Problema MOS1. densidade de impurezas na fonte e no dreno: Determinar o ponto de funcionamento em repouso para: a) V = 0 V ; b) V = 3 V

Tamanho: px
Começar a partir da página:

Download "Problema MOS1. densidade de impurezas na fonte e no dreno: Determinar o ponto de funcionamento em repouso para: a) V = 0 V ; b) V = 3 V"

Transcrição

1 CAPÍTLO 4 MO

2 Cap. 4 1 Problema MO1 Considerar o circuito da figura, que contém um transistor MOFET de canal n, cujas características são as seguintes: MOFET: espessura do óxido: a = 0, μm; largura dos eléctrodos: b = 150 μm comprimento do canal: L = 10 μm; densidade de impurezas do substrato: tensão NA 1 3 m = 0, 10 ; B correspondente a carga espacial nula no semicondutor junto ao óxido: = V ; B densidade de impurezas na fonte e no dreno: N 4 3 m = 10. ilício (T=300K): ni 16 3 m = 1, 4 10 ; 10 ε=10 F/m ; * 1 1 n 0,05 m V s μ = io (T=300K): 10 ε 0 = 0,33 10 F/m x eterminar o ponto de funcionamento em repouso para: a) V = 0 V ; b) V = 3 V Nota: desprezar a contribuição da carga na região de depleção no substrato para a corrente de dreno. +5 V RL = 1 kω V

3 Cap. 4 Resolução A tensão gate-fonte de iar é dada pela expressão: = Q Q +φ (1) ss B V ms C0 C0 inv onde: N A φ = u ln 0,5 V inv T = () n Na situação de carga espacial nula no semicondutor junto ao óxido tem-se: i Q = Vms C ss 0 ou, atendendo a que = B : V ms Qss + = V (3) C 0 e salientar que esta situação corresponde à existência de bandas planas no semicondutor desde o óxido até ao terminal de substrato (B). εφ ε Q Q = qn d ; d = ; C = = 0,3 V (4) B ubstituindo (), (3) e (4) em (1) obtém-se: A inv ox B max max 0 qn A a C0 = 1, V Trata-se assim de um MOFET de canal n de empobrecimento ou de depleção. a) = V = 0 Hipótese: FET na saturação b * I = I = μ sat nc0 (5) sat L a análise do circuito: = I R + (6) 5 L

4 Cap. 4 3 as equações (6) e (5) obtém-se I = 0,1 ma e = 4,9 V. Como = = 1, V tem-se que >, o que confirma a hipótese de partida. sat sat O ponto de funcionamento em repouso P é dado por: b) = V = 3 V I = 0,1 ma ; = 4,9 V ; = 0 V. P P P Hipótese: transistor na saturação a equação (5) tem-se I = 1,3 ma e da equação (6) = 3,7 V. Como <, não se confirma a hipótese: o transistor encontra-se neste caso na zona de não saturação. at esprezando a influência da carga fixa do substrato na corrente de dreno, tem-se: * bμnc0 = ( ) I L (7) as equações (6) e (7) obtêm-se soluções: 1 = 3,6 V e = 1,4 V. A ª hipótese corresponderia a >, além de que fisicamente seria impossível já que sat seria superior à tensão da bateria. O ponto de funcionamento em repouso Q é assim dado por: I = 1, ma ; = 3, 8 V ; = 3 V Q Q Q A figura mostra a representação gráfica das duas situações atrás estudadas. I Q = 3V P = 0V 5 (V)

5 Cap. 4 4 Problema MO Considerar o circuito da figura onde: R = 0 k Ω ; R = 5 k Ω ; R = 9 k Ω ; R = 1 k Ω ; E = 10 V Transistor ( T = 300 K) : a) Calcular as tensões e correntes indicadas. = V ; A= mav b) Calcular o valor de R 4 que leva o transistor à saturação. c) Calcular Δ Δ 1 = u u 1, admitindo que E sofre uma variação ΔE E. d) Repetir c) quando se curto-circuita a resistência R 4. e) erá possível o transistor entrar na saturação quando R =? Justificar. R 1 I 1 I R 3 E R 1 R 4 Resolução a) I1 = R E + R 1 (1) = I R = + I R () = E I R + R (3) 3 4

6 Cap. 4 5 Hipótese: Transistor na região de não saturação. I A = (4) e () e (3) obtém-se: 1 E = R R + R ou seja, ( + ) ( + ) R3 R4 1 R3 R4 = E+ = F + R R 4 4 (5) sendo F = ( R + R ) R = e = = E F 1 10 V. e (4) e (5) obtém-se: I = A F + F + usando (): 1 = AR 4 F F F F sendo: ( ) ; ( ) 1 e ( ) A = F F AR B = AR F + F + C = AR B1± B1 4AC A1 = = 1,0167 V ; = 1,745 V I = 0,98 ma e = 0,167 V com = 3, 0 V sat 1 I = 0,5mA e = 7,45V com = 3,75V sat Como o transistor por hipótese se admitiu na zona de não saturação escolheu-se a solução 1. O ponto de funcionamento em repouso será: = 1,017 V ; I = 0,98 ma e = 0,17 V

7 Cap. 4 6 b) Consideremos a situação correspondente à fronteira saturação/não saturação. e (6), (7), (8) e (9) obtém-se: A I = sat (6) I I 1 = (7) sat R4 sat E = R + R sat 3 4 sat (8) = (9) e (7) ou seja: e (6) e (7): 1 E + = 18 9 = 6R R R + R = RI = RI 1 4 sat 1 4 sat sat E R I R I = R I I = mA sat sat sat sat 4 (10) sat I sat = = 0,816 V = 1,18 V A e (10) obtém-se R 4 = 4,78 kω. Este é o valor mínimo de R 4 que garante que o transistor se encontre na zona de saturação. c) R 4 = 10 kω: o transistor está na zona de saturação. A I = sat (11) = E I R + R (1) sat 3 4 = + R I (13) 1 4 sat e (11) e (13) considerando: = 4 ; = ; = 4 1 A AR B R A C AR B ± B 4AC 1 A = =,68 V ou = 1, 4 V

