Kailath, p. 145) Considere o sistema (satélite em órbita equatorial linearizado) ẋ = Ax + Bu ; x = [ r ṙ θ θ ] Estados: posição & velocidade em coordenadas polares ω velocidade angular A = 1 3ω 2 2ω 1 2ω u 1 : jato radial da turbina u 2 : jato tangencial da turbina ; B = 1 1 ; u = [ u1 u 2 ]

40 Decomposição de Kalman Determine se o sistema é controlável: - Apenas com u 1 - Apenas com u 2 Transforme a realização na forma não controlável padrão, quando apropriado.

41 Decomposição de Kalman Matriz de controlabilidade C = 1 ω 2 1 ω 2 2ω 2ω 2ω 3 coluna 4 = ( ω 2 ) coluna 2 ρ(c) = 3 Construindo a matriz de transformação equivalente T T = [ b 1 Ab 1 A 2 b 1 t ] t : arbitrário, escolhido para garantir T inversível (por exemplo, ortogonal)

42 Decomposição de Kalman T 1 = T = 1 2ω + 8ω 3 1 2ω 1 ω 2 2ω 2ω 1 1 ω 2 4ω 4 2ω 4ω 2 1 4ω 2 4ω 2 2ω

43 Decomposição de Kalman Ā = T 1 AT = 6ω 3 + 3ω/2 1 ω 2 1 (1/2ω) ; b = Polinômio característico de Ā: s2 (s 2 + ω 2 ), autovalores:, e ±jω 1

44 Decomposição de Kalman Maneira alternativa de construir uma transformação de similaridade T: impor T 1 A = [ Ac A 12 λ ] [ T 1, T 1 bc b = ] λ : autovalor não-controlável Chamando t n a última linha de T 1, tem-se t n A = λt n, t n b = Por exemplo: t n = [ 2ω 1 ] As demais linhas podem ser arbitradas:

45 Decomposição de Kalman T 1 = ω 1 1 Ā 1 = T 1 AT = ω 2 2ω 2ω 1, b1 = T 1 b = Autovalor não controlável: λ = forma canônicas não são únicas Para u 1 = (apenas propulsão tangencial), o sistema é controlável. 1

Observabilidade, Decomposição Canônica

Observabilidade, Decomposição Canônica Observabilidade, Decomposição Canônica 1. Observabilidade de Sistemas LIT 2. Dualidade 3. Índices de Observabilidade 4. Decomposição Canônica pag.1 Teoria de Sistemas Lineares Aula 16 Observabilidade Sistemas

Leia mais

Teoria de Sistemas Lineares I

Teoria de Sistemas Lineares I Prof. Aguinaldo S.e Silva Universidade Federal de Santa Catarina Controlabilidade e Observabilidade Considere a equação dinâmica de dimensão n e p entradas ẋ = Ax + Bu com A R n n e B R n p. Definição:

Leia mais

FUNDAMENTOS DE SISTEMAS LINEARES PARTE 2

FUNDAMENTOS DE SISTEMAS LINEARES PARTE 2 FUNDAMENTOS DE SISTEMAS LINEARES PARTE 2 Prof. Iury V. de Bessa Departamento de Eletricidade Faculdade de Tecnologia Universidade Federal do Amazonas Agenda Resposta no espaço de estados Representações

Leia mais

Realimentação de Estado Sistemas SISO

Realimentação de Estado Sistemas SISO 1. Realimentação de Estado para Sistemas SISO pag.1 Teoria de Sistemas Lineares Aula 18 Considere o sistema n dimensional, SISO: ẋ = Ax + bu y = cx Na realimentação de estados, a entrada u é dada por u

Leia mais

EES-20: Sistemas de Controle II. 06 Setembro 2017

EES-20: Sistemas de Controle II. 06 Setembro 2017 EES-2: Sistemas de Controle II 6 Setembro 217 1 / 56 Recapitulando: Observador de Estado Modelo da planta: Observador de estado: ẋ = Ax + Bu y = Cx ˆx = Aˆx + Bu + L(y ŷ) ŷ = C ˆx Erro de estimação do

Leia mais

SISTEMAS REALIMENTADOS

SISTEMAS REALIMENTADOS SISTEMAS REALIMENTADOS Prof.: Helder Roberto de O. Rocha Engenheiro Eletricista Doutorado em Computação Representação no Espaço de Estados É apropriada para sistemas que possuem várias entradas e várias

Leia mais

FUNDAMENTOS DE SISTEMAS LINEARES PARTE 1

FUNDAMENTOS DE SISTEMAS LINEARES PARTE 1 FUNDAMENTOS DE SISTEMAS LINEARES PARTE 1 Prof. Iury V. de Bessa Departamento de Eletricidade Faculdade de Tecnologia Universidade Federal do Amazonas Revisão O que é um corpo (campo)? O que é um espaço

Leia mais

X. MÉTODOS DE ESPAÇO DE ESTADOS

X. MÉTODOS DE ESPAÇO DE ESTADOS INSTITUTO TECNOLÓGICO DE AERONÁUTICA CURSO DE ENGENHARIA MECÂNICA-AERONÁUTICA MPS-43: SISTEMAS DE CONTROLE X. MÉTODOS DE ESPAÇO DE ESTADOS Prof. Davi Antônio dos Santos (davists@ita.br) Departamento de

