Agradecimentos. Aos colegas da pós-graduação que me fizeram sentir em casa, mesmo eu sendo o único da turma que não era de Belo Horizonte. Valeu!

Tamanho: px
Começar a partir da página:

Download "Agradecimentos. Aos colegas da pós-graduação que me fizeram sentir em casa, mesmo eu sendo o único da turma que não era de Belo Horizonte. Valeu!"

Transcrição

1 Agradecimentos Antes de tudo, quero agradecer a Deus. Ele tem me abençoado todos os dias da minha vida. Pois dele, por Ele e para Ele são todas as coisas. A Ele seja a glória para sempre! Amém. Quero agradecer aos meus pais, Joaquim dos Reis e Maria Irene dos Reis. Estudar fora é difícil, a saudade é grande mas o amor, o apoio e o carinho superam distâncias e eu sempre tive a compreensão incondicional deles. Aos colegas da pós-graduação que me fizeram sentir em casa, mesmo eu sendo o único da turma que não era de Belo Horizonte. Valeu! Aos amigos e amigas da Igreja Batista Getsêmani, minha família em Belo Horizonte. À galera da célula A Tenda do Encontro, à Judy (minha primeira amiga em BH), à Thátia (minha irmãzinha), à Débora (que eu conheci na porta do cemitério e é para quem eu ligo quando estou doente), ao Lessander. Obrigado também ao meu grande amigo Uilton Soares de Oliveira. Falar que ele é o irmão que eu não tive é pouco. Ele é um amigo mais apegado que um irmão. i

2 Sumário 1 Teoria Básica Dimensão Grau Curvas Racionais Normais Variedades Espaço Tangente Espaço Tangente Afim Espaço Tangente Projetivo Explosão Projeção Rolos Racionais Normais Construção Sintética Grau e dimensão do rolo racional normal Outras propriedades Rolos Racionais Normais e Variedades Determinantais 30 4 Rolos Racionais Normais e Divisores Divisores em Variedades Irredutíveis Divisores, Aplicações e Rolos O rolo cúbico ii

3 5 Representação Plana do Rolo Projeções e Aplicações iii

4 Introdução O principal objetivo desta dissertação é fazer um estudo dos rolos racionais normais de vários pontos de vista. Sejam k, l dois inteiros positivos com k l e Λ, Λ subespaços lineares complementares de dimensões k e l respectivamente em P k+l+1 (isto é, Λ e Λ são disjuntos e geram P k+l+1 ). Escolha curvas racionais normais C Λ e C Λ e um isomorfismo ϕ : C C. O rolo racional normal S k,l é a união das retas p, ϕ(p) ligando pontos p de C aos pontos correspondentes ϕ(p) de C. Este tipo de superfície foi estudada por Corrado Segre ( ), professor da Universidade de Turim, logo após a defesa da sua tese de doutorado sobre quádricas. No capítulo 1, introduzimos a teoria básica necessária ao desenvolvimento do assunto apresentando os conceitos de espaço projetivo, variedades, curvas racionais normais e espaço tangente e listando também alguns resultados importantes como, por exemplo, o teorema da dimensão das fibras. No capítulo 2, veremos os rolos racionais normais de maneira sintética como na definição supracitada, com uma abordagem próxima de [2] e [4]. Também estudaremos grau, dimensão e outras propriedades do rolo. O capítulo 3 é dedicado a maneira analítica de estudar o rolo. Veremos o rolo racional normal como variedade determinantal. No capítulo 4, a abordagem é feita através de divisores, usando [3]. Veremos a relação entre rolos racionais normais e aplicações definidas de P 2 para o P k+l+1 associadas a subsistemas lineares de divisores no plano. Em particular, o S 1,2 P 4 será estudado como a explosão de P 2 em um ponto. No capítulo 5 faremos várias projeções do rolo para o plano, baseadas em [4], e estabeleceremos a relação de uma projeção plana particular com as aplicações do capítulo 4. Um enfoque especial é dado aos exemplos. Muitas das propriedades gerais iv

5 dos rolos racionais normais antes de serem enunciadas na forma geral são feitas para casos particulares. 1

6 Capítulo 1 Teoria Básica Este capítulo introduz algumas das idéias básicas da dissertação, definindo os elementos principais e listando propriedades e resultados que serão utilizados no decorrer do texto. Definição 1.1 Seja K um corpo algebricamente fechado. O espaço projetivo de dimensão n sobre o corpo K é o conjunto de subespaços de dimensão 1 do espaço vetorial K n+1 que será denotado por P n. Um elemento x P n será denotado por x = (x 0,..., x n ). Sabemos que em P n um polinômio F K[x 0,..., x n ] não define uma função, mas se F é um polinômio homogêneo de grau d, isto é, todos os monômios de F têm grau d, então faz sentido falar no conjunto dos zeros de F. Definição 1.2 Uma variedade projetiva X P n é o conjunto dos zeros de uma coleção de polinômios homogêneos F α. Denotaremos uma variedade por V (F α ). 2

7 Definição 1.3 Seja T : K n+1 K n+1 uma transformação linear de coordenadas do espaço vetorial K n+1. Então T leva subespaços de dimensão 1 (retas passando pela origem) em subespaços de dimensão 1. Logo T define uma aplicação de P n P n que será chamada de transformação projetiva. Definição 1.4 Duas variedades V e V são ditas projetivamente equivalentes se existe uma transformação projetiva tal que T (V ) = V. Definição 1.5 Um mapa regular de uma variedade arbitrária X para um espaço afim A n é um mapa dado por uma n-upla de funções regulares em X. Já um mapa ϕ : X P n é regular se é localmente regular, isto é, se é contínuo e para cada aberto afim U i = A n P n a restrição de ϕ a ϕ 1 (U i ) é regular. Definição 1.6 Sejam X e Y variedades projetivas irredutíveis. Um mapa racional ϕ : X Y é definido como uma classe de equivalência de pares (U, γ) com U X um subconjunto aberto denso de Zariski e γ : U Y um mapa regular, onde dois pares (U, γ) e (V, η) são ditos equivalentes se γ U V = η U V. Definição 1.7 Dizemos que um mapa racional ϕ : X Y é birracional se existe um mapa γ : Y X tal que ϕ γ e γ ϕ são ambas definidas e iguais a identidade. Definição 1.8 Dizemos que duas variedades irredutíveis X e Y são birracionalmente equivalentes se existe um mapa birracional entre elas. Definição 1.9 Dizemos que uma variedade irredutível X é racional se X é birracionalmente equivalente a P n para algum n. 3

8 1.1 Dimensão Definição 1.10 A dimensão de uma variedade projetiva irredutível X P n,denotada por dim(x), é o menor inteiro i tal que existe um subespaço de P n de dimensão n i 1 disjunto de X. Observação 1.11 Se X, Y P n são variedades de dimensões i e j com i + j n então X Y. O próximo teorema é conhecido como teorema da dimensão das fibras e será útil no cálculo da dimensão dos rolos. Teorema 1.12 Sejam X uma variedade projetiva, π : X P n um mapa regular e Y o fecho da imagem. Para cada p X, sejam X p = π 1 (π(p)) X a fibra de π que contém p e µ(p) = dim p (X p ) a dimensão local de X p em p. Então para cada m o lugar dos pontos p X tal que dim p (X p ) m é um fechado em X. Mais ainda, se X 0 X é uma componente irredutível, Y 0 Y o fecho de sua imagem e µ o menor valor de µ(p) sobre X 0 então dim(x 0 ) = dim(y 0 ) + µ. Demonstração: A demonstração pode ser encontrada em [2], capítulo 11. Corolário 1.13 Seja π : X Y um mapa regular de variedades projetivas com Y irredutível. Suponha que todas as fibras π 1 (q) de π são irredutíveis de mesma dimensão. Então X é irredutível. Demonstração: A demonstração pode ser encontrada em [2], capítulo 11. 4

9 1.2 Grau Definição 1.14 Sejam X P n uma variedade irredutível de dimensão k e Ω um (n k)-plano genérico. Então o grau de X, denotado por grau(x), é o número de pontos da intersecção de Ω com X, contados com multiplicidade. Equivalentemente, sejam X P n uma variedade irredutível de dimensão k e Λ um (n k 1)-plano genérico. Então grau(x) é o grau do mapa finito sobrejetor π Λ : X P k, onde grau do mapa π Λ : X P k é o número de pontos na imagem inversa de um ponto genérico de π Λ (X). O próximo resultado, conhecido com Teorema de Bézout, relaciona o grau da interseção de duas variedades com os graus das variedades. Teorema 1.15 Sejam X, Y P n variedades irredutíveis de dimensões i e j, respectivamente com i + j n e suponha que X e Y têm interseção genericamente transversal. Então grau(x Y ) = grau(x) grau(y ). Em particular, se i + j = n temos que X Y consistirá de grau(x)grau(y ) pontos. Demonstração: A demonstração pode ser encontrada em [2], Capítulo 18, página Curvas Racionais Normais Exemplo 1.16 Considere a imagem C do mapa v : P 1 P 3 dada por v : (x 0, x 1 ) (x 3 0, x 2 0 x 1, x 0 x 2 1, x 3 1 ) = (z 0, z 1, z 2, z 3 ). Observemos que C é o lugar dos zeros comuns dos polinômios 5

10 2 F 0 = z 0 z 2 z 1 F 1 = z 0 z 3 z 1 z 2 2 F 2 = z 1 z 3 z 2 e é chamada cúbica reversa. De fato, é fácil ver que se p v(p 1 ) então p satisfaz F 0, F 1 e F 2. Vejamos que se p = (z 0, z 1, z 2, z 3 ) V (F 0, F 1, F 2 ) então p v(p 1 ). Suponha z 0 = 1, logo por F 0 temos z 2 = z 2 1 e por F 1 temos z 3 = z 1 z 2 = z 3 1. Logo p = (1, z 1, z 2 1, z 3 1 ) = v(1, z 1 ). Podemos generalizar o exemplo anterior. Definição 1.17 Seja h 0, h 1,..., h d uma base para o espaço dos polinômios homogêneos de grau d nas variáveis x 0, x 1. Uma curva racional normal C P d de grau d é a imagem da aplicação v d : P 1 P d dada por v d : (x 0, x 1 ) = (h 0, h 1,..., h d ) Afirmação 1.18 Dadas duas curvas racionais normais C, C P d de grau d elas são projetivamente equivalentes, isto é, existe uma transformação projetiva T : P d P d que leva C em C Demonstração: Basta mostrar que uma curva racional normal é projetivamente equivalente a uma forma padrão de curva racional normal. Seja C P d uma curva racional normal dada por C = u d (P 1 ) com u d : (x 0, x 1 ) = (h 0, h 1,..., h d ). Sabemos que x d 0, x d 1 0 x 1,..., x d 1 também é uma base para o espaço dos polinômios homogêneos de grau d nas variáveis x 0, x 1 assim podemos escrever h 0 = a 0,0 x d 0 + a 0,1 x d 1 d 0 x a 0,d x 1 6

11 h 1 = a 1,0 x 0 d + a 1,1 x 0 d 1 x a 1,d x 1 d. h d = a d,0 x 0 d + a d,1 x 0 d 1 x a d,d x 1 d e definir uma transformação T C : P d P d cuja matriz é dada por a 0,0 a 0,1 a 0,d a 1,0 a 1,1 a 1,d a d,0 a d,1 a d,d tal que T C 1 leva C na curva dada como a imagem da função dada por v d : P 1 P d v d : (x 0, x 1 ) (x 0 d, x 0 d 1 x 1,..., x 1 d ). Assim, em todo o texto, uma curva racional normal C de grau d será vista como a imagem da aplicação v d : P 1 P d definida por v d ((x 0, x 1 )) = (x 0 d, x 0 d 1 x 1,..., x 1 d ) = (z 0, z 1,..., z d ). Afirmação 1.19 A curva C é o lugar dos zeros comuns dos polinômios F i,j (z) = z i z j z i 1 z j+1 para 1 i j d 1. Demonstração: Já sabemos que v d (P 1 ) V (F i,j ). Vejamos que V (F i,j ) v d (P 1 ). Seja p = (z 0, z 1,..., z d ). Sem perda de generalidade, suponha z 0 = 1. Por F 1,1 temos z 2 = z 2 1, por F 1,2 temos z 3 = z 1 z 2 = z 3 1 e de maneira geral por F 1,j temos que z j+1 = z j+1 1. Assim p = (1, z 1, z 2 1,..., z d 1 ). 7