8 Cap. 4 7 Escolhe-se a ª solução uma vez que na 1ª se verifica <. O ponto de funcionamento em repouso é I = 0,34 V ; = 3, V ; = 1,4 V. Note-se que o transistor está efectivamente na saturação uma vez que > = 0,58 V. sat Os parâmetros incrementais do circuito para pequenas variações em torno do P.F.R. são: g = A = 1,16 m e g = 0 m sat O circuito para componentes incrementais (caso a variação ΔE esteja associada a um sinal de frequência f, esta pressupõe-se suficientemente baixa para que os efeitos capacitivos associados ao MOFET não se façam sentir) é o seguinte: ds R 1 R 3 R u 1 u gs g m u gs u ds e=δe ~ R 4 ( 1 ) u = u + g R (14) 1 gs m 4 u = e g u R (15) m gs 3 u 1 = R R + R 1 e (16) e (14), (15) e (16) obtém-se: u R1+ R gmr3 = = 0,37 u R 1+ g R 1 m 4 d) R 4 = 0 : o transistor está na zona de não saturação. = 1 = V

9 Cap. 4 8 I A = (17) e (17) e (18) obtêm-se as seguintes soluções: = 0,14 V e 1 funcionamento em repouso é: Os parâmetros incrementais são: g m E = I R + (18) 3 = 7,97 V. Como = 4 V exclui-se a ª solução. O ponto de sat I = 1, 08 ma ; = 14 V ; = V = A = 0,8 m e g = A( ) = 8m ds sat O circuito para componentes incrementais é, para os mesmos pressupostos assumidos na alínea anterior: R 1 R 3 R u 1 u gs g m u gs g ds u ds e ~ e (19), (0) e (1) obtém-se: u = u (19) 1 gs u = e g u R g u R = u (0) ds m gs 3 ds ds 3 R + R Δ = = (1) 1 E e u1 R u R1+ R = gmr3 ( 1+ gdsr3) = 0,034 u1 R d) e R = verifica-se que: = E R I 4

10 Cap. 4 9 Atendendo a que: = E R + R I 3 4 endo o MOFET de canal n e de empobrecimento ( 0) <, o circuito anterior impõe uma tensão dreno-fonte inferior à tensão dreno-fonte da entrada na saturação: < < = sat Portanto com R = o transistor está sempre a funcionar na zona de não saturação.

11 Cap Problema MO3 Considerar o circuito da figura (a) que utiliza um MOFET de canal n de enriquecimento com as seguintes características: T = 300 K = 0,5 V; A= 1 ma/v a) Calcular o valor que R deve tomar para que o transistor esteja a funcionar no iar da saturação quando 1 = 1max (fig.b). Representar ( t ) durante o período de 1, calculando pelo menos o seu valor para 1max. b) upor que 1 é substituído por uma tensão constante 0 = 1max, em torno da qual existe uma variação Δ 0 << 0. Com E 1 constante e na aproximação quase-estacionária, calcular Δ Δ 0. R 1 I 1 1max E 1 T/ T t (a) (b) ados: E1 = 4V ; 1max = 10V Resolução a) No iar de saturação tem-se: A A I I = = e sat = sat = = sat

12 Cap Como = E1 = 4V obtém-se I = 6,15 ma e = 3,5 V. O valor de R que conduz a esta situação é dado por: R 1max = = 1, 06 kω I Admitindo que 1 varia de uma forma suficientemente lenta para que se possa tomar a sua evolução como uma sequência de estados estacionários, verifica-se pelas características = que se 1 variar de 0 a estacionárias I I (, ) 1max em repouso correspondentes se situam sempre na zona de não saturação. os pontos de funcionamento I 1max T/ T t I A = I R AR C C 1 = + = + = com C1 = AR( ) + 1= 4,7 e C AR 0,53 ( V ) = =. Obtém-se: C ± C + 4C 4,71±,18,1 () t = = C 1, Escolhe-se o sinal negativo de modo a ter-se () t sat. Trata-se de uma parábola com a concavidade virada para cima uma vez que d () t > 0. d 1

13 Cap ,5 at 1,3 T/4 T/ T t t = T = e = 1,3 V< sat 1 1max b) O circuito para componentes incrementais é o seguinte: u gs =0 g m u gs =0 g ds R ~ i u 0 u gs = 0 1 u = R + g i 0 ds ds 1 ds u = g i u u ds 0 1 = 1 + g R ds endo gds A( ) = =, 7 m no ponto de funcionamento em repouso correspondente a 1 = 1max. ubstituindo na expressão da relação de tensões obtém-se o valor 0,9.

14 Cap Problema MO4 Considerar o circuito da figura (a) onde o MOFET apresenta a característica mútua representada em (b) correspondente a = 5 V. a) Calcular os parâmetros do transistor, A e. Calcular ainda E e com R E de modo que = R = 1 kω o transistor se encontre no iar da saturação com I = 9 ma. b) Considerar agora E = 5 V. Admitindo que E sofre uma variação ΔE E e E se mantém constante, calcular Δ Δ Eg na aproximação quase-estacionária e dizer como variaria essa relação se R aumentasse. R I (ma) I 1 R = 10 kω I I E E =10 V P 1 R -1 0 (V) (a) (b) Resolução a) a figura (b) tem-se I = 0 para = 1 V e = 5 V. Logo = 1V. O ponto P corresponde à zona de saturação pois assim: as condições impostas obtém-se: = 5V> = 1V. endo A I = = 1mA A= ma V

15 Cap A I = I V O = sat O = (1) O a análise do circuito: E = + I R = 11 V () O O este modo: = = = 3V, e portanto: O sat O 1 V E = + I R + R = sat sat b) Ao aumentar o valor de E o transistor entra na zona de saturação. Como as variáveis das equações (1) e () não se alteram, o novo ponto de funcionamento em repouso (ponto Q) não altera as suas coordenadas referentes à corrente de dreno e à tensão gate-fonte: ( ) A I = 9mA Q Q = = I e = E R I = V = O A alteração de Q s Q O E apenas provoca a alteração da tensão dreno-fonte, que é dada por: = E I R + R = 7 V> = = 3 V Q O O O confirmando que o ponto se encontra agora na saturação. raficamente pode verificar-se que a recta de carga mantém o mesmo declive, sofrendo no entanto uma translação para a direita (ver figura) I ( + ) ( + ) * E R R E R R O Q = V O Q E * E O circuito para componentes incrementais de baixa frequência quando o MOFET está na zona de saturação é o seguinte:

16 Cap R ΔI Δ g m Δ ~ ΔE Δ R R Δ E =Δ + RΔ I Δ I = gmδ I Δ = g Δ I R + R m ( Q ) g = A = 6 m m ( + ) Δ gm R R = = 1,714 Δ E 1+ g R m

17 Cap Problema MO5 a) Considerar o circuito da figura com o interruptor aberto. abendo que nessa situação a corrente de dreno é assim como a constante ( ma V ) de tensões. I = 17 ma, calcular a zona em que o transistor está a funcionar A de proporcionalidade entre a corrente e a combinação b) Considerar o circuito com o interruptor fechado. Calcular, I, I 1 e I. c) Admitir que E sofre uma variação ΔE E. Calcular na aproximação quaseestacionária ΔI Δ E nas duas situações anteriores (interruptor aberto e fechado). ados: E = 5 V ; E = 0 V ; R = 10 kω ; R = 1 kω ; = 1V. R I 1 I R I I I E E Resolução a) = E RI (1) = E () = (3) sat

18 Cap e (1) obtém-se = 3 V. e () obtém-se = 5 V. e (3) obtém-se = 4 V. sat O transistor está na zona de não saturação e (4) obtém-se I A = A =,7 ma V. (4) b) Com o interruptor fechado = >. Então o transistor encontra-se na zona de saturação. I1 = E R = 15 ma A I = I = 18,16 ma sat = I = I I 1 = 3,16 ma c) Com o interruptor aberto (transistor na zona de não saturação): Δ I = gmδ + gdsδ Δ = RΔI Δ I + RgdsΔ I = gmδe gm = A =6,81 m e gds = A( ) =, 7 m ΔI gm = =,1 m Δ E 1+ g R ds Com o interruptor fechado (transistor na zona de saturação): Δ =Δ E =Δ R = Δ I = Δ 1 Δ I = g Δ = A Δ m ΔI ΔE ( ) = A = 9,08 m

Cap. 4 - MOS 1. Gate Dreno. Fonte

Cap. 4 - MOS 1. Gate Dreno. Fonte Cap. 4 - MO 1 Fonte ate reno O princípio de funcionamento do transístor de efeito de campo (TEC ou FET, na designação anglo-saxónica) assenta no controlo de uma carga móvel associada a uma camada muito

Leia mais

CAPÍTULO 3 TRANSISTOR BIPOLAR DE JUNÇÕES

CAPÍTULO 3 TRANSISTOR BIPOLAR DE JUNÇÕES APÍTLO 3 TRANSISTOR IPOLAR D JNÇÕS ap. 3 1 Nota: Na resolução dos problemas consideraram-se as equações de bers-moll ou derivadas = T 1 α I T 1 IS e RIS e = α T 1 + I T 1 FIS e IS e onde I I I e = β +

Leia mais

FACULDADE DE TECNOLOGIA DE SÃO PAULO. TÉCNICAS DE EXTRAÇÃO DE PARÂMETROS DE PROCESSO (TEPP) Prof. Victor Sonnenberg

FACULDADE DE TECNOLOGIA DE SÃO PAULO. TÉCNICAS DE EXTRAÇÃO DE PARÂMETROS DE PROCESSO (TEPP) Prof. Victor Sonnenberg TÉCNICAS DE EXTRAÇÃO DE PARÂMETROS DE PROCESSO (TEPP) Prof. Victor Sonnenberg 1 o Experiência: Capacitor MOS Nome Número OBS. PREENHER O RELATÓRIO EM LETRA LEGÍVEL OU DE FORMA. Se necessário, use folha

Leia mais

Exemplo 4.1 (pag.245)

Exemplo 4.1 (pag.245) Exemplo 4.1 (pag.245) Considere um processo tecnológico com min =0,4 μm, t ox =8nm, μ n =450 cm 2 /V.s, e V t =0,7 V. a) Determine C ox e k n. b) Para um MOSFET com W/=8 μm/0,8 μm, determine os valores

Leia mais

Eletrônica II. Germano Maioli Penello. II _ html.

Eletrônica II. Germano Maioli Penello.  II _ html. Eletrônica II Germano Maioli Penello gpenello@gmail.com http://www.lee.eng.uerj.br/~germano/eletronica II _ 2015-1.html Aula 04 1 Revisão aula passada É comum ter situações temos um sinal de baixa intensidade

Leia mais

Circuitos Analógicos com Transístores MOSFET

Circuitos Analógicos com Transístores MOSFET Circuitos Analógicos com Transístores MOFET Electrónica 1 (2º semestre) Instituto uperior Técnico 2013/2014 1 Transístor Estrutura - Transístor de Efeito de Campo (Field Effect Transistor - FET) - Transístor

Leia mais

transistor bipolar parte 3

transistor bipolar parte 3 transistor bipolar parte 3 TRANSÍSTORES BIPOLARES (III) 7.2. A Recta de Carga (EC) Polarização de Base O circuito da figura abaixo é um exemplo de polarização de base, isto é, estabelecer um valor constante

Leia mais

Díodo Zener. Para funcionar com polarização inversa. Modelo mais simples assume r z =0. Electrónica 1

Díodo Zener. Para funcionar com polarização inversa. Modelo mais simples assume r z =0. Electrónica 1 Díodo Zener Para funcionar com polarização inversa. Modelo mais simples assume r z =0 exemplo como é que calcula I, I Z e I L? Díodo Zener Ef.Zener(V z 7V) Especificações: corrente

Leia mais

Colectânea de problemas

Colectânea de problemas lectânea de problemas Capítulo 3 Transistores de efeito de campo (FET) P-1 nsidere o circuito da figura P1 em que o MOSFET tem as seguintes características: V t =2V, K=1mA/V 2 e λ=0; V DD =15V, R D =4kΩ

Leia mais

Transistores MOSFET. TE214 Fundamentos da Eletrônica Engenharia Elétrica

Transistores MOSFET. TE214 Fundamentos da Eletrônica Engenharia Elétrica Transistores MOSFET TE214 Fundamentos da Eletrônica Engenharia Elétrica Sumário Introdução Estrutura e Operação Física Introdução Dispositivo semicondutor de três (3) terminais Aplicações: amplificadores

Leia mais

MOSFET: Polarização do MOSFET Aula 4

MOSFET: Polarização do MOSFET Aula 4 MOSFET: Polarização do MOSFET Aula 4 69 Aula Matéria Cap./página 1ª 03/08 Eletrônica PS33 Programação para a Primeira Prova Estrutura e operação dos transistores de efeito de campo canal n, características

Leia mais

Centro Federal de Educação Tecnológica de Pelotas CEFET-RS. Aula 03. Modelos de Transistores MOS. Prof. Sandro Vilela da Silva.