Leia mais

Teoria de Sistemas Lineares I

Teoria de Sistemas Lineares I Teoria de Sistemas Lineares I Prof. Aguinaldo S.e Silva Universidade Federal de Santa Catarina Estabilidade Entrada-Saída BIBO Estabilidade Considere o sistema linear SISO invariante no tempo, causal e

Leia mais

Cap. 3 - Observabilidade e desacoplamento da Saída

Cap. 3 - Observabilidade e desacoplamento da Saída Cap. 3 - Observabilidade e desacoplamento da Saída Visão geral do capítulo No capítulo 2 mostramos que a controlabilidade está relacionada com o menor subespaço A-invariante que contém a imagem de B. Mostramos

Leia mais

Algebra Linear. 1. Ortonormalização. 2. Sistema de Equações Lineares. pag.1 Teoria de Sistemas Lineares Aula 6. c Reinaldo M.

Algebra Linear. 1. Ortonormalização. 2. Sistema de Equações Lineares. pag.1 Teoria de Sistemas Lineares Aula 6. c Reinaldo M. Algebra Linear 1. Ortonormalização 2. Sistema de Equações Lineares pag.1 Teoria de Sistemas Lineares Aula 6 Ortonormalização Um vetor x é dito estar normalizado se sua norma Euclidiana é igual a 1, ie,

Leia mais

EES-20: Sistemas de Controle II. 21 Agosto 2017

EES-20: Sistemas de Controle II. 21 Agosto 2017 EES-2: Sistemas de Controle II 21 Agosto 217 1 / 52 Recapitulando: Realimentação de estado r t u t y t x t Modelo da planta: Lei de controle: ẋ = Ax + Bu y = Cx u = Kx + Fr Representação para o sistema

Leia mais

Sistemas Dinâmicos Lineares

Sistemas Dinâmicos Lineares Sistemas Dinâmicos Lineares 1. Descrição de sistemas dinâmicos 1.1. Sinais? 1.2. Sistemas? 1.3. Espaço de estados. Resposta do sistema dinâmico 2. Estabilidade de sistemas dinâmicos 2.1. Análise de estabilidade

Leia mais

Controlabilidade. Uma representação (ou realização) de um sistema dinâmico no espaço de estados:

Controlabilidade. Uma representação (ou realização) de um sistema dinâmico no espaço de estados: Controlabilidade Uma representação (ou realização) de um sistema dinâmico no espaço de estados: x = Ax + Bu ou equivalentemente o par (A, B), é dito controlável (completamente controlável, de estado controlável)

Leia mais

1. Realimentação de Estado: sistemas MIMO

1. Realimentação de Estado: sistemas MIMO Realimentação de Estado: sistemas MIMO 1. Realimentação de Estado: sistemas MIMO 2. Estimadores de Estado: sistemas MIMO pag.1 Teoria de Sistemas Lineares Aula 20 Realimentação de Estado: sistemas MIMO

Leia mais

Estimadores ou Observadores de Estado

Estimadores ou Observadores de Estado Estimadores ou Observadores de Estado 1. Estimadores ou Observadores de Estado: sistemas SISO 1. Extensões para Sistemas a Tempo Discreto pag.1 Teoria de Sistemas Lineares Aula 19 Estimadores ou Observadores

Leia mais

Matrizes e Linearidade

Matrizes e Linearidade Matrizes e Linearidade 1. Revisitando Matrizes 1.1. Traço, Simetria, Determinante 1.. Inversa. Sistema de Equações Lineares. Equação Característica.1. Autovalor & Autovetor 4. Polinômios Coprimos 5. Função

Leia mais

Algebra Linear. 1. Revisitando autovalores e autovetores. 2. Forma Diagonal e Forma de Jordan. 2.1 Autovalores distintos. 2.2 Autovalores complexos

Algebra Linear. 1. Revisitando autovalores e autovetores. 2. Forma Diagonal e Forma de Jordan. 2.1 Autovalores distintos. 2.2 Autovalores complexos Algebra Linear 1. Revisitando autovalores e autovetores 2. Forma Diagonal e Forma de Jordan 2.1 Autovalores distintos 2.2 Autovalores complexos 2.3 Nem todos autovalores distintos 3. Autovalores e autovetores

Leia mais

Estabilidade Interna. 1. Estabilidade Interna. 2. Análise de Estabilidade Segundo Lyapunov. 3. Teorema de Lyapunov

Estabilidade Interna. 1. Estabilidade Interna. 2. Análise de Estabilidade Segundo Lyapunov. 3. Teorema de Lyapunov Estabilidade Interna 1. Estabilidade Interna 2. Análise de Estabilidade Segundo Lyapunov 3. Teorema de Lyapunov 4. Teorema de Lyapunov Caso Discreto pag.1 Teoria de Sistemas Lineares Aula 13 Estabilidade

Leia mais

LISTAS DE EXERCÍCIOS PTC Controle Linear Multivariável (Pós-Graduação) Prof. Paulo Sérgio Pereira da Silva