12 Exemplo 1.20 Para d = 4 temos a quártica racional normal dada por v 4 : (x 0, x 1 ) (x 4 0, x 3 0 x 1, x 2 0 x 2 1, x 0 x 3 1, x 4 1 ) = (z 0, z 1, z 2, z 3, z 4 ). e que também pode ser vista como os zeros comuns de 2 F 0 = z 0 z 2 z 1 F 1 = z 0 z 3 z 1 z 2 F 2 = z 0 z 4 z 1 z 3 2 F 3 = z 1 z 3 z 2 F 4 = z 1 z 4 z 2 z 3 2 F 5 = z 2 z 4 z 3 Observação 1.21 Notemos que d + 1 pontos de uma curva racional normal são linearmente independentes. De fato, supondo, por exemplo, x 0 0 a matriz M (d+1) (d+1) formada pelas coordenadas de d + 1 pontos sobre C é uma matriz de Van Der Monde e sabemos que o determinannte da matriz de Van Der Monde só se anula se duas linhas coincidirem. Para d = 4, supondo x 0 0 temos que a matriz onde cada linha é composta pelas coordenadas C é da forma 1 a 1 2 a 1 3 a 1 4 a 1 1 b 1 2 b 1 3 b 1 4 b 1 1 c 1 2 c 1 3 c 1 4 c 1 1 d 1 2 d 1 3 d 1 4 d 1 1 e 1 2 e 1 3 e 1 4 e 1 Assim d + 1 pontos numa curva racional normal de grau d determinam o espaço P d. 8

13 1.4 Variedades Variedade de Veronese A construção da curva racional normal também pode ser generalizada. Para cada n e d podemos definir a aplicação de Veronese de grau d dada por v d : P n P N v d (x 0, x 1,..., x n ) = (..., x I,...) onde x I percorre todos os monômios de grau d em x 0, x 1,..., x n. A imagem da aplicação de Veronese é chamada Variedade de Veronese. ( ) n + d É fácil ver que N = 1 d Exemplo 1.22 Considere d = n = 2, temos que é dada por v 2 : P 2 P 5 v d (x 0, x 1, x 2 ) = (x 0 2, x 0 x 1, x 0 x 2, x 1 2, x 1 x 2, x 2 2 ) A imagem desta aplicação é chamada de superfície de Veronese. Exemplo 1.23 O P 5 das cônicas Sabemos que uma cônica C em P 2 é dada pela equação a 0 x a 1 x 0 x 1 + a 2 x a 3 x 0 x 2 + a 4 x a 5 x 1 x 2 = 0. 9

14 Sabemos também que se b i é tal que b i = λa i para i = 0, 1,..., 5 então a cônica C definida por b 0 x b 1 x 0 x 1 + b 2 x b 3 x 0 x 2 + b 4 x b 5 x 1 x 2 = 0 é a mesma cônica C (como conjunto de pontos de P 2 ). Assim podemos considerar o conjunto das cônicas de P 2 constituindo um espaço projetivo de dimensão 5, dado pelos pontos (a 0, a 1, a 2, a 3, a 4, a 5 ) o qual será chamado de P 5 das cônicas. De maneira completamente análoga, considere uma cúbica C em P 2 dada pela equação a 0 x a 1 x 0 2 x 1 + a 2 x 0 2 x 2 + a 3 x 0 x a 4 x 0 x 1 x 2 + a 5 x 0 x a 6 x a 7 x 1 2 x 2 + a 8 x 1 x a 9 x 2 3 = 0 Podemos considerar o conjunto da cúbicas planas formando um espaço projetivo de dimensão 9, dado pelos pontos (a 0, a 1, a 2, a 3, a 4, a 5, a 6, a 7, a 8, a 9 ) que chamaremos de P 9 das cúbicas. De modo geral, o conjunto das curvas planas de grau n pode ser associado a P r, onde r = 1 (n + 1)(n + 2) 1. 2 Variedade de Segre Outra família muito importante de aplicações são as chamadas aplicações de Segre σ : P n P m P (n+1)(m+1) 1 definida associando a cada par ((x), (y)) P n P m o ponto em P (n+1)(m+1) 1 cujas coordenadas são os produtos dois a dois das coordenadas de (x) e (y), isto é, σ : ((x 0, x 1,..., x n ), (y 0, y 1,..., y m )) (..., x i y j,...) 10

15 A imagem desta aplicação é uma variedade chamada de Variedade de Segre e será denotada por Σ n,m. Exemplo 1.24 Nosso primeiro exemplo de variedade de Segre é a variedade Σ 1,1 P 3, isto é, a imagem da aplicação σ : P 1 P 1 P 3 onde σ : ((x 0, x 1 ), (y 0, y 1 )) = (x 0 y 0, x 0 y 1, x 1 y 0, x 1 y 1 ) = (z 0, z 1, z 2, z 3 ) Notemos que Σ 1,1 é o lugar dos zeros do polinômio z 0 z 3 z 1 z 2, ou seja, é uma superfície quádrica. Exemplo 1.25 Outro exemplo de variedade de Segre é a imagem da aplicação σ : P 2 P 1 dada por σ : ((x 0, x 1, x 2 ), (y 0, y 1 )) = (x 0 y 0, x 0 y 1, x 1 y 0, x 1 y 1, x 2 y 0, x 2 y 1 ) = (z 0, z 1, z 2, z 3, z 4, z 5 ) denotada por Σ 2,1 = σ(p 2 P 1 ) P 5 e conhecida como variedade de Segre de dimensão três. Observemos que Σ 2,1 é o lugar dos zeros dos polinômios G 1 = z 0 z 3 z 1 z 2 G 2 = z 0 z 5 z 1 z 4 G 3 = z 3 z 4 z 2 z Espaço Tangente Espaço Tangente Afim Suponha que X A n é uma variedade afim de dimensão k com I(X) = (f 1, f 2,..., f l ). Seja M a matriz l n com entradas m i,j = f i x j, onde 1 i l e 1 j n. 11

16 Definição 1.26 Um ponto p X é dito suave (ou não singular) em X se o posto da matriz M avaliada em p é exatamente n k. Um ponto p X é chamado singular se o posto da matriz M avaliada em p é menor que n k. Podemos ver a matriz M avaliada em p como uma transformação linear de A n para A l e com isto fazer a seguinte definição. Definição 1.27 Seja X uma variedade afim. Se p X é suave definimos o espaço tangente a X em p, denotado por T p (X), como o núcleo da matriz M avaliada em p Espaço Tangente Projetivo Definição 1.28 Seja X P n uma variedade projetiva. Para cada p X o espaço tangente projetivo, que será denotado por T p (X) é definido como o fecho projetivo de T p (X U) onde U = A n P n é um aberto afim contendo p. Podemos descrever T p (X) de uma maneira mais direta. Suponha que X P n é uma hipersuperfície dada pelo polinômio homogêneo F (Z). Sejam U = A n o aberto afim Z 0 0 com coordenadas euclidianas z i = Z i Z 0 e f(z 1, z 2,..., z n ) = F (1, z 1, z 2,..., z n ) tal que X U é o lugar dos zeros de f. Para p X com coordenadas (w 1, w 2,..., w n ) o espaço tangente n afim é dado como o lugar {(z 1, z 2,..., z n ) A n f : (p)(z i w i ) = 0}. z i Pela definição, o espaço tangente projetivo é dado como o lugar T p (X) = n {(Z 0, Z 1,..., Z n ) P n F : (1, w 1, w 2,..., w n )(Z i w i Z 0 ) = 0}. Z i i=1 Mas as derivadas parciais de um polinômio homogêneo de grau d satisfazem a 12 i=1

17 relação de Euler n F Z i = df e temos que F (1, w 1, w 2,..., w n ) = 0 então Z i i=0 T p (X) = {(Z 0, Z 1,..., Z n ) P n : n F (p)z i = 0}. Z i i=0 Uma vez descrito o espaço tangente de uma hipersuperfície, podemos descrever o espaço tangente projetivo de uma variedade arbitrária X P n como a interseção dos espaços tangentes projetivos de todas as hipersuperfícies contendo X. Em particular, se I(X) = (F 1, F 2,..., F m ) então o espaço tangente projetivo de X, T p (X), será o subespaço de P n dado pelo núcleo da matriz M, avaliada em p, com entradas m i,j = F i Z j, onde 1 i l e 1 j n, vista como uma transformação de K n+1 para K n. Definição 1.29 Sejam X e Y P n duas variedades projetivas e p X Y. Dizemos que X e Y tem interseção transversal em p se p X é suave, p Y é suave e os espaços tangentes projetivos T p (X) e T p (Y ) geram T p (P n ). Definição 1.30 Suponha que X e Y P n são duas variedades projetivas. Dizemos que X e Y tem interseção genericamente transversal se a interseção é transversal para um ponto genérico p X Y 1.6 Explosão Considere dois espaços projetivos P n com coordenadas x 0, x 1,..., x n e P n 1 com coordenadas y 0, y 1,..., y n 1. Para pontos x = (x 0, x 1,..., x n ) P n e y = (y 0, y 1,..., y n 1 ) P n 1 denotamos o ponto (x, y) P n P n 1 por (x 0, x 1,..., x n ; y 0, y 1,..., y n 1 ). 13

18 Considere a variedade Π em P n P n 1 definida pelas equações x i y j = x j y i para i, j = 0,..., n 1 Definição 1.31 O mapa σ : Π P n definido pela restrição da projeção na primeira coordenada a Π é chamada explosão de P n com centro em ξ = (0, 0,..., 1) P n. Vejamos algumas propriedades da explosão. Proposição 1.32 A explosão de P n com centro em ξ é um isomorfismo entre P n \ ξ e Π \ (ξ P n 1 ) Demonstração: Se p = (x 0, x 1,..., x n ) ξ então as equações de definição de Π implicam que (y 0, y 1,..., y n 1 ) = (x 0, x 1,..., x n 1 ). Então o mapa σ 1 : P n \ ξ Π definido por σ 1 (x 0, x 1..., x n ) = (x 0, x 1..., x n ; x 0, x 1..., x n 1 ) é a inversa de σ. Se p = (x 0, x 1,..., x n ) = ξ então as equações de definição de Π são satisfeitas para todo valor de y i. Logo σ 1 (ξ) = ξ P n 1. Dessa forma σ define um isomorfismo entre P n \ ξ e Π \ (ξ P n 1 ). Lema 1.33 A variedade Π é irredutível. Demonstração: A demonstração pode ser encontrada em [6], capítulo 2, seção 4. 14

19 Exemplo 1.34 Vamos explodir P 2 com centro em (0, 0, 1), ou seja, considere x = (x 0, x 1, x 2 ) P 2 e y = (y 0, y 1 ) P 1. Em P 2 P 1 com pontos da forma (x 0, x 1, x 2 ; y 0, y 1 ). Seja a variedade Π definida pela equação x 0 y 1 = x 2 y 0. Considere as aplicações σ : Π P 2 P 1 P 2 definida pela restrição da projeção à primeira coordenada de P 2 P 1 P 2 a Π e também σ 1 : P 2 \ ξ Π definida por σ 1 (x 0, x 1, x 2 ) = (x 0, x 1, x 2 ; x 0, x 1 ). Dessa forma temos um isomorfismo entre P 2 \ (0, 0, 1) e Π \ ((0, 0, 1) P 1 ). 1.7 Projeção Sejam o hiperplano P n 1 P n e um ponto p P n \ P n 1. Podemos definir a aplicação π p : P n \ {p} P n 1 dada por π p : q qp P n 1 isto é, mandando um ponto q P n com q p no ponto de interseção da reta pq com o hiperplano P n 1. A reta pq é chamada reta projetante. Definição 1.35 Mantendo as notações anteriores, temos que a aplicação π p é chamada de projeção a partir de p para o hiperplano P n 1. Em coordenadas, suponha que p é um ponto de P n da forma p = (0, 0,..., 1) e que P n 1 é o hiperplano x n = 0. Então a aplicação π p assume a forma: π p (z 0, z 1,..., z n ) = (z 0, z 1,..., z n 1 ) 15

20 Suponha que X é uma variedade em P n não contendo o ponto p. Podemos restringir a aplicação π p a variedade X e ter uma aplicação regular π p : X P n 1. A imagem X = π p (X) desta aplicação é chamada de projeção de X a partir de p para P n 1. Teorema 1.36 A projeção X de uma variedade projetiva X a partir de p para P n 1 é também uma variedade projetiva. Demonstração: A demonstração pode ser encontrada em [2], capítulo 3. A noção de projeção a partir de um ponto pode ser generalizada. Se Λ = P k é um subespaço e P n k 1 é um subespaço complementar a Λ podemos definir a aplicação π Λ : P n \ Λ P n k 1 mandando um ponto q P n \ Λ na interseção de P n k 1 com o (k + 1) plano q, Λ (chamado de projetante). Novamente, para uma variedade X P n disjunta de Λ podemos restringir a aplicação π Λ a variedade X e obter uma aplicação regular cuja imagem é chamada de projeção de X a partir de Λ para P n k 1. A projeção a partir de Λ pode ser vista como a composição de uma sequência de projeções a partir de p 0,..., p k gerando Λ. Logo o Teorema 1.36 nos garante que a projeção da variedade X a partir de Λ para P n k 1 também é uma variedade projetiva. Seja X P n uma variedade. Podemos, de maneira análoga, projetar X a partir de um ponto p X. Observe que a projeção, neste caso, não fica definida para o ponto p X. Vejamos um exemplo. 16