Centro Federal de Educação Tecnológica de Pelotas CEFET-RS. Aula 03. Modelos de Transistores MOS. Prof. Sandro Vilela da Silva. Centro Federal de Educação Tecnológica de Pelotas CEFET-RS Projeto Físico F Digital Aula 03 Modelos de Transistores MOS Prof. Sandro Vilela da Silva sandro@cefetrs.tche.br Copyright Parte dos slides foram

Leia mais

3 e I x = 0,2I E (considere inicialmente = ). (b) Recalcule I E (somente) para o caso do transistor apresentar = 100.

3 e I x = 0,2I E (considere inicialmente = ). (b) Recalcule I E (somente) para o caso do transistor apresentar = 100. 1) (271099) Para o circuito mostrado na figura abaixo, encontre as tensões indicadas no circuito para (a) = + (b) = 100 (c) = 10. 2) (271099) (a) Projete R C e R B para o circuito mostrado na figura abaixo

Leia mais

MOSFET: Polarização do MOSFET Aula 4

MOSFET: Polarização do MOSFET Aula 4 MOSFET: Polarização do MOSFET Aula 4 67 Aula Matéria Cap./página 1ª 03/08 Eletrônica PS33 Programação para a Primeira Prova Estrutura e operação dos transistores de efeito de campo canal n, características

Leia mais

Transístores MOS. Assuntos. João Canas Ferreira Modelo de funcionamento do transístor MOS. 2 Condensadores intrínsecos

Transístores MOS. Assuntos. João Canas Ferreira Modelo de funcionamento do transístor MOS. 2 Condensadores intrínsecos Transístores MOS João Canas Ferreira Universidade do Porto Faculdade de Engenharia 2012-02-17 Assuntos 1 Modelo de funcionamento do transístor MOS 2 Condensadores intrínsecos 3 Correntes de fugas João

Leia mais

SSC0180- ELETRÔNICA PARA COMPUTAÇÃO. Professor: Vanderlei Bonato Estagiária: Leandro S. Rosa

SSC0180- ELETRÔNICA PARA COMPUTAÇÃO. Professor: Vanderlei Bonato Estagiária: Leandro S. Rosa SSC0180- ELETRÔNICA PARA COMPUTAÇÃO Professor: Vanderlei Bonato Estagiária: Leandro S. Rosa 2 Aspectos práticos sobre transistores Serão discutidos os seguintes aspectos: Como os transistores operam; Atrasos

Leia mais

Transístores MOS. João Canas Ferreira Universidade do Porto Faculdade de Engenharia

Transístores MOS. João Canas Ferreira Universidade do Porto Faculdade de Engenharia Transístores MOS João Canas Ferreira Universidade do Porto Faculdade de Engenharia 2013-02-17 Assuntos 1 Modelo de funcionamento do transístor MOS 2 Condensadores intrínsecos 3 Correntes de fugas João

Leia mais

Transístores MOS. Projecto de Circuitos VLSI FEUP/LEEC 2005/06. Inclui figuras de: Digital Integrated Circuits, J. Rabaey, A. Chandrakasan, B.

Transístores MOS. Projecto de Circuitos VLSI FEUP/LEEC 2005/06. Inclui figuras de: Digital Integrated Circuits, J. Rabaey, A. Chandrakasan, B. Transístores MOS Projecto de Circuitos VLSI FEUP/LEEC 2005/06 Inclui figuras de: Digital Integrated Circuits, J. Rabaey, A. Chandrakasan, B. Nikolic Transístor MOS Poli-silício Alumínio Conceito de tensão

Leia mais

Transístores MOS João Canas Ferreira

Transístores MOS João Canas Ferreira Transístores MOS João Canas Ferreira FEUP/DEEC Setembro de 2007 Tópicos de Projecto de Circuitos VLSI VLSI Transístores 1 Conteúdo Transístores MOS: modelos estáticos modelo clássico modelo DSM Comportamento

Leia mais

Transistores de Efeito de Campo FET Parte II

Transistores de Efeito de Campo FET Parte II EN2719 Dispositivos Eletrônicos AULA 12 Transistores de Efeito de Campo FET Parte II Prof. Rodrigo Reina Muñoz rodrigo.munoz@ufabc.edu.br T1 2018 Conteúdo Transistores de Efeito de Campo JFET MOSFETS Exercícios

Leia mais

MÓDULO 5: RESPOSTA EM FREQÜÊNCIA DO AMPLIFICADOR DE PEQUENOS SINAIS A JFET.

MÓDULO 5: RESPOSTA EM FREQÜÊNCIA DO AMPLIFICADOR DE PEQUENOS SINAIS A JFET. DISCIPLINA: CIRCUITOS ELETRÔNICOS MÓDULO 5: RESPOSTA EM FREQÜÊNCIA DO AMPLIFICADOR DE PEQUENOS SINAIS A JFET. 1. Introdução: O circuito amplificador de sinal a JFET possui ganho alto, uma impedância alta

Leia mais

SOLUÇÃO DOS EXERCÍCIOS REFERENTES A FET DIVISOR DE TENSÃO E AUTOPOLARIZAÇÃO ANÁLISE CC.