LISTAS DE EXERCÍCIOS PTC Controle Linear Multivariável (Pós-Graduação) Prof. Paulo Sérgio Pereira da Silva LISTAS DE EXERCÍCIOS PTC - 5746 Controle Linear Multivariável Pós-Graduação Prof. Paulo Sérgio Pereira da Silva 27 ạ Lista de Exercícios Algebra Linear Controle Multivariável PTC 5746 Prof. Paulo Sérgio

Leia mais

SEM Sistemas de Controle. Aula 4 - Controladores PID, Avanço, Atraso, Esp. Estados

SEM Sistemas de Controle. Aula 4 - Controladores PID, Avanço, Atraso, Esp. Estados SEM 5928 - Sistemas de Controle Aula 4 - Controladores PID, Avanço, Atraso e no Espaço de Estados Universidade de São Paulo Controlador PID Controlador Proporcional Controlador Integral Controlador PID

Leia mais

Controlabilidade. Uma representação (ou realização) de um sistema dinâmico no espaço de estados:

Controlabilidade. Uma representação (ou realização) de um sistema dinâmico no espaço de estados: Controlabilidade Uma representação (ou realização) de um sistema dinâmico no espaço de estados: x Ax Bu ou equivalentemente o par (A, B), é dito controlável (completamente controlável, de estado controlável)

Leia mais

-GNE219 - Controle em Espaço de Estados

-GNE219 - Controle em Espaço de Estados Universidade Federal de Lavras Departamento de Engenharia -GNE219 - Controle em Espaço de Estados Prof. Daniel Leite E-mail: daniel.leite@deg.ufla.br 2/2017 1/29 Sumário Controlabilidade Observabilidade

Leia mais

Parte I. Álgebra Linear. Sistemas Dinâmicos Lineares. Autovalores, autovetores. Autovalores, autovetores. Autovalores e Autovetores.

Parte I. Álgebra Linear. Sistemas Dinâmicos Lineares. Autovalores, autovetores. Autovalores, autovetores. Autovalores e Autovetores. Sistemas Dinâmicos Lineares Romeu Reginatto Programa de Pós-Graduação em Engenharia de Sistemas Dinâmicos e Energéticos Universidade Estadual do Oeste do Paraná Parte I Álgebra Linear Adaptado das notas

Leia mais

Revisão - Controlabilidade e observabilidade - SLIT.

Revisão - Controlabilidade e observabilidade - SLIT. Revisão - Controlabilidade e observabilidade - SLIT. ENGC65: Sistemas de Controle III Departamento de Engenharia Elétrica - DEE Universidade Federal da Bahia - UFBA 12 de maio de 2014 Prof. Tito Luís Maia

Leia mais

Samir A. M. Martins 1

Samir A. M. Martins 1 Realizações Mínimas Samir A. M. Martins 1 1 UFSJ / Campus Santo Antônio, MG Brasil Programa de Pós-Graduação em Engenharia Elétrica Associação ampla entre CEFET MG e UFSJ O que nos espera? 1 Realização

Leia mais

Algebra Linear. 1. Espaços Vetoriais Lineares. 2. Coordenadas em Espaços Lineares. 3. Operadores Lineares. 4. Transformação de Similaridade

Algebra Linear. 1. Espaços Vetoriais Lineares. 2. Coordenadas em Espaços Lineares. 3. Operadores Lineares. 4. Transformação de Similaridade Algebra Linear 1 Espaços Vetoriais Lineares Coordenadas em Espaços Lineares 3 Operadores Lineares 4 Transformação de Similaridade Matriz como Operador Norma de Vetores e Produto Interno pag1 Teoria de

Leia mais

Controlabilidade e Observabilidade

Controlabilidade e Observabilidade IA536 - Teoria de Sistemas Lineares - FEEC/UNICAMP contr 1/18 Controlabilidade e Observabilidade Sfrag replacements R 1 R 2 + u C 1 C 2 R 3 y A tensão no capacitor C 2 não pode ser controlada pela entrada

Leia mais

Álgebra Linear Teoria de Matrizes

Álgebra Linear Teoria de Matrizes Álgebra Linear Teoria de Matrizes 1. Sistemas Lineares 1.1. Coordenadas em espaços lineares: independência linear, base, dimensão, singularidade, combinação linear 1.2. Espaço imagem (colunas) - Espaço

Leia mais

III) Os vetores (m, 1, m) e (1, m, 1) são L.D. se, somente se, m = 1

III) Os vetores (m, 1, m) e (1, m, 1) são L.D. se, somente se, m = 1 Lista de Exercícios de SMA000 - Geometria Analítica 1) Indique qual das seguintes afirmações é falsa: a) Os vetores (m, 0, 0); (1, m, 0); (1, m, m 2 ) são L.I. se, somente se, m 0. b) Se u, v 0, então

Leia mais

Cap.2. Representação de Estado e Controlabilidade

Cap.2. Representação de Estado e Controlabilidade Cap.2. Representação de Estado e Controlabilidade Visão geral do capítulo Neste capítulo trataremos o problema da controlabilidade de sistemas lineares invariantes no tempo. Faremos antes uma breve revisão