21 Exemplo 1.37 Seja C P 3 a cúbica reversa. Sabemos que C é imagem da aplicação v : P 1 P 3 dada por v : (x 0, x 1 )=(x 3 0, x 2 0 x 1, x 0 x 2 1, x 3 1 ). Vamos projetar C a partir do ponto p = (0, 0, 0, 1) C. A projeção π p : P 3 P 2 fica assim definida π p (z 0, z 1, z 2, z 3 ) = (z 0, z 1, z 2 ). Se restringirmos π p a C \{p} temos π p (C \ {p}) = (x 3 0, x 2 0 x 1, x 0 x 2 1 ) = x 0 (x 2 0, x 0 x 1, x 2 1 ) que é a cônica em P 2. De maneira geral, suponhamos que X P n é uma variedade de grau d e dimensão k e que p / X. Seja X = π p (X) P n 1 a projeção de X a partir de p. Como os hiperplanos no espaço tangente de P n 1 correspondem aos hiperplanos em P n passando por p então uma k-upla de hiperplanos genéricos H i P n 1 vem de uma k-upla de hiperplanos H i em P n passando por p que interceptam X em exatamente d pontos p i com i = 1, 2,..., d. Logo a interseção de X com os hiperplanos H i será a imagem p i = π p (p i ) P n 1 e portanto o grau de X será menor ou igual a d. Novamente suponhamos que X P n é uma variedade de grau d e dimensão k. Seja X = π p (X) P n 1 a projeção de X a partir de p, com p X. A mesma argumentação anterior continua válida, ou seja, os pontos de interseção de X com os hiperplanos H i correspondem aos pontos de interseção de X com os hiperplanos H i exceto pelo ponto p. Então o grau de X é menor ou igual a d 1. 17

22 Capítulo 2 Rolos Racionais Normais 2.1 Construção Sintética Sejam k e l dois inteiros positivos com k l. Sejam Λ e Λ subespaços lineares complementares de dimensões k e l respectivamente em P k+l+1 (isto é, Λ e Λ são disjuntos e geram P k+l+1 ). Escolha curvas racionais normais C Λ e C Λ e um isomorfismo ϕ : C C. Seja S k,l a união das retas p, ϕ(p) ligando pontos p de C aos pontos correspondentes ϕ(p) de C. S k,l é chamado um rolo racional normal. As retas p, ϕ(p) são chamadas retas da regra de S k,l P k+l+1. Exemplo 2.1 Consideremos Λ = P 1 e Λ = P 2 contidos em P 4. Escolha um isomorfismo ϕ entre uma reta C Λ e uma cônica C Λ. Para cada p C, considere a reta p, ϕ(p). Dessa forma temos S 1,2 = { p Cp, ϕ(p)} P 4. 18

23 C C Λ = P 1 Λ = P 2 Exemplo 2.2 Também podemos considerar Λ = P 1 e Λ = P 3. Escolha um isomorfismo entre uma reta C Λ e uma cúbica reversa C Λ. Para cada p C, considere a reta p, ϕ(p). Temos assim S 1,3 = { p Cp, ϕ(p)} P 5. C C Λ = P 3 Λ = P 1 Exemplo 2.3 Consideremos Λ = P 2 e Λ = P 2. Escolha um isomorfismo en- 19

24 C tre as cônicas C Λ e C Λ. Dessa forma temos S 2,2 P 5. Λ = P 2 Exemplo 2.4 Também podemos considerar Λ = P 2 e Λ = P 3. Escolha um isomorfismo entre uma cônica C Λ e uma cúbica reversa C Λ.Assim temos S 2,3 P 6. C C Λ = P 3 Λ = P 2 Vamos agora estudar as principais propriedades dos rolos racionais normais. 20

25 2.2 Grau e dimensão do rolo racional normal Mostraremos nesta seção que dim(s k,l ) = 2 e que o grau de S k,l é k + l. Lema 2.5 Seja S k,l P k+l+1 o rolo racional normal construído a partir de subespaços lineares complementares Λ e Λ de dimensões k e l respectivamente e da escolha de curvas racionais normais C Λ e C Λ e de um isomorfismo ϕ : C C. Então S k,l é irredutível. Demonstração: Considere a projeção Π : S k,l C definida da seguinte forma: para todo p S k,l temos que p q, ϕ(q) para algum q C. Defina Π(p) = q. Assim a fibra Π 1 (q) é a reta q, ϕ(q) para todo q C. Logo todas as fibras têm a mesma dimensão, neste caso dimensão 1. Pelo corolário do teorema da dimensão das fibras (ver 1.13), S k,l é irredutível. Teorema 2.6 Mantendo a notação do lema anterior, considere S k,l P k+l+1. Temos que dim(s k,l ) = 2. Demonstração: Seja Π a projeção do lema anterior. Já sabemos que S k,l é irredutível e que todas as fibras têm a mesma dimensão, neste caso dimensão 1. Então, pelo teorema da dimensão das fibras (ver 1.12), dim(s k,l ) = dim C + 1 e como dim C = 1 logo dim(s k,l ) = = 2. Para calcular o grau do rolo S = S k,l P k+l+1 faremos a interseção de S com um hiperplano particular H gerado por Λ e por Λ 0 onde Λ é o subespaço de dimensão k que aparece na construção de S e Λ 0 é um hiperplano genérico em Λ (Λ é o subespaço de dimensão l que aparece na construção de S). Temos que dim(s) = 2 e dim(h) = k + l logo dim(s) + dim(h) = k + l + 2 > k + l + 1. Assim, pelo Teorema 1.15, temos que grau(s) = grau(s H) 21

26 desde que essa interseção seja transversal. Para calcular grau(s H) vejamos que Λ 0 S consiste de l pontos (já que C Λ é uma curva racional normal de grau l) e Λ S = C. Assim H S = C r 1 r l onde r 1,..., r l são retas de S. Logo grau(s H) = grau(c r 1 r l ) = k + l. Para ver que essa interseção é transversal, seja p H S. Sabemos que o espaço tangente projetivo do hiperplano H é o próprio H, isto é, T p (H) = H. Temos também que T p (S) é um plano, não contido em H. Logo T p (H) e T p (S) geram T p (P k+l+1 ) = P k+l+1 e a interseção é transversal. Exemplo 2.7 O rolo S 1,2 P 4 tem grau = 3. Já o rolo S 1,3 P 5 tem grau = Outras propriedades Exemplo 2.8 Consideremos S 1,2 P 4. Vamos utilizar a notação do Exemplo 2.1. Temos que duas retas da regra de S 1,2 são independentes (geram P 3 ). Já três retas da regra são dependentes e geram P 4. De fato, sejam r e s duas retas da regra de S 1,2 P 4, com r C = p 1, s C = p 2, r C = p 3 e s C = p 4. C p 3 r C p 1 Λ p 4 s p 2 Suponha, por absurdo, que as duas retas r e s se interceptam. Seja α o plano gerado por elas. Temos que p 3 p 4 Λ. Mas em α temos que p 1 p 2 e 22

27 p 3 p 4 se interceptam logo Λ e Λ se interceptam. Absurdo. Logo duas retas da regra de S 1,2 geram P 3. Vejamos agora que três retas da regra geram P 4. Basta observar que uma terceira reta da regra de S 1,2 intercepta a curva C em um ponto que pertence ao P 3 gerado pelas duas retas da regra, mas intercepta C num ponto que não pertence ao supracitado P 3. Exemplo 2.9 Observemos S = S 1,3 P 5, onde vamos manter a notação do Exemplo 2.2. Três retas da regra são dependentes, ou seja, geram exatamente P 4 e não P 5. De fato, já vimos anteriormente que duas retas da regra de S geram P 3. Seja t uma terceira reta da regra de S, diferente de r e s. Observemos que t intercepta o P 3 gerado por r e s, pois Λ está contido neste P 3 e t intercepta Λ. Logo três retas da regra de S geram P 4 e não P 5. De maneira geral, temos o seguinte resultado: Lema 2.10 Seja S k,l P k+l+1 o rolo racional normal construído a partir de subespaços lineares complementares Λ e Λ de dimensões k e l respectivamente e da escolha de curvas racionais normais C Λ e C Λ e de um isomorfismo ϕ : C C. Para k < l temos que k + 1 retas da regra de S são independentes, isto é geram P 2k+1 e k + 2 retas da regra de S são dependentes, isto é geram exatamente P 2k+2. Em outras palavras, k + 1 é o maior número de retas da regra de S independentes. Demonstração: Seja S = S k,l. Primeiro vejamos que duas retas da regra de S são disjuntas. Suponhamos, por absurdo, que as retas r e s da regra de S se interceptam. Considere o P 2 gerado por r e s e os pontos p 1 = r C, p 2 = s C, p 3 = r C e p 4 = s C. Assim as retas p 1 p 2 Λ e p 3 p 4 Λ. As 23

28 retas p 1 p 2 e p 3 p 4 P 2 e portanto se interceptam. Logo Λ e Λ se interceptam. Absurdo. Suponha, por indução, que n retas da regra de S geram P 2n 1, com n k. Queremos mostrar que n + 1 retas da regra de S geram P 2n+1. Para isso, suponha, por absurdo, que n + 1 retas da regra de S geram P 2n. Um subespaço de Λ de dimensão n está contido neste P 2n e um subespaço V Λ também de dimensão n está contido neste P 2n. Pela Observação 1.11, V e Λ se interceptam e logo Λ e Λ se interceptam. Absurdo, pois isto contraria a construção de S. Portanto n+1 retas da regra de S geram P 2n+1. Notemos que Λ P 2k+1 logo a k + 2-ésima reta da regra de S intercepta P 2k+1 então k + 2 retas da regra de S geram exatamente P 2k+2. Exemplo 2.11 Consideremos S = S 2,2 P 5. Então três retas da regra de S 2,2 são independentes (geram P 5 ). Exemplo 2.12 Seja S = S 2,4 P 7. Segue do lema anterior que três retas da regra de S geram P 5 e que quatro retas da regra de S geram P 6 e não P 7. Proposição 2.13 Os rolos S k,l P k+l+1 e S k,l Pk +l +1 com k + l + 1 = k + l + 1 são projetivamente equivalentes se, e somente se, k = k Demonstração: Suponha que S = S k,l e S = S k,l são projetivamente equivalentes e k > k. Consideremos k + 1 retas da regra de S. Sabemos, pelo Lema 2.10, que estas retas são independentes e como transformação projetiva leva reta em reta e preserva independência temos que a imagem dessas retas são independentes em S. Também temos, pelo Lema 2.10, que o maior número de retas independentes em S é k + 1. Mas estamos 24

29 conseguindo em S, k + 1 > k + 1 retas da regra independentes. Absurdo. Logo k não pode ser maior que k. De maneira inteiramente análoga não podemos ter k maior que k. Portanto k = k. Suponha que k = k. Logo l = l pois k + l + 1 = k + l + 1. Relembremos a construção do rolo : sejam Λ e Γ subespaços lineares complementares de dimensões k e l respectivamente em P k+l+1 e sejam C Λ e E Γ as curvas racionais normais que aparecem na construção de S. Sejam, também C Λ e E Γ as curvas racionais normais da construção de S. Sabemos que existe uma transformação projetiva T C : Λ Λ que leva C em C e também uma transformação projetiva T E : Γ Γ que leva E em E. Mas P n é gerado por Λ e Γ (ou Λ e Γ ). Logo as transformações T C e T E se estendem a uma transformação T : P k+l+1 P k+l+1. Assim T leva C em C, E em E e retas da regra de S em retas da regra de S. Portanto S e S são projetivamente equivalentes. Exemplo 2.14 Consideremos os rolos S 1,3 P 5 e S 2,2 P 5. De acordo com a proposição anterior eles não são projetivamente equivalentes. A proposição anterior nos diz que num dado espaço P n os diferentes tipos de rolos racionais normais contidos neste espaço ficam completamente determinados pelo número k que é o grau da curva C que figura na construção do rolo. Desta forma, excluindo a possibilidade de k ser zero, temos num dado P k+l+1, quantos tipos de rolos racionais normais diferentes, ou seja, não projetivamente equivalentes entre si? A resposta depende da soma k + l. Se k + l for par temos, em P k+l+1, k+l 2 tipos de rolos. Se k + l for ímpar temos k+l 1 2 tipos de rolos diferentes em P k+l+1. 25