SOLUÇÃO DOS EXERCÍCIOS REFERENTES A FET DIVISOR DE TENSÃO E AUTOPOLARIZAÇÃO ANÁLISE CC. SOLUÇÃO DOS EXERCÍCIOS REFERENTES A FET DIVISOE TENSÃO E AUTOPOLARIZAÇÃO ANÁLISE CC. 1.o Para o Amplificador a seguir, calcular : DADOS : I DSS = 6mA V P = - 4 V V DD = 12 V = 1K Pede-se : a) ( I Dq,V

Leia mais

Transistor NMOSFET (Metal-Oxide-Semiconductor Field Effect Transistor, canal N, tipo Enriquecimento) I DS D

Transistor NMOSFET (Metal-Oxide-Semiconductor Field Effect Transistor, canal N, tipo Enriquecimento) I DS D G V GS Transistor NMOSFET (Metal-Oxide-Semiconductor Field Effect Transistor, canal N, tipo Enriquecimento) I DS D S V DS Porta (G-Gate) Fonte Dreno (S-Source) Metal (D-Drain) Óxido N+ Sem. N+ P Substrato

Leia mais

Cap. 3 Transístor Bipolar de Junções 1

Cap. 3 Transístor Bipolar de Junções 1 ap. 3 Transístor ipolar de Junções 1 O transístor bipolar de junções (TJ) é constituído por um cristal semicondutor com duas junções p-n suficientemente próximas para poderem interactuar. A zona intermédia

Leia mais

Eletrônica II. Germano Maioli Penello. II _

Eletrônica II. Germano Maioli Penello.   II _ Eletrônica II Germano Maioli Penello gpenello@gmail.com http://www.lee.eng.uerj.br/~germano/eletronica II _ 2015-1.html 07/04/2015 1 Pauta (T3 e T4) BRUNO SILVEIRA KRAUSE CAIO ROSCELLY BARROS FAGUNDES

Leia mais

O Transistor de Efeito de Campo Aula 1

O Transistor de Efeito de Campo Aula 1 O Transistor de Efeito de Campo Aula 1 4 Aula Data Matéria Capítulo/página Teste Eletrônica II SI3322 rogramação para a rimeira rova 1 02/08 Estrutura e operação dos transistores de efeito de campo canal

Leia mais

Fundamentos de Electrónica. Teoria Cap.4 Transístores de Efeito de Campo

Fundamentos de Electrónica. Teoria Cap.4 Transístores de Efeito de Campo Fundamentos de Electrónica Teoria Cap.4 Transístores de Efeito de Campo Jorge Manuel Torres Pereira T-010 ÍNCE CAP. 4 TRANÍTORE E EFETO E CAMPO Pag. 4.1 ntrodução... 4.1 4. Estrutura do MO-FET... 4.1

Leia mais

Introdução sobre Pares Diferenciais (Bipolares e MOS)

Introdução sobre Pares Diferenciais (Bipolares e MOS) p. 1/1 Resumo Introdução sobre Pares Diferenciais (Bipolares e MOS) Par Diferencial com Transistor MOS Gama de Tensão em Modo Comum Operação com sinal diferencial Operação para grandes sinais Operação

Leia mais

Caracterização Elétrica - Parte 1 Capacitor MOS João Antonio Martino

Caracterização Elétrica - Parte 1 Capacitor MOS João Antonio Martino João ntonio Martino USP Departamento de stemas Eletrônicos Escola Politécnica PSI PSI2643 Laboratório de Fabricação de Dispositivos em Microeletrônica aracterização Elétrica - Parte 1 apacitor MOS João

Leia mais

A figura 1 apresenta um esboço da polarização de um J-FET canal N: junção PN inversamente polarizada, VGS 0, e VDS positivo (VDS > 0).

A figura 1 apresenta um esboço da polarização de um J-FET canal N: junção PN inversamente polarizada, VGS 0, e VDS positivo (VDS > 0). EXPERIMENTO N O 06 Transistor de Efeito de Campo OBJETIVO: Estudar o funcionamento do J-FET MATERIAIS: Instrumentos: Osciloscópio duplo traço Gerador de funções Materiais (responsabilidade do aluno): Fonte

Leia mais

UNIVERSIDADE LUTERANA DO BRASIL

UNIVERSIDADE LUTERANA DO BRASIL UNIVERSIDADE LUTERANA DO BRASIL MATERIAIS ELÉTRICOS LISTA DE EXERCÍCIOS 02 PROF. PAULO GODOY 1) Estime o valor da energia de gap do Si a uma temperatura de 400K (Resp = 1,10 ev). 2) Um semicondutor intrínseco

Leia mais

Aula 18: Fontes e Espelhos de corrente MOS. Prof. Seabra PSI/EPUSP

Aula 18: Fontes e Espelhos de corrente MOS. Prof. Seabra PSI/EPUSP Aula 18: Fontes e Espelhos de corrente MOS 396 Aula Data Matéria Capítulo/página Teste 17 11/10 Ganho de modo Semana comum, da rejeição Pátria (04/09 de modo a comum. 08/09/017) Sedra, Cap. 7 11 13/09

Leia mais

Método dos Mínimos Quadrados

Método dos Mínimos Quadrados Licenciatura em Engenharia Electrotécnica e de Computadores Análise Numérica 1998/99 Método dos Mínimos Quadrados Objectivos: Estimação de valores pelo método dos mínimos quadrados. PROBLEMAS 1 Determine

Leia mais

CIRCUITOS ELETRÔNICOS MÓDULO 4: AMPLIFICADOR DE PEQUENOS SINAIS A JFET.

CIRCUITOS ELETRÔNICOS MÓDULO 4: AMPLIFICADOR DE PEQUENOS SINAIS A JFET. CRCUTOS ELETRÔNCOS MÓDULO 4: AMPLFCADOR DE PEQUENOS SNAS A JFET. NTRODUÇÃO: O transistor J-FET é da família de transistores por efeito de campo. Compõem essa família o transistor de junção J-FET, o transistor

Leia mais

DISPOSITIVOS ELECTRÓNICOS. Simulação e Caracterização

DISPOSITIVOS ELECTRÓNICOS. Simulação e Caracterização IPOITIVO ELECTÓNICO 3. TANÍTO E EFEITO E CAMPO imulação e Caracterização 2007-08 TANITO E EFEITO E CAMPO erão utilizados MOFET de canal n de enriquecimento B 170. Apresentam os seguintes valores máximos

Leia mais

Nota a respeito de FET, MosFET e PIC16F877A

Nota a respeito de FET, MosFET e PIC16F877A Nota a respeito de FET, MosFET e PIC16F877A No caso do pino de RA4, ele é de dreno aberto logo temos que colocar um resistor entre ele e VCC+. O pino RA4 está ligado no dreno (Drain) de um transistor MosFET.