Leia mais

ANÁLISE DE SISTEMAS LINEARES NO ESPAÇO DE ESTADOS

ANÁLISE DE SISTEMAS LINEARES NO ESPAÇO DE ESTADOS AE- ANÁLISE DE SISTEMAS LINEARES NO ESPAÇO DE ESTADOS AE- Determine os valores e vectores próprios de a) A= -.5.5 -.5 b) B= - - AE- Forma canónica controlável. a) Mostre que a equação diferencial homogénea

Leia mais

SISTEMAS LINEARES E INVARIANTES NO TEMPO

SISTEMAS LINEARES E INVARIANTES NO TEMPO SISTEMAS LINEARES E INVARIANTES NO TEMPO Paulo Lopes dos Santos Departamento de Engenharia Electrotécnica e Computadores Faculdade de Engenharia da Universidade do Porto Rua Dr Roberto Frias, s/n 4200-464

Leia mais

Encontro 5: Soluções no Espaço de Estados Parte I

Encontro 5: Soluções no Espaço de Estados Parte I Encontro 5: Soluções no Espaço de Estados Parte I Samir A. M. Martins 1 2 UFSJ / Campus Santo Antônio, MG Brasil Programa de Pós-Graduação em Engenharia Elétrica Associação ampla entre CEFET MG e UFSJ

Leia mais

Álgebra Linear - Prof. a Cecilia Chirenti. Lista 3 - Matrizes

Álgebra Linear - Prof. a Cecilia Chirenti. Lista 3 - Matrizes Álgebra Linear - Prof. a Cecilia Chirenti Lista 3 - Matrizes. Sejam A = C = 0 3 4 3 0 5 4 0 0 3 4 0 3, B = 3, D = 3,. Encontre: a A+B, A+C, 3A 4B. b AB, AC, AD, BC, BD, CD c A t, A t C, D t A t, B t A,

Leia mais

14 Estimador assintótico

14 Estimador assintótico Teoria de Controle (sinopse) 4 J. A. M. Felippe de Souza Neste capítulo continuaremos no estudo de que foi iniciado no capítulo anterior. Estimadores de Estado, A exemplo dos capítulos anteriores será

Leia mais

(b) A não será diagonalizável sobre C e A será diagonalizável sobre R se, e

(b) A não será diagonalizável sobre C e A será diagonalizável sobre R se, e Q1. Sejam A M 6 (R) uma matriz real e T : R 6 R 6 o operador linear tal que [T ] can = A, em que can denota a base canônica de R 6. Se o polinômio característico de T for então poderemos afirmar que: p

Leia mais

Álgebra Linear II - Poli - Gabarito Prova SUB-tipo 00

Álgebra Linear II - Poli - Gabarito Prova SUB-tipo 00 Álgebra Linear II - Poli - Gabarito Prova SUB-tipo 00 [ ] 4 2 Questão 1. Seja T : R 2 R 2 o operador linear cuja matriz, com respeito à base canônica de R 2, é. 1 3 [ ] 2 0 Seja B uma base de R 2 tal que

Leia mais

Estabilidade. Samir A. M. Martins 1. Programa de Pós-Graduação em Engenharia Elétrica Associação ampla entre UFSJ e CEFET MG

Estabilidade. Samir A. M. Martins 1. Programa de Pós-Graduação em Engenharia Elétrica Associação ampla entre UFSJ e CEFET MG Interna Samir A. M. Martins 1 1 UFSJ / Campus Santo Antônio, MG Brasil Programa de Pós-Graduação em Engenharia Elétrica Associação ampla entre UFSJ e CEFET MG O que nos espera? Interna 1 em sistemas multivariáveis

Leia mais

P3 de Álgebra Linear I

P3 de Álgebra Linear I P3 de Álgebra Linear I 2008.2 Data: 14 de Novembro de 2008. Gabarito. 1) Decida se cada afirmação a seguir é verdadeira ou falsa. Considere uma transformação linear T : R 3 R 3 tal que existem vetores

Leia mais

Capítulo 8: Estado. Samir A. M. Martins 1. Programa de Pós-Graduação em Engenharia Elétrica Associação ampla entre CEFET MG e UFSJ

Capítulo 8: Estado. Samir A. M. Martins 1. Programa de Pós-Graduação em Engenharia Elétrica Associação ampla entre CEFET MG e UFSJ Capítulo 8: Realimentação de Estados e Estimadores de Estado Samir A. M. Martins 1 1 UFSJ / Campus Santo Antônio, MG Brasil Programa de Pós-Graduação em Engenharia Elétrica Associação ampla entre CEFET

Leia mais

Estabilidade. 1. Estabilidade Entrada-Saída Sistemas LIT. 2. Estabilidade BIBO Sistemas LIT. 3. Estabilidade BIBO de Equações Dinâmicas Sistemas LIT

Estabilidade. 1. Estabilidade Entrada-Saída Sistemas LIT. 2. Estabilidade BIBO Sistemas LIT. 3. Estabilidade BIBO de Equações Dinâmicas Sistemas LIT Estabilidade 1. Estabilidade Entrada-Saída Sistemas LIT 2. Estabilidade BIBO Sistemas LIT 3. Estabilidade BIBO de Equações Dinâmicas Sistemas LIT 4. Sistemas Discretos LIT 5. Estabilidade BIBO Sistemas

Leia mais

5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão Encontre os autovalores, os autovetores e a exponencial e At para