30 Exemplo 2.15 Em P 4 temos apenas um tipo de rolo racional normal, o S 1,2 pois = 1. Já em P 5 existem dois tipos de rolos racionais normais, o S 1,3 e o S 2,2 visto que 4 2 = 2. Agora em P6 também temos apenas dois tipos de rolos racionais normais, a saber o S 1,4 e o S 2,3 pois = 2. Lema 2.16 Seja S k,l P k+l+1 o rolo racional normal construído a partir de subespaços lineares complementares Λ e Λ de dimensões k e l respectivamente e da escolha de curvas racionais normais C Λ e C Λ e de um isomorfismo ϕ : C C. No caso k < l temos que l retas r 1, r 2,..., r l da regra do rolo S = S k,l geram um hiperplano H P k+l+1 e que H S = r i C. l i=1 Demonstração: Seja p = l k. Sabemos pelo Lema 2.10 que k + 2 retas da regra de S geram P 2k+2. Assim k + 3 retas geram P 2k+3 e pelo mesmo raciocínio concluímos que l = k + p retas geram P 2k+p=k+l. Logo l retas da regra de S geram um hiperplano H. Como p 1 temos que C H pois C Λ H já que Λ fica determinado por k + 1 pontos em posição geral (neste caso sobre uma curva racional normal). Como r i H por construção, temos (C r 1 r l ) (H S). Como grau(h S) = k + l e grau(c r 1 r l ) = grau(c) + l = k + l temos H S = C r 1 r l Proposição 2.17 Seja S k,l P k+l+1 o rolo racional normal construído a partir de subespaços lineares complementares Λ e Λ de dimensões k e l respectivamente e da escolha de curvas racionais normais C Λ e C Λ e de um isomorfismo ϕ : C C. Suponha k < l. No rolo S = S k,l a curva 26

31 racional normal C S é a única curva racional normal de grau menor que l em S, além, é claro, das retas da regra de S que têm grau 1. Demonstração: Seja D uma curva racional normal em S tal que D não é uma reta da regra de S. Consideremos {p 1,..., p l } pontos distintos sobre D e tomemos r i com i = 1,..., l retas da regra de S que passam por p i (isso é possível já que todo ponto de S está em alguma reta da regra e essas retas são distintas, pois caso contrário D seria uma reta). Consideremos o subespaço Λ gerado por {p 1,..., p l } e o hiperplano H gerado por r 1,..., r l. Temos, pelo Lema 2.16 e por construção que H S = D C r 1 r l e tomando os graus temos k + l = grau(d C) + l. Portanto D = C. Definição 2.18 A curva C da proposição anterior, isto é, a curva C de grau k que aparece na construção do rolo, é chamada de diretriz do rolo S. Exemplo 2.19 Temos então que em S 1,2 P 4 e em S 1,3 P 5 a diretriz é uma reta. Já em S 2,3 P 6 a diretriz é uma cônica. Definição 2.20 Uma curva racional normal de grau l sobre o rolo S = S k,l que está num subespaço linear P l complementar ao espaço da diretriz e que intercepta cada reta da regra de S uma única vez é chamada uma secção complementar de S. Lema 2.21 Sejam S = S k,l P k+l+1 o rolo racional normal construído a partir de subespaços lineares complementares Λ e Λ de dimensões k e l respectivamente e da escolha de curvas racionais normais C Λ e C Λ e de um isomorfismo ϕ : C C e D uma secção complementar de S. Considere o rolo racional normal S construído utilizando as curvas C e D. Então S = S. Em outras palavras, qualquer secção complementar pode fazer o papel de C na construção do rolo. 27

32 Demonstração: Notemos que dado S precisamos apenas mostrar que C S. Agora pela construção temos que a cada ponto q de D existe um ponto p de C associado. Temos que p S pois p está justamente na reta da regra de S que passa por q. Logo C S e portanto S = S Observação 2.22 No caso k = l qualquer curva racional C de grau l encontrando cada reta da regra uma única vez pode ser chamada de secção complementar de S. E usando o lema anterior podemos concluir que qualquer duas secções complementares que estejam em subespaços complementares de P k+l+1 podem fazer o papel de C e C na construção do rolo S. Já vimos que um hiperplano H P k+l+1 contendo k + 1 ou mais retas da regra de S intercepta S na união das retas da regra com a diretriz C. Já a intersecção de S com um hiperplano contendo k retas da regra de S intercepta S na união das dadas k retas com uma secção complementar de S. De fato, sabemos a intersecção de um hiperplano com S é uma curva de grau k + l. Se o hiperplano já contém k retas da regra, falta uma curva de grau l e pela Proposição 2.17 esta só pode ser uma secção complementar. Lema 2.23 Seja S = S k,l P k+l+1 o rolo racional normal construído a partir de subespaços lineares complementares Λ e Λ de dimensões k e l respectivamente e da escolha de curvas racionais normais C Λ e C Λ e de um isomorfismo ϕ : C C. Seja C a diretriz de S. Então todo ponto de S que não está na diretriz está em alguma secção complementar de S Demonstração: Seja p S e p / C. Temos que p r onde r é uma reta da regra de S. Escolha k retas da regra de S diferentes de r, de modo que um hiperplano H que contém as k retas contenha p. Como H S é união das dadas k retas com uma secção complementar de S e p não pertence as retas então p está numa secção complementar de S. 28

33 Proposição 2.24 Seja S = S k,l P k+l+1 o rolo racional normal construído a partir de subespaços lineares complementares Λ e Λ de dimensões k e l respectivamente e da escolha de curvas racionais normais C Λ e C Λ e de um isomorfismo ϕ : C C. Seja S = π p (S) a imagem da projeção S k,l a partir de p. Temos que: i) se p está na diretriz de S então S é projetivamente equivalente a S k 1,l P k+l ii)se p não pertence a diretriz de S então S é projetivamente equivalente a S k,l 1 P k+l. Demonstração: Já sabemos que a projeção de uma curva racional normal C de P n é uma curva racional normal em P n 1 quando projetada a partir de um ponto p C (ver Exemplo 1.37). Assim i) se p está na diretriz C, a curva racional normal de grau k contida no subespaço de dimensão k, a projeção a partir de p leva C numa curva de grau k 1 e obtemos S k 1,l P k+l, pois C é projetada numa curva de mesmo grau. ii)se p não pertence a diretriz de S então p pertence a alguma secção complementar de S, uma curva racional normal de grau l que está num subespaço P l complementar ao espaço da diretriz e que pode fazer o papel de C na construção do rolo. Logo a projeção a partir de p leva C numa curva de grau l 1 e obtemos S k,l 1 P k+l, pois C é projetada numa curva de mesmo grau. 29

34 Capítulo 3 Rolos Racionais Normais e Variedades Determinantais Veremos agora outra importante classe de variedades cujas equações são os de menores de uma matriz. Estas variedades, chamadas variedades determinantais, fornecem uma maneira alternativa, mais algébrica, de estudar os rolos racionais normais. Definição 3.1 Seja M o espaço projetivo P mn 1 associado ao espaço vetorial das matrizes m n. Para cada d, seja M d M o subespaço das matrizes de posto menor ou igual a d. Como M d é exatamente o lugar dos zeros comuns dos determinantes de menores (d+1) (d+1) (que são polinômios homogêneos de grau (d+1)sobre M) temos que M d é uma variedade projetiva e é chamada variedade determinantal genérica. Vejamos alguns exemplos. Consideremos d = 1. A variedade determinantal M 1 M = P mn 1 é a variedade de Segre, imagem da aplicação σ : P n P m P (n+1)(m+1) 1 30

35 Exemplo 3.2 Podemos representar Σ 1,1 = σ(p 1 P 1 ) P 3 como Σ 1,1 = { [z] = z 0 z 1 z 2 z 3 } = 0 F = z 0 z 3 z 1 z 2 Exemplo 3.3 Analogamente, a variedade de Segre de dimensão três que é Σ 2,1 = σ(p 2 P 1 ) P 5 pode ser realizada como Σ 2,1 = { ( z0 z [z] : posto 1 z 2 z 3 z 4 z 5 ) } 1 As curvas racionais normais também são variedades determinantais. Lembremos que uma curva racional normal C P n é dada como a imagem da aplicação de Veronese v n : P 1 P n que manda (x, y) P 1 para (x n, x n 1 y,...,y n ) P n. C pode ser realizada como a variedade determinantal de posto 1 associada a matriz ( ) z0 z 1... z n 1 z 1 z 2... z n Exemplo 3.4 Para n = 3 temos a cúbica reversa e suas equações de definição são dadas pelas determinantes 2 2 da matriz ( ) z0 z 1 z 2 z 1 z 2 z 3 2 F 0,1 = z 0 z 2 z 1 F 0,2 = z 0 z 3 z 1 z 2 2 F 0,3 = z 1 z 3 z 2 Observemos que as equações são as mesmas que figuram no Exemplo

36 Vejamos o rolo racional normal como variedade determinantal Teorema 3.5 Sejam k e l inteiros positivos com k l. Então a variedade determinantal linear { ( ) z0... z Ψ = [z] : posto k 1 z k+1... z k+l z 1... z k z k+2... z k+l+1 normal S k,l P k+l+1 Antes da demonstração, vejamos um exemplo. } 1 é o rolo racional Exemplo 3.6 Consideremos l = 2 e k = 1. Temos que S 1,2 P 4 é dado por cujas equações são Ψ = { ( z0 z [z] : posto 2 z 3 z 1 z 3 z 4 ) } 1 F 0,2 = z 0 z 3 z 1 z 2 F 0,3 = z 0 z 4 z 1 z 3 2 F 2,3 = z 2 z 4 z 3 Observemos que C Λ = P 1 definido por V (z 2, z 3, z 4 ) satisfaz F 0,2, F 0,3 e F 2,3 e C Λ = P 2 dado por V (z 0, z 1, F 2,3 ) também satisfaz F 0,2, F 0,3 e F 2,3. Para p C com p = (z 0, z 1, 0, 0, 0) temos que a imagem de p pelo isomorfismo ϕ entre C e C é ϕ(p) = (0, 0, z 2 0, z 0 z 1, z 2 1 ) C. A reta p, ϕ(p) é dada por t(z 0, z 1, 0, 0, 0) + u(0, 0,z 2 0, z 0 z 1, z 2 1 ) = (tz 0,tz 1, uz 2 0, uz 0 z 1, uz 2 1 ) e satisfaz F 0,2, F 0,3 e F 2,3 para todo (t, u) P 1. Mostramos assim que S 1,2 Ψ. Resta ver que Ψ S 1,2. 32

37 Seja p = (a 0, a 1, a 2, a 3, a 4 ) P 4 tal que p satisfaz F 0,2, F 0,3, F 2,3. Se p for da forma p = (0, 0, a 2, a 3, a 4 ) por satisfazer F 2,3 temos que p pertence a cônica e portanto p S 1,2. Se p for da forma p = (a 0, a 1, 0, 0, 0) então p pertence a reta. Agora se p não for de nenhuma dessas formas precisamos mostrar que p pertence a alguma reta da regra de S 1,2. Já vimos que uma reta da regra de S 1,2 é dada por (tz 0, tz 1, uz 2 0, uz 0 z 1, uz 2 1 ). Podemos supor, sem perda de generalidade, a 0 = 1 temos (1, a 1, a 2, a 1 a 2, a 2 1 a 2 ) = (1, a 1, a 2, a 3, a 4 ), pois como p satisfaz F 0,2 temos a 3 = a 1 a 2 e como satisfaz F 0,3 temos que a 4 = a 1 a 3 = a 2 1 a 2. Segue que p está na reta acima fazendo z 0 = 1, z 1 = a 1, t = 1 e u = a 2. Demonstração do Teorema 3.5: Basta ver que uma variedade do tipo Ψ satisfaz a construção sintética do rolo. Seja Λ = P k dado por Λ = V (z k+1, z k+2,..., z k+l+1 ). Desta forma a variedade determinantal em questão se resume a { ( ) z0... z C = [z] : posto k 1 z 1... z k } 1 de grau k (ver comentário anterior ao Exemplo 3.4). que é uma curva racional normal Analogamente seja Λ = P l dado por Λ = V (z 0, z 1,..., z k ). Assim a variedade é { ( ) C zk+1... z = [z] : posto k+l z k+2... z k+l+1 } 1 que é uma curva racional normal de grau l. Já temos C e C. Considere ϕ : C C dada por ϕ(a k, a k 1 b, a k 2 b 2,..., b k ) = (a l, a l 1 b, a l 2 b 2,..., b l ) e vejamos as retas da regra de S. Lembremos que os polinômios são da forma F i,j = z i z j+1 z i+1 z j para 0 i < j k + l e i, j k. Para p C com p = (z 0, z 1,..., z k, 0,..., 0) = (a k, a k 1 b, 33