Leia mais

Eletrônica II. Germano Maioli Penello. II _ html.

Eletrônica II. Germano Maioli Penello.  II _ html. Eletrônica II Germano Maioli Penello gpenello@gmail.com http://www.lee.eng.uerj.br/~germano/eletronica II _ 2015-1.html Aula 10 1 Polarização de transistores A polarização serve para definir a corrente

Leia mais

Alguns exercícios (resolvidos) de PCVLSI

Alguns exercícios (resolvidos) de PCVLSI Alguns exercícios (resolvidos) de PCVLSI 2005/06 1 Enunciados Na resolução dos exercícios assuma a utilização de uma tecnologia CMOS 0.25 µm. V T0 (V) γ ( V ) V DSAT (V) k (A/V 2 ) λ (1/V) NMOS 0,43 0,4

Leia mais

IFBA. CELET Coordenação do Curso Técnico em Eletrônica Professor: Edvaldo Moraes Ruas, EE. Vitória da Conquista

IFBA. CELET Coordenação do Curso Técnico em Eletrônica Professor: Edvaldo Moraes Ruas, EE. Vitória da Conquista IFBA 1 a Parte CELET Coordenação do Curso Técnico em Eletrônica Professor: Edvaldo Moraes Ruas, EE Vitória da Conquista - 2009 JFET s - estrutura e símbolo Transistor de junção por efeito de campo (Junction

Leia mais

PSI ELETRÔNICA II. Prof. João Antonio Martino AULA

PSI ELETRÔNICA II. Prof. João Antonio Martino AULA PSI3322 - ELETRÔNICA II Prof. João Antonio Martino AULA 3-2017 Exercício: Desenhe as curvas características do NMOSFET abaixo e o perfil de carga μ nεox k n μ n.c t ox m n = 500 cm 2 /V.s e ox /t ox =

Leia mais

Folha 5 Transístores bipolares.

Folha 5 Transístores bipolares. Folha 5 Transístores bipolares. 1. Considere um transístor npn que possui uma queda de potencial base emissor de 0.76 V quando a corrente de colector é de 10 ma. Que corrente conduzirá com v BE = 0.70

Leia mais

TRANSISTORES DE EFEITO DE CAMPO DE JUNÇÃO JFET

TRANSISTORES DE EFEITO DE CAMPO DE JUNÇÃO JFET TRANSISTORES DE EFEITO DE CAMPO DE JUNÇÃO JFET Transistores bipolares dispositivos controlados por corrente (corrente do coletor é controlada pela corrente da base). Transistores de efeito de campo (FET

Leia mais

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA ELETRÔNICA 1 - ET74C Prof.ª Elisabete Nakoneczny Moraes

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA ELETRÔNICA 1 - ET74C Prof.ª Elisabete Nakoneczny Moraes UNIVERIAE TECNOLÓICA FEERAL O PARANÁ EPARTAMENTO ACAÊMICO E ELETROTÉCNICA ELETRÔNICA 1 ET74C Prof.ª Elisabete Nakoneczny Moraes Aula 20 TRANITOR E EFEITO E CAMPO E JUNÇÃO (JFET) Curitiba, 26 de maio de

Leia mais

Auto-indutância de uma Bobina

Auto-indutância de uma Bobina defi departamento de física Laboratórios de Física www.defi.isep.ipp.pt Auto-indutância de uma Bobina Instituto Superior de Engenharia do Porto- Departamento de Física Rua Dr. António Bernardino de Almeida,

Leia mais

Universidade Federal de Juiz de Fora Laboratório de Eletrônica CEL 037 Página 1 de 5

Universidade Federal de Juiz de Fora Laboratório de Eletrônica CEL 037 Página 1 de 5 Universidade Federal de Juiz de Fora Laboratório de Eletrônica CEL 037 Página 1 de 5 1 Título Prática 11 MOSFETs (parte 1) 2 Objetivos eterminar experimentalmente os parâmetros de um MOSFET. Estudar a

Leia mais

Problema Circuito RL excitado por um escalão de tensão

Problema Circuito RL excitado por um escalão de tensão PRTE III -Circuitos Dinâmicos Lineares Problema 3. - Circuito LC em regime estacionário (dc) Considere o circuito da figura 3., que representa uma rede RLC alimentada por um gerador de tensão contínua.

Leia mais

CIRCUITO AUTOPOLARIZAÇÃO Análise do modelo equivalente para o circuito amplificador em autopolarização a JFET.

CIRCUITO AUTOPOLARIZAÇÃO Análise do modelo equivalente para o circuito amplificador em autopolarização a JFET. MÓDULO 6: RESPOSTA EM FREQÜÊNCIA DO AMPLIFICADOR DE PEQUENOS SINAIS A JFET. 1. Introdução: O circuito amplificador de sinal a JFET possui ganho alto, uma impedância alta de entrada e ampla faixa de resposta

Leia mais

DISPOSITIVOS SEMICONDUTORES II - DS II. 12. Transistor nmos - efeitos da redução das dimensões

DISPOSITIVOS SEMICONDUTORES II - DS II. 12. Transistor nmos - efeitos da redução das dimensões DISPOSITIVOS SEMICONDUTORES II - DS II 12. Transistor nmos - efeitos da redução das dimensões Tendência da redução das dimensões Lei de Moore: O número de transistores no CI dobra a cada 18 meses Conseqüências:

Leia mais

Semicondutores e Circuitos Periféricos

Semicondutores e Circuitos Periféricos Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina Departamento Acadêmico de Eletrônica Pós-Graduação em Desen. de Produtos Eletrônicos Conversores Estáticos e Fontes Chaveadas Semicondutores

Leia mais

Capítulo 5. Circuitos RC e díodos. 5.1 Actividade prática

Capítulo 5. Circuitos RC e díodos. 5.1 Actividade prática Capítulo 5 Circuitos RC e díodos Os díodos emissores de luz (LED) são muito usados actualmente em aparelhos electrónicos. Um LED produz luz em forma muito eficiente, com um consumo eléctrico de apenas

Leia mais

Transistor BJT FABRÍCIO RONALDO - DORIVAL

Transistor BJT FABRÍCIO RONALDO - DORIVAL Transistor BJT FABRÍCIO RONALDO - DORIVAL Construção Transistor Bipolar de Junção (BJT) Construção análoga à do diodo. No diodo, junta-se semicondutores do tipo P e N, com mesmo nível de dopagem. Temos

Leia mais

EXERCÍCIOS DE PREPARAÇÃO B1i EXERCÍCIO REFERENTE À AULA DE AMPLIFICADORES DIFERENCIAIS.