5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão Encontre os autovalores, os autovetores e a exponencial e At para 5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão 2008 1. Encontre os autovalores, os autovetores e a exponencial e At para [ ] 1 1 1 1 2. Uma matriz diagonal Λ satisfaz a regra usual

Leia mais

Noções de Álgebra Linear

Noções de Álgebra Linear Noções de Álgebra Linear 1. Espaços vetoriais lineares 1.1. Coordenadas 2. Operadores lineares 3. Subespaços fundamentais 4. Espaços normados 5. Espaços métricos 6. Espaços de Banach 7. Espaços de Hilbert

Leia mais

Estabilidade para Sistemas LVT

Estabilidade para Sistemas LVT Estabilidade para Sistemas LVT 1. Estabilidade de Sistemas Variante no Tempo 2. Estabilidade da Resposta à Entrada Nula pag.1 Teoria de Sistemas Lineares Aula 14 Estabilidade de Sistemas Variante no Tempo

Leia mais

EES-20: Sistemas de Controle II. 31 Julho 2017

EES-20: Sistemas de Controle II. 31 Julho 2017 EES-20: Sistemas de Controle II 31 Julho 2017 1 / 41 Folha de informações sobre o curso 2 / 41 O que é Controle? Controlar: Atuar sobre um sistema físico de modo a obter um comportamento desejado. 3 /

Leia mais

1 a Lista de Exercícios de MAT3458 Escola Politécnica 2 o semestre de 2016

1 a Lista de Exercícios de MAT3458 Escola Politécnica 2 o semestre de 2016 1 a Lista de Exercícios de MAT3458 Escola Politécnica o semestre de 16 1 Para que valores de t R a função definida por (x 1, x ), (y 1, y ) = x 1 y 1 + tx y é um produto interno em R? Para cada par de

Leia mais

EES-20: Sistemas de Controle II

EES-20: Sistemas de Controle II EES-: Sistemas de Controle II 14 Agosto 17 1 / 49 Recapitulando: Estabilidade interna assintótica Modelo no espaço de estados: Equação de estado: ẋ = Ax + Bu Equação de saída: y = Cx + Du Diz-se que o

Leia mais

MAT Álgebra Linear para Engenharia II - Poli 2 ō semestre de ā Lista de Exercícios

MAT Álgebra Linear para Engenharia II - Poli 2 ō semestre de ā Lista de Exercícios MAT 2458 - Álgebra Linear para Engenharia II - Poli 2 ō semestre de 2014 1 ā Lista de Exercícios 1. Verifique se V = {(x, y) x, y R} é um espaço vetorial sobre R com as operações de adição e de multiplicação

Leia mais

CM005 Álgebra Linear Lista 3

CM005 Álgebra Linear Lista 3 CM005 Álgebra Linear Lista 3 Alberto Ramos Seja T : V V uma transformação linear. Se temos que T v = λv, v 0, para λ K. Dizemos que λ é um autovalor de T e v autovetor de T associado a λ. Observe que λ

Leia mais

Estabilidade de sistemas de controle lineares invariantes no tempo

Estabilidade de sistemas de controle lineares invariantes no tempo 2 Estabilidade de sistemas de controle lineares invariantes no tempo 2.1 Introdução Neste capítulo, vamos definir alguns conceitos relacionados à estabilidade de sistemas lineares invariantes no tempo.

Leia mais

Nota: Turma: MA 327 Álgebra Linear. Terceira Prova. Boa Prova! Primeiro Semestre de T o t a l

Nota: Turma: MA 327 Álgebra Linear. Terceira Prova. Boa Prova! Primeiro Semestre de T o t a l Turma: Nota: MA 327 Álgebra Linear Primeiro Semestre de 26 Terceira Prova Nome: RA: Questões Pontos Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 T o t a l Boa Prova! Questão 1. 2. Pontos) Seja U um

Leia mais

Sinais e Sistemas Aula 1 - Revisão

Sinais e Sistemas Aula 1 - Revisão MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS JOINVILLE DEPARTAMENTO DO DESENVOLVIMENTO DO ENSINO

Leia mais

Dou Mó Valor aos Autovalores

Dou Mó Valor aos Autovalores 1. Definições Preliminares Dou Mó Valor aos Autovalores 21ª Semana Olímpica Maceió, AL Prof. Davi Lopes Nível U Dada uma matriz quadrada A n n de entradas complexas, podemos definir os conceitos a seguir,

Leia mais

Parte 3 - Produto Interno e Diagonalização

Parte 3 - Produto Interno e Diagonalização Parte 3 - Produto Interno e Diagonalização Produto Escalar: Sejam u = (u 1,..., u n ) e v = (v 1,..., v n ) dois vetores no R n. O produto escalar, ou produto interno euclidiano, entre esses vetores é

Leia mais

Matrizes Semelhantes e Matrizes Diagonalizáveis

Matrizes Semelhantes e Matrizes Diagonalizáveis Diagonalização Matrizes Semelhantes e Matrizes Diagonalizáveis Nosso objetivo neste capítulo é estudar aquelas transformações lineares de R n para as quais existe pelo menos uma base em que elas são representadas