38 a k 2 b 2,..., b k, 0,0,...,0) para (a, b) P 1 temos que a imagem de p pelo isomorfismo ϕ entre as curvas C e C é ϕ(p) = (0,..., 0, z k+1, z k+2,..., z k+l+1 ) = (0,..., 0,a l, a l 1 b, a l 2 b 2,...,b l ) C. A reta p, ϕ(p) é dada por tp + uϕ(p)= t(z 0,z 1,..., z k,0,..., 0) + u(0,..., 0, z k+1, z k+2,..., z k+l+1 ) = t(a k, a k 1 b, a k 2 b 2,..., b k, 0, 0,..., 0) + u(0,..., 0, a l, a l 1 b, a l 2 b 2,..., b l ) = (ta k, ta k 1 b, ta k 2 b 2,..., tb k, ua l, ua l 1 b, ua l 2 b 2,..., ub l ) = (tz 0, tz 1,..., tz k, uz k+1, uz k+2,..., uz k+l+1 ). De maneira geral um ponto de uma reta da regra tem a i-ésima coordenada z i dada por z i = ta k i b i se 0 i k z i = ua k+l+1 i b i k 1 se k + 1 i k + l + 1 e basta verificar que um ponto desta forma satisfaz a F i,j = z i z j+1 z i+1 z j com 0 i < j k + l e i, j k. Temos três casos possíveis: Primeiro caso: i < j < k. Assim z i z j+1 z i+1 z j = (ta k i b i )(ta k (j+1) b j+1 ) (ta k (i+1) b i+1 )(ta k j b j ) = t 2 a 2k i j 1 b i+j+1 t 2 a 2k i j 1 b i+j+1 Segundo caso: k < i < j. Logo z i z j+1 z i+1 z j = (ua k+l+1 i b i k 1 ) (ua k+l+1 (j+1) b (j+1) k 1 ) - (ua k+l+1 (i+1) b (i+1) k 1 ) (ua k+l+1 j b j k 1 ) = u 2 a 2k+l+1 i j 1 b 2k+i+j 1 - u 2 a 2k+l+1 i j 1 b 2k+i+j 1. Terceiro caso: i < k < j. Então z i z j+1 z i+1 z j = (ta k i b i ) (ua k+l+1 (j+1) b (j+1) k 1 ) - (ta k (i+1) b i+1 ) (ua k+l+1 j b j k 1 ) = tua k+l+1+k i j 1 b k+i+j - tua k+l+1+k i j 1 b k+i+j. Mostramos assim que S k,l Ψ. Resta ver que Ψ S k,l. Seja p = (a 0, a 1,..., a k, a k+1,..., a k+l+1 ) P k+l+1 tal que p satisfaz F i,j para 0 i < j k + l e i, j k. Se p for da forma p = (0, 0,..., a k+1,..., a k+l+1 ) por satisfazer F i,j para k < i < j temos que p pertence a C e portanto p S k,l. Se p for da forma p = (a 0, a 1,..., a k, 0, 0, 0, 0) 34

39 por satisfazer a F i,j para i < j < k então p pertence a C, logo a S k,l. Agora se p não for de nenhuma dessas formas precisamos mostrar que p pertence a alguma reta da regra de S k,l. Já vimos que uma reta da regra de S k,l é dada por (ta k, ta k 1 b, ta k 2 b 2,..., tb k, ua l, ua l 1 b, ua l 2 b 2,..., ub l ). Podemos supor, sem perda de generalidade, a 0 = 1 temos (1, a 1, a 2 1,..., a k 1, a k+1, a k+1 a 1, a k+1 a 2 1,..., a k+1 a l 1 ) = (1, a 1, a 2,..., a k, a k+1,..., a k+l+1 ), pois como p satisfaz F 0,j temos a 0 a j+1 = a 1 a j, ou seja, a j+1 = a 1 a j,para 1 < j < k. Segue que p está na reta acima fazendo t = 1, a = 1, a 1 = b e a k+1 = u. Mostrando assim que Ψ S k,l. Vejamos de uma outra maneira as equações do rolo racional normal. Sejam z 0, z 1,..., z k+l+1 as coordenadas de P k+l+1. A curva C pode ser representada pelas equações: z 0 = 1, z 1 = λ, z 2 = λ 2,..., z k = λ k, z k+1 = 0, z k+2 = 0,..., z k+l+1 = 0 Já uma seção complementar pode ser representada por: z 0 = 0, z 1 = 0, z 2 = 0,..., z k = 0, z k+1 = 1, z k+2 = λ,..., z k+l+1 = λ l e fica claro que a correspondência projetiva entre as duas curvas se expressa através do parâmetro λ. Já um ponto do rolo se expressa pelas equações: z 0 = 1, z 1 = λ, z 2 = λ 2,..., z k = λ k, z k+1 = µ, z k+2 = λµ, z k+3 = λ 2 µ,..., z k+l+1 = λ l µ. Fixando o parâmetro λ e variando µ obtemos todos os pontos de uma reta da regra e variando também λ obtemos todos os pontos do rolo. Podemos obter n 1 equações do rolo, eliminando λ e µ, que se escrevem assim: 35

40 z 0 z 1 = z 1 z 2 = z 2 z 3 = = z k 1 z k = z k+1 z k+2 = z k+2 z k+3 = = z k+l z k+l+1 que se podem escrever na forma do Teorema 3.5. Exemplo 3.7 Para S 1,2 P 4 temos z 0 = 1, z 1 = λ, z 2 = µ, z 3 = λµ, z 4 = λ 2 µ. Vamos para o caso S 1,3 P 5 temos z 0 = 1, z 1 = λ, z 2 = µ, z 3 = λµ, z 4 = λ 2 µ e z 5 = λ 3 µ. O caso S 2,2 P 5 tem z 0 = 1, z 1 = λ, z 2 = λ 2, z 3 = µ, z 4 = λµ e z 5 = λ 2 µ. Vamos agora fazer a seguinte substituição λ = x 1 x 0 e µ = x 2 x 0. Logo temos, para S 1,2 P 4, z 0 = 1, z 1 = x 1 x 0, z 2 = x 2 x 0, z 3 = x 1 x 0 x 2 x 0, z 4 = ( x 1 x 0 ) 2 x 2 x 0 que pode ser escrito da forma z 0 = x 3 0, z 1 = x 2 0 x 1, z 2 =x 2 0 x 2,z 3 = x 0 x 1 x 2, z 4 =x 2 1 x 2 que é um subconjunto do conjunto que geram todas as cúbicas planas. Com substituições análogas obtemos: para S 2,2,(z 0 = x 3 0, z 1 = x 2 0 x 1, z 2 = x 0 x 2 1, z 3 = x 2 0 x 2, z 4 = x 0 x 1 x 2, z 5 = x 2 1 x 2 (que é outro subconjunto dos geradores das cúbicas planas); já para S 1,3 temos (z 0 = x 4 0, z 1 = x 3 0 x 1, z 2 = x 3 0 x 2, z 3 = x 2 0 x 1 x 2, z 4 = x o x 2 1 x 2, z 5 = x 3 1 x 2 (que é um subconjunto do conjunto de geradores das quárticas do plano). Obtemos assim aplicações ϕ k,l de P 2 com coordenadas x 0, x 1, x 2 para P k+l+1. Veremos no próximo capítulo as propriedades dessas aplicações. 36

41 Capítulo 4 Rolos Racionais Normais e Divisores 4.1 Divisores em Variedades Irredutíveis Definição 4.1 Seja X uma variedade irredutível. Um divisor D em X é uma coleção de subvariedades fechadas irredutíveis C 1,..., C r de codimensão 1 em X cada qual associada a um inteiro k i que chamamos de multiplicidade de C i. Tal divisor é escrito como uma soma formal D = k 1 C k r C r Escrevemos D = 0 para indicar que k i = 0 para todo i, neste caso chamado divisor nulo. Já D > 0 indica que nenhum k i é negativo e algum deles é estritamente positivo, nesse caso, chamamos D de divisor efetivo. Se D = C i chamamos D de divisor primo. Definição 4.2 O suporte de D é o conjunto das subvariedades C i tal que o correspondente k i 0 37

42 Dados dois divisores D = k 1 C k r C r e D = k 1 C k r C r podemos definir D + D = (k 1 + k 1 )C (k r + k r )C r. Assim o conjunto dos divisores em X tem uma estrutura de grupo. O elemento neutro é o divisor nulo e o simétrico de D é D = ( k 1 )C ( k r )C r. Este grupo será denotado por DivX. Queremos associar um divisor a uma função f k(x) (o corpo de funções racionais) quando X é não singular. Dada uma subvariedade irredutível C X de codimensão 1, considere um aberto U X, onde C é dada por uma equação local g, isto é se I C é o ideal das funções regulares que se anulam identicamente em C então I C = (g) em k[u]. Assim se 0 f k(u) então existe um inteiro k > 0 tal que f (g k ) e f (g k+1 ). Denotaremos tal inteiro por v C (f). Lema 4.3 O número v C (f) definido anteriormente tem as seguintes propriedades: a) v C (f 1 f 2 ) = v C (f 1 ) + v C (f 2 ) b) v C (f 1 + f 2 ) min{v C (f 1 ), v C (f 2 )} se f 1 + f 2 0 Demonstração: Sejam f 1 = g l 1 u com u invertível em O C tal que f 1 (g l 1 ) e f 1 (g l1+1 ) e f 2 = g l 2 v com v invertível em O C tal que f 2 (g l 2 ) e f 2 (g l2+1 ). Assim f 1 f 2 = g l 1 ug l 2 v = g l 1+l 2 uv com uv invertível em O C. Então v C (f 1 f 2 ) = l 1 + l 2 = v C (f 1 ) + v C (f 2 ). Suponha l 1 l 2. Assim v C (f 1 + f 2 ) = v C (g l 1 u + g l 2 v) = v C (g l 2 (g l 1 l 2 u + v)) = v C (g l 2 ) + v C (g l 1 l 2 u + v) v C (g l 2 ) = l 2 = min{v C (f 1 ), v C (f 2 )}. Como X é irredutível, toda função f k(x) pode ser escrita na forma g h com g, h k[u]. Logo para 0 f definimos v C (f) = v C (g) v C (h). 38

43 Lema 4.4 O número v C (f) não depende da representação de f na forma g h Demonstração: Seja f = g h = g h. Assim g h = h g e logo v C (g h) = v C (h g) v C (g ) + v C (h) = v C (h ) + v C (g) v C (g ) v C (h ) = v C (g) v C (h) = v C (f). Também é fácil ver que a definição de v C (f) independente da escolha do aberto U. Definição 4.5 Dizemos que C é um pólo de f se v C (f) < 0. Analogamente, dizemos que C é um zero de f se v C (f) > 0. Ainda resta mostrar que dada uma função f k(x) existe somente um número finito de subvariedades irredutíveis C de codimensão 1 tal que v C (f) 0. Considere que X é afim e f = g h. Então v C(f) deixa de se anular apenas nas componentes de V(g) e de V(h) (onde estão os zeros e os polos de f). Como o anel de polinômios é noetheriano a decomposição destas variedades em componentes é finita. No caso que X é projetiva basta cobrir X com uma quantidade finita de abertos afins e reduzimos para o caso afim supracitado. Definição 4.6 Definiremos o divisor de uma função (f) como sendo (f) = vc (f)c. O divisor de uma função f k(x) é chamado divisor principal. Se (f) = k i C i então chamamos (f) 0 = k i >0k i C i de divisor de zeros de f e (f) = k i <0 k i C i de divisor de pólos de f. Logo (f) = (f) 0 (f). 39

= f(0) D2 f 0 (x, x) + o( x 2 )

= f(0) D2 f 0 (x, x) + o( x 2 ) 6 a aula, 26-04-2007 Formas Quadráticas Suponhamos que 0 é um ponto crítico duma função suave f : U R definida sobre um aberto U R n. O desenvolvimento de Taylor de segunda ordem da função f em 0 permite-nos

Leia mais

Apostila Minicurso SEMAT XXVII

Apostila Minicurso SEMAT XXVII Apostila Minicurso SEMAT XXVII Título do Minicurso: Estrutura algébrica dos germes de funções Autores: Amanda Monteiro, Daniel Silva costa Ferreira e Plínio Gabriel Sicuti Orientadora: Prof a. Dr a. Michelle

Leia mais

Introduzir os conceitos de base e dimensão de um espaço vetorial. distinguir entre espaços vetoriais de dimensão fnita e infinita;

Introduzir os conceitos de base e dimensão de um espaço vetorial. distinguir entre espaços vetoriais de dimensão fnita e infinita; META Introduzir os conceitos de base e dimensão de um espaço vetorial. OBJETIVOS Ao fim da aula os alunos deverão ser capazes de: distinguir entre espaços vetoriais de dimensão fnita e infinita; determinar

Leia mais

Espaços Euclidianos. Espaços R n. O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais:

Espaços Euclidianos. Espaços R n. O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais: Espaços Euclidianos Espaços R n O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais: R n = {(x 1,..., x n ) : x 1,..., x n R}. R 1 é simplesmente o conjunto R dos números

Leia mais

A forma canônica de Jordan

A forma canônica de Jordan A forma canônica de Jordan 1 Matrizes e espaços vetoriais Definição: Sejam A e B matrizes quadradas de orden n sobre um corpo arbitrário X. Dizemos que A é semelhante a B em X (A B) se existe uma matriz

Leia mais

CLASSIFICAÇÃO DE FEIXES DE QUÁDRICAS A PARTIR DE SEUS SÍMBOLOS DE SEGRE.