EXERCÍCIOS DE PREPARAÇÃO B1i EXERCÍCIO REFERENTE À AULA DE AMPLIFICADORES DIFERENCIAIS. EXERCÍCIOS DE PREPARAÇÃO B1i Exercícios Preparação B1i EXERCÍCIO REFERENTE À AULA DE AMPLIFICADORES DIFERENCIAIS. Exercício Resolvido : Projetar a polarização de um amplificador diferencial, segundo os

Leia mais

VCC M4. V sa VEE. circuito 2 circuito 3

VCC M4. V sa VEE. circuito 2 circuito 3 ES238 Eletrônica Geral I ř semestre de 2006 09/out/2006 SEGUNDA CHAMADA Para os transistores bipolares presentes, considere que I sat = 0 2 A, V T = 25mV e β = 00.. Obtenha o ganho de tensão M7 v en v

Leia mais

A CORRENTE DE DRENO TE 152 CIRCUITOS INTEGRADOS ANALÓGICOS

A CORRENTE DE DRENO TE 152 CIRCUITOS INTEGRADOS ANALÓGICOS A CORRENTE E RENO TE 152 CRCUTO NTERAO ANALÓCO 21 Características volt-ampére de saída (fonte comum) X V B @ V B (V B constante) (A) reião triodo V B = 0 V B = 5 V saturação V B = 4 V V B = 3 V V B = 2

Leia mais

Relatório. 1º Trabalho de Laboratório Transístor Bipolar de Junção

Relatório. 1º Trabalho de Laboratório Transístor Bipolar de Junção Instituto Superior Técnico Mestrado em Engenharia Biomédica 2º Semestre (2011/2012) Electrónica Geral Relatório 1º Trabalho de Laboratório Transístor Bipolar de Junção Grupo 2: Ana Filipa Vieira 67302

Leia mais

1.2.5 Características de um gerador de tensão contínua. Balanço energético num circuito.

1.2.5 Características de um gerador de tensão contínua. Balanço energético num circuito. 1.2.5 Características de um gerador de tensão contínua. Balanço energético num circuito. Adaptado pelo Prof. Luís Perna Tal como os outros componentes de um circuito, um gerador também dissipa energia

Leia mais

4. AMPLIFICADORES OPERACIONAIS

4. AMPLIFICADORES OPERACIONAIS . AMPLIFICADOES OPEACIONAIS Fernando Gonçalves Instituto Superior Técnico Teoria dos Circuitos e Fundamentos de Electrónica - 00/005 O Amplificador Operacional O amplificador operacional é um componente

Leia mais

Circuitos Electrónicos Básicos. Licenciatura em Engenharia Electrónica 1ª Aula Teórica

Circuitos Electrónicos Básicos. Licenciatura em Engenharia Electrónica 1ª Aula Teórica Licenciatura em Engenharia Electrónica 1ª Aula Teórica Sumário Apresentação da disciplina Objecto da disciplina Funcionamento da disciplina Programa Método de avaliação Bibliografia Apresentação da disciplina

Leia mais

Capítulo 5 e 6 - Transistor Efeito de Campo FET e Polarização do FET

Capítulo 5 e 6 - Transistor Efeito de Campo FET e Polarização do FET Capítulo 5 e 6 - Transistor Efeito de Campo FET e Polarização do FET Prof. Eng. Leandro Aureliano da Silva Introdução Os TBJ s são dispositivos controlados por corrente, isto é, I C é controlada por I

Leia mais

Tecnologia em Automação Industrial 2016 ELETRÔNICA II Aula 08

Tecnologia em Automação Industrial 2016 ELETRÔNICA II Aula 08 Tecnologia em Automação Industrial 2016 ELETRÔNICA II Aula 08 MOSFET operação Prof. Dra. Giovana Tripoloni Tangerino https://giovanatangerino.wordpress.com giovanatangerino@ifsp.edu.br giovanatt@gmail.com

Leia mais

Montagens Básicas com Transístores

Montagens Básicas com Transístores Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar Departamento de Engenharia Electrotécnica ELECTRÓNICA I Trabalho Prático N.º 3 Montagens Básicas com Transístores Efectuado pelos alunos:

Leia mais

Estruturas de Caracterização de Processo e Componentes ECPC

Estruturas de Caracterização de Processo e Componentes ECPC Estruturas de Caracterização de Processo e Componentes ECPC Ementa Livro do Martino, Pavanello e Patrick Caracterização Elétrica de Tecnologia e Dispositivos MOS Capacitor MOS. (cap. 2 - pag. 25) - Diagramas

Leia mais

Eletrônica II. Germano Maioli Penello. II _ html.

Eletrônica II. Germano Maioli Penello.  II _ html. Eletrônica II Germano Maioli Penello gpenello@gmail.com http://www.lee.eng.uerj.br/~germano/eletronica II _ 2015-1.html Aula 07 1 Resumo da aula passada 2 Modelo de circuito equivalente para pequenos sinais

Leia mais

Escola Politécnica - USP

Escola Politécnica - USP Escola Politécnica - USP PSI 2325 Laboratório de Eletrônica I Exp 4: Polarização de Transistores JFET Equipe: - Turma: - - Profs: - - Data de Realização do Experimento: Nota: Bancada: 2002 B 66 Laboratório

Leia mais

GUIA DE LABORATÓRIOS DISPOSITIVOS ELECTRÓNICOS 3. TRANSISTOR DE EFEITO DE CAMPO VN66AF

GUIA DE LABORATÓRIOS DISPOSITIVOS ELECTRÓNICOS 3. TRANSISTOR DE EFEITO DE CAMPO VN66AF UIA E LABOATÓIO E IPOITIVO ELECTÓNICO 3 TANITO E EFEITO E CAPO VN66AF 004 005 Laboratório de ispositivos Electrónicos TANITO E EFEITO E CAPO erão utilizados OFET de canal n de enriquecimento VN 66AF Apresentam