Leia mais

Ferramentas Matemáticas para Sistemas Lineares: Álgebra Linear

Ferramentas Matemáticas para Sistemas Lineares: Álgebra Linear Ferramentas Matemáticas para Sistemas Lineares: Álgebra Linear Samir Angelo Milani Martins 1 1 UFSJ-MG / Campus Santo Antônio, MG Brasil Mestrado em Engenharia Elétrica UFSJ/CEFET-MG S. A. M. Martins (UFSJ

Leia mais

Redução de Múltiplos Subsistemas. Carlos Alexandre Mello. Carlos Alexandre Mello 1

Redução de Múltiplos Subsistemas. Carlos Alexandre Mello. Carlos Alexandre Mello 1 Redução de Múltiplos Subsistemas Carlos Alexandre Mello 1 Introdução Sistemas mais complexos são compostos por diversos subsistemas Queremos representar múltiplos subsistemas com apenas uma função de transferência

Leia mais

Trabalho para ser realizado no MATLAB Controle Multivariável PTC-2513 Prof. Paulo Sérgio

Trabalho para ser realizado no MATLAB Controle Multivariável PTC-2513 Prof. Paulo Sérgio Trabalho para ser realizado no MATLAB Controle Multivariável PTC-253 Prof. Paulo Sérgio Parte I - A ser entregue na primeira aula após a primeira prova. Considere o modelo linearizado do sistema de pêndulo

Leia mais

Modelagem de Sistemas de Controle por Espaço de Estados

Modelagem de Sistemas de Controle por Espaço de Estados Modelagem de Sistemas de Controle por Espaço de Estados A modelagem por espaço de estados possui diversas vantagens. Introduz a teoria conhecida como Controle Moderno ; Adequada para sistemas de múltiplas

Leia mais

Controle utilizando variáveis de estado - v1.1

Controle utilizando variáveis de estado - v1.1 2 ontrole utilizando variáveis de estado - v. 2. Objetivo O objetivo desta experiência é, utilizando o enfoque de espaço de estados, projetar e implementar um controlador digital para uma planta simples

Leia mais

Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC

Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC Introdução à Mecânica do Contínuo Tensores Professor: Márcio André Araújo Cavalcante

Leia mais

1 a Lista de Exercícios MAT 3211 Álgebra Linear Prof. Vyacheslav Futorny

1 a Lista de Exercícios MAT 3211 Álgebra Linear Prof. Vyacheslav Futorny 1 a Lista de Exercícios MAT 3211 Álgebra Linear - 213 - Prof. Vyacheslav Futorny 1 a parte: Resolução de sistemas de equações lineares, matrizes inversíveis 1. Para cada um dos seguintes sistemas de equações

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1 (Ita 018) Uma progressão aritmética (a 1, a,, a n) satisfaz a propriedade: para cada n, a soma da progressão é igual a n 5n Nessas condições, o determinante da matriz a1 a a a4 a5 a 6 a a a 7 8 9 a)

Leia mais

3 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão e B =

3 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão e B = 3 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão 2008. (a) Ache os auto-valores e auto-vetores de A = 3 4 2 0 2 0 0 0 e B = 0 0 2 0 2 0 2 0 0 (b) Mostre que λ + λ 2 + λ 3 é igual ao

Leia mais

MAT-27 Lista-09 Outubro/2011

MAT-27 Lista-09 Outubro/2011 MAT-27 Lista-09 Outubro/2011 1. Determinar, se possível, uma matriz M M 2 (R) de maneira que M 1 AM seja diagonal nos seguintes casos: [ ] 2 4 (a) 3 13 [ ] 3 2 2 1 2. Achar uma matriz diagonal semelhante

Leia mais

Forma Canônica de Matrizes 2 2

Forma Canônica de Matrizes 2 2 Forma Canônica de Matrizes Slvie Olison Kamphorst Departamento de Matemática - ICE - UFMG Versão. - Novembro 5 a b Seja A c d induzida por A uma matriz real e seja T a transformação operador linear de

Leia mais

Lista de Álgebra Linear Aplicada

Lista de Álgebra Linear Aplicada Lista de Álgebra Linear Aplicada Matrizes - Vetores - Retas e Planos 3 de setembro de 203 Professor: Aldo Bazán Universidade Federal Fluminense Matrizes. Seja A M 2 2 (R) definida como 0 0 0 3 0 0 0 2

Leia mais

Lista de Exercícios III. junho de 2005

Lista de Exercícios III. junho de 2005 ÁLGEBRA LINEAR II Prof Amit Bhaya Lista de Exercícios III junho de 2005 Ortogonalidade, espaços fundamentais 1 Se Ax = b possui solução e A T y = 0, então y é perpendicular a 2 Se Ax = b não possui solução

Leia mais

Modelagem Matemática de Sistemas

Modelagem Matemática de Sistemas Modelagem Matemática de Sistemas 1. Descrição Matemática de Sistemas 2. Descrição Entrada-Saída 3. Exemplos pag.1 Teoria de Sistemas Lineares Aula 3 Descrição Matemática de Sistemas u(t) Sistema y(t) Para

Leia mais

. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1

. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1 QUESTÕES ANPEC ÁLGEBRA LINEAR QUESTÃO 0 Assinale V (verdadeiro) ou F (falso): (0) Os vetores (,, ) (,,) e (, 0,) formam uma base de,, o espaço vetorial gerado por,, e,, passa pela origem na direção de,,

Leia mais

Modelagem Matemática de Sistemas

Modelagem Matemática de Sistemas Modelagem Matemática de Sistemas 1. de modelagem com Circuitos Elétricos 2. Sistemática para Obtenção de Equações de Estado pag.1 Teoria de Sistemas Lineares Aula 4 Descrição Matemática de Sistemas Exemplo

Leia mais

MAT2458 ÁLGEBRA LINEAR PARA ENGENHARIA II 2 a Prova - 2 o semestre de T ( p(x) ) = p(x + 1) p(x), (a) 8, (b) 5, (c) 0, (d) 3, (e) 4.