CLASSIFICAÇÃO DE FEIXES DE QUÁDRICAS A PARTIR DE SEUS SÍMBOLOS DE SEGRE. UNIVERSIDADE FEDERAL DE MINAS GERAIS INSTITUTO DE CIÊNCIAS EXATAS Departamento de Matemática Dissertação de Mestrado CLASSIFICAÇÃO DE FEIXES DE QUÁDRICAS A PARTIR DE SEUS SÍMBOLOS DE SEGRE. Nilva Rodrigues

Leia mais

Introdução às superfícies de Riemann

Introdução às superfícies de Riemann LISTA DE EXERCÍCIOS Introdução às superfícies de Riemann 1. Mostre que toda curva plana é uma superfície de Riemann não-compacta. 2. Seja F : C 3 C um polinômio homogêneo de grau d, isto é, cada monômio

Leia mais

1. Não temos um espaço vetorial, pois a seguinte propriedade (a + b) v = a v + b v não vale. De fato:

1. Não temos um espaço vetorial, pois a seguinte propriedade (a + b) v = a v + b v não vale. De fato: Sumário No que se segue, C, R, Q, Z, N denotam respectivamente, o conjunto dos números complexos, reais, racionais, inteiros e naturais. Denotaremos por I (ou id) End(V ) a função identidade do espaço

Leia mais

Imersões e Mergulhos. 4 a aula,

Imersões e Mergulhos. 4 a aula, 4 a aula, 12-04-2007 Imersões e Mergulhos Um mapa entre variedades f : X Y diz-se um mergulho sse (1) é uma imersão, i.e., Df x : T x X T f(x) Y é injectiva, para todo x X, (2) é injectiva, e (3) a inversa

Leia mais

Unidade 5 - Subespaços vetoriais. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa. 10 de agosto de 2013

Unidade 5 - Subespaços vetoriais. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa. 10 de agosto de 2013 MA33 - Introdução à Álgebra Linear Unidade 5 - Subespaços vetoriais A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa PROFMAT - SBM 10 de agosto de 2013 Às vezes, é necessário detectar, dentro

Leia mais

Apontamentos III. Espaços euclidianos. Álgebra Linear aulas teóricas. Lina Oliveira Departamento de Matemática, Instituto Superior Técnico

Apontamentos III. Espaços euclidianos. Álgebra Linear aulas teóricas. Lina Oliveira Departamento de Matemática, Instituto Superior Técnico Apontamentos III Espaços euclidianos Álgebra Linear aulas teóricas 1 o semestre 2017/18 Lina Oliveira Departamento de Matemática, Instituto Superior Técnico Índice Índice i 1 Espaços euclidianos 1 1.1

Leia mais

Produtos de potências racionais. números primos.

Produtos de potências racionais. números primos. MATEMÁTICA UNIVERSITÁRIA n o 4 Dezembro/2006 pp. 23 3 Produtos de potências racionais de números primos Mário B. Matos e Mário C. Matos INTRODUÇÃO Um dos conceitos mais simples é o de número natural e

Leia mais

Lema. G(K/F ) [K : F ]. Vamos demonstrar usando o Teorema do Elemento Primitivo, a ser provado mais adiante. Assim, K = F (α).

Lema. G(K/F ) [K : F ]. Vamos demonstrar usando o Teorema do Elemento Primitivo, a ser provado mais adiante. Assim, K = F (α). Teoria de Galois Vamos nos restringir a car. zero. Seja K/F uma extensão finita de corpos. O grupo de Galois G(K/F ) é formado pelos isomorfismos ϕ : K K tais que x F, ϕ(x) = x. Lema. G(K/F ) [K : F ].

Leia mais

Construção dos Números Reais

Construção dos Números Reais 1 Universidade de Brasília Departamento de Matemática Construção dos Números Reais Célio W. Manzi Alvarenga Sumário 1 Seqüências de números racionais 1 2 Pares de Cauchy 2 3 Um problema 4 4 Comparação

Leia mais

Notas sobre os anéis Z m

Notas sobre os anéis Z m Capítulo 1 Notas sobre os anéis Z m Estas notas complementam o texto principal, no que diz respeito ao estudo que aí se faz dos grupos e anéis Z m. Referem algumas propriedades mais específicas dos subanéis

Leia mais

Fabio Augusto Camargo

Fabio Augusto Camargo Universidade Federal de São Carlos Centro de Ciências Exatas e de Tecnologia Departamento de Matemática Introdução à Topologia Autor: Fabio Augusto Camargo Orientador: Prof. Dr. Márcio de Jesus Soares

Leia mais

ALGA I. Bases, coordenadas e dimensão

ALGA I. Bases, coordenadas e dimensão Módulo 5 ALGA I. Bases, coordenadas e dimensão Contents 5.1 Bases, coordenadas e dimensão............. 58 5.2 Cálculos com coordenadas. Problemas......... 65 5.3 Mudanças de base e de coordenadas..........

Leia mais

Lema. G(K/F ) [K : F ]. Vamos demonstrar usando o Teorema do Elemento Primitivo, a ser provado mais adiante. Assim, K = F (α).

Lema. G(K/F ) [K : F ]. Vamos demonstrar usando o Teorema do Elemento Primitivo, a ser provado mais adiante. Assim, K = F (α). Teoria de Galois Vamos nos restringir a car. zero. Seja K/F uma extensão finita de corpos. O grupo de Galois G(K/F ) é formado pelos isomorfismos ϕ : K K tais que x F, ϕ(x) = x. Lema. G(K/F ) [K : F ].

Leia mais

Funções suaves e Variedades

Funções suaves e Variedades a aula, 5-03-2007 Funções suaves e Variedades Os objectos de estudo da Topologia Diferencial são as variedades e as aplicações suaves, onde suave significa ser de classe C. As variedades consideradas são

Leia mais

Álgebra Linear e Geometria Anaĺıtica. Espaços Vetoriais Reais

Álgebra Linear e Geometria Anaĺıtica. Espaços Vetoriais Reais universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 4 Espaços Vetoriais Reais Definição de espaço vetorial real [4 01] O conjunto

Leia mais

Topologia de Zariski. Jairo Menezes e Souza. 25 de maio de Notas incompletas e não revisadas RASCUNHO

Topologia de Zariski. Jairo Menezes e Souza. 25 de maio de Notas incompletas e não revisadas RASCUNHO Topologia de Zariski Jairo Menezes e Souza 25 de maio de 2013 Notas incompletas e não revisadas 1 Resumo Queremos abordar a Topologia de Zariski para o espectro primo de um anel. Antes vamos definir os

Leia mais

Análise I Solução da 1ª Lista de Exercícios

Análise I Solução da 1ª Lista de Exercícios FUNDAÇÃO EDUCACIONAL SERRA DOS ÓRGÃOS CENTRO UNIVERSITÁRIO SERRA DOS ÓRGÃOS Centro de Ciências e Tecnologia Curso de Graduação em Matemática Análise I 0- Solução da ª Lista de Eercícios. ATENÇÃO: O enunciado

Leia mais

1 Álgebra linear matricial

1 Álgebra linear matricial MTM510019 Métodos Computacionais de Otimização 2018.2 1 Álgebra linear matricial Revisão Um vetor x R n será representado por um vetor coluna x 1 x 2 x =., x n enquanto o transposto de x corresponde a

Leia mais

Conceitos Básicos sobre Representações e Caracteres de Grupos Finitos. Ana Cristina Vieira. Departamento de Matemática - ICEx - UFMG

Conceitos Básicos sobre Representações e Caracteres de Grupos Finitos. Ana Cristina Vieira. Departamento de Matemática - ICEx - UFMG 1 Conceitos Básicos sobre Representações e Caracteres de Grupos Finitos Ana Cristina Vieira Departamento de Matemática - ICEx - UFMG - 2011 1. Representações de Grupos Finitos 1.1. Fatos iniciais Consideremos

Leia mais

GABRIEL BUJOKAS

GABRIEL BUJOKAS APLICAÇÕES DE ÁLGEBRA LINEAR À COMBINATÓRIA GABRIEL BUJOKAS (GBUJOKAS@MIT.EDU) A gente vai discutir algumas das aplicações clássicas de álgebra linear à combinatória. Vamos começar relembrando alguns conceitos

Leia mais

Geometria Algébrica. Notas de aula por Juliana Coelho

Geometria Algébrica. Notas de aula por Juliana Coelho Introdução à Geometria Algébrica Notas de aula por Juliana Coelho 1 Sumário 1 Variedades Afins 4 1.1 Topologia de Zariski em A n............................... 4 1.2 Funções regulares e morfismos..............................

Leia mais

3 Sistema de Steiner e Código de Golay

3 Sistema de Steiner e Código de Golay 3 Sistema de Steiner e Código de Golay Considere o sistema de Steiner S(5, 8, 24, chamaremos os seus blocos de octads. Assim, as octads são subconjuntos de 8 elementos de um conjunto Ω com 24 elementos

Leia mais

1 Conjuntos, Números e Demonstrações

1 Conjuntos, Números e Demonstrações 1 Conjuntos, Números e Demonstrações Definição 1. Um conjunto é qualquer coleção bem especificada de elementos. Para qualquer conjunto A, escrevemos a A para indicar que a é um elemento de A e a / A para

Leia mais

Aula 10 Produto interno, vetorial e misto -

Aula 10 Produto interno, vetorial e misto - MÓDULO 2 - AULA 10 Aula 10 Produto interno, vetorial e misto - Aplicações II Objetivos Estudar as posições relativas entre retas no espaço. Obter as expressões para calcular distância entre retas. Continuando

Leia mais

Capítulo 2. Conjuntos Infinitos. 2.1 Existem diferentes tipos de infinito

Capítulo 2. Conjuntos Infinitos. 2.1 Existem diferentes tipos de infinito Capítulo 2 Conjuntos Infinitos O conjunto dos números naturais é o primeiro exemplo de conjunto infinito que aprendemos. Desde crianças, sabemos intuitivamente que tomando-se um número natural n muito

Leia mais

Generalizações do Teorema de Wedderburn-Malcev e PI-álgebras. Silvia Gonçalves Santos

Generalizações do Teorema de Wedderburn-Malcev e PI-álgebras. Silvia Gonçalves Santos Generalizações do Teorema de Wedderburn-Malcev e PI-álgebras Silvia Gonçalves Santos Definição 1 Seja R um anel com unidade. O radical de Jacobson de R, denotado por J(R), é o ideal (à esquerda) dado pela

Leia mais

3 Fibrados de Seifert de Dimensão Três

3 Fibrados de Seifert de Dimensão Três 3 Fibrados de Seifert de Dimensão Três Um fibrado de Seifert de dimensão três é uma folheação por círculos numa variedade de dimensão três e pode ser visto como um fibrado sobre uma orbifold de dimensão

Leia mais

Álgebra Linear I - Aula 11. Roteiro. 1 Dependência e independência linear de vetores

Álgebra Linear I - Aula 11. Roteiro. 1 Dependência e independência linear de vetores Álgebra Linear I - Aula 11 1. Dependência e independência linear. 2. Bases. 3. Coordenadas. 4. Bases de R 3 e produto misto. Roteiro 1 Dependência e independência linear de vetores Definição 1 (Dependência

Leia mais

Variedades diferenciáveis e grupos de Lie

Variedades diferenciáveis e grupos de Lie LISTA DE EXERCÍCIOS Variedades diferenciáveis e grupos de Lie 1 VARIEDADES TOPOLÓGICAS 1. Seja M uma n-variedade topológica. Mostre que qualquer aberto N M é também uma n-variedade topológica. 2. Mostre

Leia mais

Lista 8 de Análise Funcional - Doutorado 2018

Lista 8 de Análise Funcional - Doutorado 2018 Lista 8 de Análise Funcional - Doutorado 2018 Professor Marcos Leandro 17 de Junho de 2018 1. Sejam M um subespaço de um espaço de Hilbert H e f M. Mostre que f admite uma única extensão para H preservando

Leia mais

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial 178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Leia mais

No próximo exemplo, veremos um tipo de funcional linear bastante importante.