MAT2458 ÁLGEBRA LINEAR PARA ENGENHARIA II 2 a Prova - 2 o semestre de T ( p(x) ) = p(x + 1) p(x), (a) 8, (b) 5, (c) 0, (d) 3, (e) 4. MAT2458 ÁLGEBRA LINEAR PARA ENGENHARIA II 2 a Prova - 2 o semestre de 218 Q1. Considere a transformação linear T : P 3 (R) P 2 (R), dada por T ( p(x) ) = p(x + 1) p(x), para todo p(x) P 3 (R), e seja A

Leia mais

Algebra Linear. 1. Funções de Matriz Quadrada 1.1. Teorema de Cayley-Hamilton. pag.1 Teoria de Sistemas Lineares Aula 8. c Reinaldo M.

Algebra Linear. 1. Funções de Matriz Quadrada 1.1. Teorema de Cayley-Hamilton. pag.1 Teoria de Sistemas Lineares Aula 8. c Reinaldo M. Algebra Linear 1. 1.1. Teorema de Cayley-Hamilton pag.1 Teoria de Sistemas Lineares Aula 8 Considere A R n n associada a transformação linear f : R n R n Polinômios de matriz quadrada Para k positivo e

Leia mais

Autovetor e Autovalor de um Operador Linear

Autovetor e Autovalor de um Operador Linear Autovetor e Autovalor de um Operador Linear Definição Seja T : V V um operador linear. Um vetor v V, v 0, é dito um autovetor de T se existe um número real λ tal que T (v) = λv. O número real λ acima é

Leia mais

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP Álgebra Linear AL Luiza Amalia Pinto Cantão Depto de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocabaunespbr Espaços Vetoriais 1 Definição; 2 Subespaços; 3 Combinação Linear, dependência

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática 1 Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática Lista 4 - MAT 137 -Introdução à Álgebra Linear 2017/II 1. Entre as funções dadas abaixo, verifique quais

Leia mais

Álgebra Linear I - Aula 22

Álgebra Linear I - Aula 22 Álgebra Linear I - Aula 1. Bases Ortonormais.. Matrizes Ortogonais. 3. Exemplos. 1 Bases Ortonormais Lembre que uma base β é ortogonal se está formada por vetores ortogonais entre si: para todo par de

Leia mais

MAT3457 ÁLGEBRA LINEAR PARA ENGENHARIA I 1 a Lista de Exercícios - 1 o semestre de 2018

MAT3457 ÁLGEBRA LINEAR PARA ENGENHARIA I 1 a Lista de Exercícios - 1 o semestre de 2018 MAT3457 ÁLGEBRA LINEAR PARA ENGENHARIA I a Lista de Exercícios - o semestre de 8 Exercícios -8: os espaços V e V 3. Exercícios 9-7: dependência, independência linear, bases. Exercícios 8-48: sistemas lineares.

Leia mais

Análise Dinâmica de Sistemas Mecânicos e Controle

Análise Dinâmica de Sistemas Mecânicos e Controle Análise Dinâmica de Sistemas Mecânicos e Controle Unidade 3 Espaço de Estados: álgebra e resolução das equações dinâmicas Prof. Thiago da Silva Castro thiago.castro@ifsudestemg.edu.br Para trabalhar no

Leia mais

ÁLGEBRA LINEAR I - MAT0032

ÁLGEBRA LINEAR I - MAT0032 UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT0032 11 a Lista de

Leia mais

Modelação e Simulação 4.Sistemas lineares Sistemas lineares

Modelação e Simulação 4.Sistemas lineares Sistemas lineares Modelação e Simulação 4.Sistemas lineares. 4.Sistemas lineares Objectivo: Após completar este módulo o aluno deverá ser capaz de relacionar o tipo de resposta no tempo com a estrutura do sistema linear,

Leia mais

Realimentação e Observador no Espaço de Estados Revisão

Realimentação e Observador no Espaço de Estados Revisão Realimentação e Observador no Espaço de Estados Revisão 1. Realimentação de estados 1.1. Um tour por alocação de pólos 2. Observador ou Estimador 2.1. Observador? Por quê? 3. Princípio da separação 4.

Leia mais

Autovalores e Autovetores

Autovalores e Autovetores Algoritmos Numéricos II / Computação Científica Autovalores e Autovetores Lucia Catabriga 1 1 DI/UFES - Brazil Junho 2016 Introdução Ideia Básica Se multiplicarmos a matriz por um autovetor encontramos

Leia mais

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range). R é o conjunto dos reais; R n é o conjunto dos vetores n-dimensionais reais; Os vetores

Leia mais

Estabilidade de sistemas de controle lineares invariantes no tempo

Estabilidade de sistemas de controle lineares invariantes no tempo Capítulo 2 Estabilidade de sistemas de controle lineares invariantes no tempo 2. Introdução Neste capítulo, vamos definir alguns conceitos relacionados à estabilidade de sistemas lineares invariantes no

Leia mais

Álgebra linear A Primeira lista de exercícios

Álgebra linear A Primeira lista de exercícios Álgebra linear A Primeira lista de exercícios Prof. Edivaldo L. dos Santos (1) Verifique, em cada um dos itens abaixo, se o conjunto V com as operações indicadas é um espaço vetorial sobre R. {[ ] a b

Leia mais

1 Equações Diferenciais Ordinárias: Sistemas de Equações

1 Equações Diferenciais Ordinárias: Sistemas de Equações Equações Diferenciais Ordinárias: Sistemas de Equações O sistema geral de duas equações diferenciais pode ser escrito como: ẋ = F x,y,t ẏ = Gx,y,t Uma Solução de é um par x t e y t de funções de t tais

Leia mais

Dependência linear e bases

Dependência linear e bases Dependência linear e bases Sadao Massago 2014 Sumário 1 Dependência linear 1 2 ases e coordenadas 3 3 Matriz mudança de base 5 Neste texto, introduziremos o que é uma base do plano ou do espaço 1 Dependência

Leia mais

. f3 = 4 e 1 3 e 2. f2 = e 1 e 3, g 1 = e 1 + e 2 + e 3, 2 g 2 = e 1 + e 2,

. f3 = 4 e 1 3 e 2. f2 = e 1 e 3, g 1 = e 1 + e 2 + e 3, 2 g 2 = e 1 + e 2, INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-457 Álgebra Linear para Engenharia I Segunda Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Dê a matriz de mudança

Leia mais

Matrizes positivas definidas, semidefinidas, etc.

Matrizes positivas definidas, semidefinidas, etc. Matrizes positivas definidas, semidefinidas, etc. Amit Bhaya, Programa de Engenharia Elétrica COPPE/UFRJ Universidade Federal do Rio de Janeiro amit@nacad.ufrj.br http://www.nacad.ufrj.br/ amit Funções

Leia mais

REPRESENTAÇÃO DE SISTEMAS DINÂMICOS NA FORMA DO ESPAÇO DOS ESTADOS

REPRESENTAÇÃO DE SISTEMAS DINÂMICOS NA FORMA DO ESPAÇO DOS ESTADOS REPRESENTAÇÃO DE SISTEMAS DINÂMICOS NA FORMA DO ESPAÇO DOS ESTADOS. Espaço dos estados Representação da dinâmica de um sistema de ordem n usando n equações diferenciais de primeira ordem. Sistema é escrito

Leia mais

ÁLGEBRA LINEAR - MAT0024

ÁLGEBRA LINEAR - MAT0024 UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR - MAT0024 11 a Lista de exercícios

Leia mais

MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2011/2012. EIC0010 FÍSICA I 1o ANO 2 o SEMESTRE

MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2011/2012. EIC0010 FÍSICA I 1o ANO 2 o SEMESTRE MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2011/2012 EIC0010 FÍSICA I 1o ANO 2 o SEMESTRE Prova com consulta de formulário e uso de computador. Duração 2 horas. Nome do estudante: Pode consultar

Leia mais

ÁLGEBRA LINEAR I - MAT0032

ÁLGEBRA LINEAR I - MAT0032 UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT003 10 a Lista de

Leia mais

Equação Geral do Segundo Grau em R 2

Equação Geral do Segundo Grau em R 2 8 Equação Geral do Segundo Grau em R Sumário 8.1 Introdução....................... 8. Autovalores e autovetores de uma matriz real 8.3 Rotação dos Eixos Coordenados........... 5 8.4 Formas Quadráticas..................

Leia mais

-GNE219 - Controle em Espaço de Estados

-GNE219 - Controle em Espaço de Estados Universidade Federal de Lavras Departamento de Engenharia -GNE219 - Controle em Espaço de Estados Prof. Daniel Leite E-mail: daniel.leite@deg.ufla.br 2/2017 1/35 Sumário Conceitos básicos de modelos em

Leia mais

Tópicos de Álgebra Linear Verão 2019 Lista 2: Transformações Lineares

Tópicos de Álgebra Linear Verão 2019 Lista 2: Transformações Lineares Universidade Federal do Paraná Centro Politécnico ET-DMAT Prof. Maria Eugênia Martin Tópicos de Álgebra Linear Verão 2019 Lista 2: Transformações Lineares Exercício 1. Prove que cada uma das transformações

Leia mais

UFPB - CCEN - DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 1 a LISTA DE EXERCÍCIOS PERÍODO

UFPB - CCEN - DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 1 a LISTA DE EXERCÍCIOS PERÍODO UFPB - CCEN - DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA a LISTA DE EXERCÍCIOS PERÍODO 0 Os exercícios 0 8 trazem um espaço vetorial V e um seu subconjunto W Sempre que W for um subespaço

Leia mais