No próximo exemplo, veremos um tipo de funcional linear bastante importante. UFPR - Universidade Federal do Paraná Departamento de Matemática CM053 - Álgebra Linear II - Notas de aula Prof. José Carlos Eidam Funcionais lineares Nestas notas, estudaremos funcionais lineares sobre

Leia mais

UNIVERSIDADE FEDERAL FLUMINENSE. Instituto de Matemática. Retas em Superfícies Algébricas

UNIVERSIDADE FEDERAL FLUMINENSE. Instituto de Matemática. Retas em Superfícies Algébricas UNIVERSIDADE FEDERAL FLUMINENSE Instituto de Matemática Retas em Superfícies Algébricas Michael Santos Gonzales Gargate Dissertação submetida ao Corpo Docente do Instituto de Matemática da Universidade

Leia mais

Geometria Euclidiana Espacial e Introdução à Geometria Descritiva

Geometria Euclidiana Espacial e Introdução à Geometria Descritiva UNIVERSIDDE ESTDUL PULIST DEPRTMENTO DE MTEMÁTIC Geometria Euclidiana Espacial e Introdução à Geometria Descritiva Material em preparação!! Última atualização: 28.04.2008 Luciana F. Martins e Neuza K.

Leia mais

Definição 1. Um ideal de um anel A é um subgrupo aditivo I de A tal que ax I para todo a A, x I. Se I é um ideal de A escrevemos I A.

Definição 1. Um ideal de um anel A é um subgrupo aditivo I de A tal que ax I para todo a A, x I. Se I é um ideal de A escrevemos I A. 1. Ideais, quocientes, teorema de isomorfismo Seja A um anel comutativo unitário. Em particular A é um grupo abeliano com +; seja I um subgrupo aditivo de A. Como visto no primeiro modulo, sabemos fazer

Leia mais

Winding Numbers. 11 a aula, É costume chamar-se variedade fechada 1 a qualquer variedade compacta sem bordo.

Winding Numbers. 11 a aula, É costume chamar-se variedade fechada 1 a qualquer variedade compacta sem bordo. 11 a aula, 31-05-2007 Winding Numbers É costume chamar-se variedade fechada 1 a qualquer variedade compacta sem bordo. Sejam X n 1 uma variedade fechada, f : X n 1 R n um mapa suave e p um ponto em R n

Leia mais

Campos hamiltonianos e primeiro grupo de cohomologia de De Rham.

Campos hamiltonianos e primeiro grupo de cohomologia de De Rham. Campos hamiltonianos e primeiro grupo de cohomologia de De Rham. Ronaldo J. S. Ferreira e Fabiano B. da Silva 18 de novembro de 2015 Resumo Neste trabalho vamos explorar quando um campo vetorial simplético

Leia mais

Álgebra Linear Exercícios Resolvidos

Álgebra Linear Exercícios Resolvidos Álgebra Linear Exercícios Resolvidos Agosto de 001 Sumário 1 Exercícios Resolvidos Uma Revisão 5 Mais Exercícios Resolvidos Sobre Transformações Lineares 13 3 4 SUMA RIO Capítulo 1 Exercícios Resolvidos

Leia mais

Vamos começar relembrando algumas estruturas algébricas Grupos. Um grupo é um conjunto G munido de uma função

Vamos começar relembrando algumas estruturas algébricas Grupos. Um grupo é um conjunto G munido de uma função UMA INTRODUÇÃO A ÁLGEBRAS TIAGO MACEDO Resumo. Neste seminário vamos introduzir uma nova estrutura algébrica, álgebras. Começaremos recapitulando estruturas definidas em seminários anteriores. Em seguida,

Leia mais

MAT Resumo Teórico e Lista de

MAT Resumo Teórico e Lista de MAT 0132 - Resumo Teórico e Lista de Exercícios April 10, 2005 1 Vetores Geométricos Livres 1.1 Construção dos Vetores 1.2 Adição de Vetores 1.3 Multiplicação de um Vetor por um Número Real 2 Espaços Vetoriais

Leia mais

Contando o Infinito: os Números Cardinais

Contando o Infinito: os Números Cardinais Contando o Infinito: os Números Cardinais Sérgio Tadao Martins 4 de junho de 2005 No one will expel us from the paradise that Cantor has created for us David Hilbert 1 Introdução Quantos elementos há no

Leia mais

Um Exemplo de Códigos de Goppa Suportados em um Ponto sobre uma Curva não Maximal

Um Exemplo de Códigos de Goppa Suportados em um Ponto sobre uma Curva não Maximal Um Exemplo de Códigos de Goppa Suportados em um Ponto sobre uma Curva não Maximal J. Bezerra L. Quoos Resumo Apresentamos aqui uma nova família de códigos de Goppa suportados num ponto ilustrando o teorema

Leia mais

DANIEL V. TAUSK. se A é um subconjunto de X, denotamos por A c o complementar de

DANIEL V. TAUSK. se A é um subconjunto de X, denotamos por A c o complementar de O TEOREMA DE REPRESENTAÇÃO DE RIESZ PARA MEDIDAS DANIEL V. TAUSK Ao longo do texto, denotará sempre um espaço topológico fixado. Além do mais, as seguintes notações serão utilizadas: supp f denota o suporte

Leia mais

Pontos extremos, vértices e soluções básicas viáveis

Pontos extremos, vértices e soluções básicas viáveis Pontos extremos, vértices e soluções básicas viáveis Marina Andretta ICMC-USP 19 de outubro de 2016 Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis. Marina Andretta

Leia mais

Capítulo 2. Conjuntos Infinitos. 2.1 Existem diferentes tipos de infinito

Capítulo 2. Conjuntos Infinitos. 2.1 Existem diferentes tipos de infinito Capítulo 2 Conjuntos Infinitos Um exemplo de conjunto infinito é o conjunto dos números naturais: mesmo tomando-se um número natural n muito grande, sempre existe outro maior, por exemplo, seu sucessor

Leia mais

Complexo Quadrático de Retas

Complexo Quadrático de Retas Amanda Gonçalves Saraiva Complexo Quadrático de Retas Belo Horizonte-MG 2007 Complexo Quadrático de Retas Amanda Gonçalves Saraiva Orientador: Prof. Dr. Dan Avritzer Dissertação apresentada ao Departamento

Leia mais

TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS

TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS O conjunto dos números reais,, que possui as seguintes propriedades:, possui uma relação menor ou igual, denotada por O1: Propriedade Reflexiva:

Leia mais

TRANSFORMAÇÕES DE CREMONA DADAS POR QUÁDRICAS NO ESPAÇO PROJETIVO DE DIMENSÃO 3 E 4 E SUAS INVERSAS

TRANSFORMAÇÕES DE CREMONA DADAS POR QUÁDRICAS NO ESPAÇO PROJETIVO DE DIMENSÃO 3 E 4 E SUAS INVERSAS UNIVERSIDADE FEDERAL DE MINAS GERAIS - UFMG INSTITUTO DE CIÊNCIAS EXATAS - ICEX CURSO DE MESTRADO EM MATEMÁTICA TRANSFORMAÇÕES DE CREMONA DADAS POR QUÁDRICAS NO ESPAÇO PROJETIVO DE DIMENSÃO 3 E 4 E SUAS

Leia mais

Gabarito P2. Álgebra Linear I ) Decida se cada afirmação a seguir é verdadeira ou falsa.

Gabarito P2. Álgebra Linear I ) Decida se cada afirmação a seguir é verdadeira ou falsa. Gabarito P2 Álgebra Linear I 2008.2 1) Decida se cada afirmação a seguir é verdadeira ou falsa. Se { v 1, v 2 } é um conjunto de vetores linearmente dependente então se verifica v 1 = σ v 2 para algum

Leia mais

ESPAÇO VETORIAL REAL. b) Em relação à multiplicação: (ab) v = a(bv) (a + b) v = av + bv a (u + v ) = au + av 1u = u, para u, v V e a, b R

ESPAÇO VETORIAL REAL. b) Em relação à multiplicação: (ab) v = a(bv) (a + b) v = av + bv a (u + v ) = au + av 1u = u, para u, v V e a, b R ESPAÇO VETORIAL REAL Seja um conjunto V, não vazio, sobre o qual estão definidas as operações de adição e multiplicação por escalar, isto é: u, v V, u + v V a R, u V, au V O conjunto V com estas duas operações

Leia mais

Tópicos de Álgebra Linear Verão 2019 Lista 1: Espaços Vetoriais

Tópicos de Álgebra Linear Verão 2019 Lista 1: Espaços Vetoriais Universidade Federal do Paraná Centro Politécnico ET-DMAT Prof. Maria Eugênia Martin Tópicos de Álgebra Linear Verão 2019 Lista 1: Espaços Vetoriais Exercício 1. Determine se os seguintes conjuntos são

Leia mais

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP Álgebra Linear AL Luiza Amalia Pinto Cantão Depto de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocabaunespbr Espaços Vetoriais 1 Definição; 2 Subespaços; 3 Combinação Linear, dependência

Leia mais

Axiomatizações equivalentes do conceito de topologia

Axiomatizações equivalentes do conceito de topologia Axiomatizações equivalentes do conceito de topologia Giselle Moraes Resende Pereira Universidade Federal de Uberlândia - Faculdade de Matemática Graduanda em Matemática - Programa de Educação Tutorial

Leia mais

Cúbicas Reversas e Redes de Quádricas

Cúbicas Reversas e Redes de Quádricas Cúbicas Reversas e Redes de Quádricas I. Vainsencher M.A.G. Zarzar 1999 Uma cúbica reversa é a imagem da aplicação P 1 [t, u] [t 3, t 2 u, tu 2, u 3 ] P 3, para uma escolha adequada de coordenadas homogêneas

Leia mais

OS TEOREMAS DE JORDAN-HÖLDER E KRULL-SCHMIDT (SEGUNDA VERSÃO)

OS TEOREMAS DE JORDAN-HÖLDER E KRULL-SCHMIDT (SEGUNDA VERSÃO) ! #" $ %$!&'%($$ OS TEOREMAS DE JORDAN-HÖLDER E KRULL-SCHMIDT (SEGUNDA VERSÃO) Neste texto apresentaremos dois teoremas de estrutura para módulos que são artinianos e noetherianos simultaneamente. Seja

Leia mais

Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que Capítulo 11 1. Equações da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que AP = t AB Fig. 1: Reta r passando por A e B. Como o ponto

Leia mais

(x 1, y 1 ) (x 2, y 2 ) = (x 1 x 2, y 1 y 2 ); e α (x, y) = (x α, y α ), α R.

(x 1, y 1 ) (x 2, y 2 ) = (x 1 x 2, y 1 y 2 ); e α (x, y) = (x α, y α ), α R. INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-2457 Álgebra Linear para Engenharia I Terceira Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Considere as retas

Leia mais

Valores e vectores próprios

Valores e vectores próprios Valores e vectores próprios Álgebra Linear C (Engenharia Biológica) 0 de Dezembro de 006 Conteúdo Motivação e definições Propriedades 4 3 Matrizes diagonalizáveis 5 Motivação e definições Considere a matriz

Leia mais

(x 1 + iy 1 ) + (x 2 + iy 2 ) = x 1 + x 2 + i(y 1 + y 2 ) a(x + iy) = ax + i(ay)

(x 1 + iy 1 ) + (x 2 + iy 2 ) = x 1 + x 2 + i(y 1 + y 2 ) a(x + iy) = ax + i(ay) Espaços Vetoriais Definição. Um espaço vetorial sobre R é um conjunto V no qual se tem definida uma adição e uma multiplicação de seus elementos por escalares (isto é, por números reais), ou seja, dados

Leia mais

Aulas práticas de Álgebra Linear

Aulas práticas de Álgebra Linear Ficha 3 Aulas práticas de Álgebra Linear Licenciatura em Engenharia Naval e Oceânica Mestrado Integrado em Engenharia Mecânica 1 o semestre 2018/19 Jorge Almeida e Lina Oliveira Departamento de Matemática,

Leia mais

MCTB Álgebra Linear Avançada I Claudia Correa Exercícios sobre transformações lineares. Os Exercícios 3 e 4 são os exercícios bônus dessa lista.

MCTB Álgebra Linear Avançada I Claudia Correa Exercícios sobre transformações lineares. Os Exercícios 3 e 4 são os exercícios bônus dessa lista. MCTB002-13 Álgebra Linear Avançada I Claudia Correa Exercícios sobre transformações lineares Os Exercícios 3 e 4 são os exercícios bônus dessa lista. Definição 1. Dados conjuntos X e Y, uma função ϕ :

Leia mais

PARES DE SUBESPAÇOS EM R n. Luciana Cadar Chamone

PARES DE SUBESPAÇOS EM R n. Luciana Cadar Chamone PARES DE SUBESPAÇOS EM R n Luciana Cadar Chamone Monografia apresentada ao Departamento de Matemática do Instituto de Ciências Exatas da Universidade Federal de Minas Gerais como parte dos requisitos para

Leia mais

Aula 7 Os teoremas de Weierstrass e do valor intermediário.

Aula 7 Os teoremas de Weierstrass e do valor intermediário. Os teoremas de Weierstrass e do valor intermediário. MÓDULO - AULA 7 Aula 7 Os teoremas de Weierstrass e do valor intermediário. Objetivo Compreender o significado de dois resultados centrais a respeito

Leia mais

Notações e revisão de álgebra linear

Notações e revisão de álgebra linear Notações e revisão de álgebra linear Marina Andretta ICMC-USP 17 de agosto de 2016 Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis. Marina Andretta (ICMC-USP) sme0211

Leia mais

Definimos a soma de seqüências fazendo as operações coordenada-a-coordenada:

Definimos a soma de seqüências fazendo as operações coordenada-a-coordenada: Aula 8 polinômios (Anterior: chinês. ) 8.1 séries formais Fixemos um anel A. Denotaremos por A N o conjunto de todas as funções de N = {, 1, 2,... } a valores em A. Em termos mais concretos, cada elemento

Leia mais

Um Estudo Sobre Espaços Vetoriais Simpléticos

Um Estudo Sobre Espaços Vetoriais Simpléticos Um Estudo Sobre Espaços Vetoriais Simpléticos Fabiano Borges da Silva Lívia T. Minami Borges 28 de novembro de 2015 Resumo O presente artigo estuda de maneira detalhada espaços vetoriais que possuem uma

Leia mais

MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 2015

MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 2015 MAT27 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 201 Nesta prova considera-se fixada uma orientação do espaço e um sistema de coordenadas Σ (O, E) em E 3, em que E é uma base

Leia mais

Capítulo 2. Conjuntos Infinitos

Capítulo 2. Conjuntos Infinitos Capítulo 2 Conjuntos Infinitos Não é raro encontrarmos exemplos equivocados de conjuntos infinitos, como a quantidade de grãos de areia na praia ou a quantidade de estrelas no céu. Acontece que essas quantidades,

Leia mais

Equação Geral do Segundo Grau em R 2

Equação Geral do Segundo Grau em R 2 8 Equação Geral do Segundo Grau em R Sumário 8.1 Introdução....................... 8. Autovalores e autovetores de uma matriz real 8.3 Rotação dos Eixos Coordenados........... 5 8.4 Formas Quadráticas..................

Leia mais

FUNCIONAIS LINEARES: ESPAÇO DUAL E ANULADORES

FUNCIONAIS LINEARES: ESPAÇO DUAL E ANULADORES FUNCIONAIS LINEARES: ESPAÇO DUAL E ANULADORES Eduardo de Souza Böer - eduardoboer04@gmail.com Universidade Federal de Santa Maria, Campus Camobi, 97105-900-Santa Maria, RS, Brasil Saradia Sturza Della

Leia mais

Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática

Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática TRANSFORMAÇÕES DE CREMONA CUBO-CÚBICAS E O COMPLEXO QUADRÁTICO DE RETAS LUCIANA FRANÇA DA CUNHA Belo Horizonte,

Leia mais

O Teorema de Peano. f : D R n. uma função contínua. Vamos considerar o seguinte problema: Encontrar um intervalo I R e uma função ϕ : I R n tais que

O Teorema de Peano. f : D R n. uma função contínua. Vamos considerar o seguinte problema: Encontrar um intervalo I R e uma função ϕ : I R n tais que O Teorema de Peano Equações de primeira ordem Seja D um conjunto aberto de R R n, e seja f : D R n (t, x) f(t, x) uma função contínua. Vamos considerar o seguinte problema: Encontrar um intervalo I R e

Leia mais

Álgebra Linear Semana 05

Álgebra Linear Semana 05 Álgebra Linear Semana 5 Diego Marcon 4 de Abril de 7 Conteúdo Interpretações de sistemas lineares e de matrizes invertíveis Caracterizações de matrizes invertíveis 4 Espaços vetoriais 5 Subespaços vetoriais

Leia mais

4.1 posição relativas entre retas

4.1 posição relativas entre retas 4 P O S I Ç Õ E S R E L AT I VA S Nosso objetivo nesta seção é entender a posição relativa entre duas retas, dois planos e ou uma reta e um plano, isto é, se estes se interseccionam, se são paralelos,

Leia mais

Exercícios sobre Espaços Vetoriais II

Exercícios sobre Espaços Vetoriais II Exercícios sobre Espaços Vetoriais II Prof.: Alonso Sepúlveda Castellanos Sala 1F 104 1. Seja V um espaço vetorial não trivial sobre um corpo infinito. Mostre que V contém infinitos elementos. 2. Sejam

Leia mais

1 Matrizes Ortogonais

1 Matrizes Ortogonais Álgebra Linear I - Aula 19-2005.1 Roteiro 1 Matrizes Ortogonais 1.1 Bases ortogonais Lembre que uma base β é ortogonal se está formada por vetores ortogonais entre si: para todo par de vetores distintos

Leia mais

UFPB - CCEN - DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 1 a LISTA DE EXERCÍCIOS PERÍODO

UFPB - CCEN - DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 1 a LISTA DE EXERCÍCIOS PERÍODO UFPB - CCEN - DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA a LISTA DE EXERCÍCIOS PERÍODO 0 Os exercícios 0 8 trazem um espaço vetorial V e um seu subconjunto W Sempre que W for um subespaço

Leia mais

Aula Distância entre duas retas paralelas no espaço. Definição 1. Exemplo 1

Aula Distância entre duas retas paralelas no espaço. Definição 1. Exemplo 1 Aula 1 Sejam r 1 = P 1 + t v 1 t R} e r 2 = P 2 + t v 2 t R} duas retas no espaço. Se r 1 r 2, sabemos que r 1 e r 2 são concorrentes (isto é r 1 r 2 ) ou não se intersectam. Quando a segunda possibilidade

Leia mais

Álgebra Linear. Determinantes, Valores e Vectores Próprios. Jorge Orestes Cerdeira Instituto Superior de Agronomia

Álgebra Linear. Determinantes, Valores e Vectores Próprios. Jorge Orestes Cerdeira Instituto Superior de Agronomia Álgebra Linear Determinantes, Valores e Vectores Próprios Jorge Orestes Cerdeira Instituto Superior de Agronomia - 200 - ISA/UTL Álgebra Linear 200/ 2 Conteúdo Determinantes 5 2 Valores e vectores próprios

Leia mais

Cap. 3 - Observabilidade e desacoplamento da Saída

Cap. 3 - Observabilidade e desacoplamento da Saída Cap. 3 - Observabilidade e desacoplamento da Saída Visão geral do capítulo No capítulo 2 mostramos que a controlabilidade está relacionada com o menor subespaço A-invariante que contém a imagem de B. Mostramos

Leia mais

1 Grupos (23/04) Sim(R 2 ) T T

1 Grupos (23/04) Sim(R 2 ) T T 1 Grupos (23/04) Definição 1.1. Um grupo é um conjunto G não-vazio com uma operação binária : G G G que satisfaz as seguintes condições: 1. (associatividade) g (h k) = (g h) k para todos g, h, k G; 2.

Leia mais

ÁLGEBRA LINEAR. Base e Dimensão de um Espaço Vetorial. Prof. Susie C. Keller

ÁLGEBRA LINEAR. Base e Dimensão de um Espaço Vetorial. Prof. Susie C. Keller ÁLGEBRA LINEAR Base e Dimensão de um Espaço Vetorial Prof. Susie C. Keller Base de um Espaço Vetorial Um conjunto B = {v 1,..., v n } V é uma base do espaço vetorial V se: I) B é LI II) B gera V Base de

Leia mais

O espaço das Ordens de um Corpo

O espaço das Ordens de um Corpo O espaço das Ordens de um Corpo Clotilzio Moreira dos Santos Resumo O objetivo deste trabalho é exibir corpos com infinitas ordens e exibir uma estrutura topológica ao conjunto das ordens de um corpo.

Leia mais

A Equivalência entre o Teorema do Ponto Fixo de Brouwer e o Teorema do Valor Intermediário

A Equivalência entre o Teorema do Ponto Fixo de Brouwer e o Teorema do Valor Intermediário A Equivalência entre o Teorema do Ponto Fixo de Brouwer e o Teorema do Valor Intermediário Renan de Oliveira Pereira, Ouro Preto, MG, Brasil Wenderson Marques Ferreira, Ouro Preto, MG, Brasil Eder Marinho

Leia mais

ALGEBRA I Maria L ucia Torres Villela Instituto de Matem atica Universidade Federal Fluminense Junho de 2007 Revis ao em Fevereiro de 2008

ALGEBRA I Maria L ucia Torres Villela Instituto de Matem atica Universidade Federal Fluminense Junho de 2007 Revis ao em Fevereiro de 2008 ÁLGEBRA I Maria Lúcia Torres Villela Instituto de Matemática Universidade Federal Fluminense Junho de 2007 Revisão em Fevereiro de 2008 Sumário Introdução... 3 Parte 1 - Preliminares... 5 Seção 1 - Noções

Leia mais

Hiperplano e n-esfera: Posições Relativas

Hiperplano e n-esfera: Posições Relativas Hiperplano e n-esfera: Posições Relativas Joselito de Oliveira, Wender Ferreira Lamounie Departamento de Matemática Universidade Federal de Roraima (UFRR) Boa Vista RR Brazil Escola de Aplicação Universidade

Leia mais

O Plano no Espaço. Sumário

O Plano no Espaço. Sumário 17 Sumário 17.1 Introdução....................... 2 17.2 Equações paramétricas do plano no espaço..... 2 17.3 Equação cartesiana do plano............. 15 17.4 Exercícios........................ 21 1 Unidade

Leia mais

Método prático para extrair uma base de um conjunto de geradores de um subespaço de R n

Método prático para extrair uma base de um conjunto de geradores de um subespaço de R n Método prático para extrair uma base de um conjunto de geradores de um subespaço de R n 1. Descrição do método e alguns exemplos Colocamos o seguinte problema: dado um conjunto finito: A = {a 1, a 2,...,

Leia mais

x B A x X B B A τ x B 3 B 1 B 2

x B A x X B B A τ x B 3 B 1 B 2 1. Definição e exemplos. Bases. Dar uma topologia num conjunto X é especificar quais dos subconjuntos de X são abertos: Definição 1.1. Um espaço topológico é um par (X, τ) em que τ é uma colecção de subconjuntos

Leia mais

Retas e círculos, posições relativas e distância de um ponto a uma reta

Retas e círculos, posições relativas e distância de um ponto a uma reta Capítulo 3 Retas e círculos, posições relativas e distância de um ponto a uma reta Nesta aula vamos caracterizar de forma algébrica a posição relativa de duas retas no plano e de uma reta e de um círculo

Leia mais

Conjuntos Enumeráveis e Não-Enumeráveis

Conjuntos Enumeráveis e Não-Enumeráveis Conjuntos Enumeráveis e Não-Enumeráveis João Antonio Francisconi Lubanco Thomé Bacharelado em Matemática - UFPR jolubanco@gmail.com Prof. Dr. Fernando de Ávila Silva (Orientador) Departamento de Matemática

Leia mais

G2 de Álgebra Linear I

G2 de Álgebra Linear I G2 de Álgebra Linear I 2008.1 Gabarito 1) Decida se cada afirmação a seguir é verdadeira ou falsa e marque COM CANETA sua resposta no quadro a seguir. Itens V F N 1.a x 1.b x 1.c x 1.d x 1.e x 1.a) Suponha

Leia mais

Uma Introdução às Identidades Polinomiais

Uma Introdução às Identidades Polinomiais Seminário de Pesquisa DCET UESB 27 de julho de 2012 Objetivo principal: preencher as tabelas s das identidades polinomiais graduadas de M 2 (K) com char(k) 2 Graduações ( de M 2 ) (K) K Infinito K Finito

Leia mais

MAT 1202 ÁLGEBRA LINEAR II SUBESPACCOS FUNDAMENTAIS E TRANSF. LINEARES 23/08/12 Profs. Christine e Pedro

MAT 1202 ÁLGEBRA LINEAR II SUBESPACCOS FUNDAMENTAIS E TRANSF. LINEARES 23/08/12 Profs. Christine e Pedro MAT 1202 ÁLGEBRA LINEAR II 2012.2 SUBESPACCOS FUNDAMENTAIS E TRANSF. LINEARES 23/08/12 Profs. Christine e Pedro 1. Subespaços Fundamentais de uma Matriz (1.1) Definição. Seja A uma matriz retangular m

Leia mais