Leia mais

Amplificadores de Estágio Simples (1) Aula 5 Prof. Nobuo Oki

Amplificadores de Estágio Simples (1) Aula 5 Prof. Nobuo Oki Amplificadores de Estágio Simples (1) Aula 5 Prof. Nobuo Oki Estágio Amplificadores Simples (1) Estágio Amplificadores Simples (2) Conceitos Básicos (1) Conceitos de grande e pequenos sinais : Quando x

Leia mais

Aplicações dos capacitores MOS

Aplicações dos capacitores MOS 3. Capacitor MOS 3. CAPACITOR MOS Aplicações dos capacitores MOS TRANSISTOR MOS DRAM CCD s Estrutura MOS e diagrama de energia Metal 3. CAPACITOR MOS Metal Óxido Semicondutor Capacitor tipo P 3.1 Capacitor

Leia mais

Colectânea de Problemas de Electrónica I (enunciados)

Colectânea de Problemas de Electrónica I (enunciados) IST - DEEC Colectânea de Problemas de Electrónica I (enunciados) A.T. Freitas, J. Fernandes, I.C. Teixeira, J.P. Teixeira Versão 4 Dezembro de 2003 1º. Semestre 2003/04 Índice Cap. 1 - Modelação de Dispositivos

Leia mais

TRANSISTOR BIPOLAR DE JUNÇÃO (Unidade 5)

TRANSISTOR BIPOLAR DE JUNÇÃO (Unidade 5) MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA TÉCNICO EM ELETROMECÂNICA DISCIPLINA: ELETRÔNICA GERAL TRANSISTOR

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 507 E fernando.fernandes@uerj.br Aula 7 Exercícios selecionados do capítulo. /.3 /.8 /.9 /./.6 /.0 /.3 /.9 Prova P. Capt. (exercícios

Leia mais

Física III Escola Politécnica GABARITO DA P3 25 de junho de 2014

Física III Escola Politécnica GABARITO DA P3 25 de junho de 2014 Física III - 4331 Escola Politécnica - 14 GABARITO DA P3 5 de junho de 14 Questão 1 O campo magnético em todos os pontos de uma região cilíndrica de raio R é uniforme e direcionado para dentro da página,

Leia mais

Electrónica II Resposta em Frequência dos Amplificadores

Electrónica II Resposta em Frequência dos Amplificadores Introdução O estudo dos ampliicadores eectuado até agora não incluiu nenhum elemento que cause dependência com a requência. Isto deve-se ao modelo utilizado e não aos transístores que têm de acto elementos

Leia mais

D.D.P. nos terminais de um gerador

D.D.P. nos terminais de um gerador D.D.P. nos terminais de um gerador 1 Fig.23.1 23.1. A Fig. 23.1 mostra um circuito contendo um gerador, um reostato e um interruptor. Ajustando o reostato para o valor 4,0 Ω e fechando o interruptor, a

Leia mais

Amplificador realimentado Série-Paralelo

Amplificador realimentado Série-Paralelo p. 1/2 Resumo Amplificador realimentado Série-Paralelo Amplificador realimentado Série-Série Amplificador realimentado Paralelo-Paralelo Amplificador realimentado Paralelo-Série Amplificador realimentado

Leia mais

1 a Questão: (2,0 pontos)

1 a Questão: (2,0 pontos) a Questão: (, pontos) Um bloco de massa m, kg repousa sobre um plano inclinado de um ângulo θ 37 o em relação à horizontal. O bloco é subitamente impulsionado, paralelamente ao plano, por uma marretada,

Leia mais

Tecnologia em Automação Industrial ELETRÔNICA II. Aula 05 MOSFET. Prof. Dra. Giovana Tripoloni Tangerino

Tecnologia em Automação Industrial ELETRÔNICA II. Aula 05 MOSFET. Prof. Dra. Giovana Tripoloni Tangerino Tecnologia em Automação Industrial ELETRÔNICA II Aula 05 MOSFET Prof. Dra. Giovana Tripoloni Tangerino SP CAMPUS PIRACICABA https://giovanatangerino.wordpress.com giovanatangerino@ifsp.edu.br giovanatt@gmail.com

Leia mais

Relatório - Prática 3 - MOSFET

Relatório - Prática 3 - MOSFET Universidade Federal do ABC Relatório - Prática 3 - MOSFET Disciplina: EN2701 Fundamentos de Eletrônica Discentes: André Lucas de O. Duarte 11058710 Douglas Nishiyama 11074309 Felipe Jun Ichi Anzai 21033410

Leia mais

Física 3. Fórmulas e Exercícios P3

Física 3. Fórmulas e Exercícios P3 Física 3 Fórmulas e Exercícios P3 Fórmulas úteis para a P3 A prova de física 3 traz consigo um formulário contendo várias das fórmulas importantes para a resolução da prova. Aqui eu reproduzo algumas que

Leia mais

Capítulo 2. Espelhos de Corrente. 2.1 Espelho de Corrente em Inversão Forte, na Configuração Cascode

Capítulo 2. Espelhos de Corrente. 2.1 Espelho de Corrente em Inversão Forte, na Configuração Cascode 50 Espelhos de Corrente Capítulo Os espelhos de corrente são elementos fundamentais nos circuitos integrados CMOS. Através deles, é possível realizar cópias muito precisas de uma corrente de referência,

Leia mais

INICIAÇÃO À PRÁTICA PROFISSIONAL INSTALAÇÕES ELÉTRICAS PREDIAIS ELETRICIDADE BÁSICA

INICIAÇÃO À PRÁTICA PROFISSIONAL INSTALAÇÕES ELÉTRICAS PREDIAIS ELETRICIDADE BÁSICA INICIAÇÃO À PRÁTICA PROFISSIONAL INSTALAÇÕES ELÉTRICAS PREDIAIS ELETRICIDADE BÁSICA Caracteristicas-dos-diodos -1-22. 30 Curso Técnico em Eletrotécnica Características dos diodos Diodos semicondutores

Leia mais

10 10 Resposta em emfrequência dos Amplificadores

10 10 Resposta em emfrequência dos Amplificadores 0 0 Resposta em emfrequência dos Amplificadores 0. 0. As As Três TrêsBandas de de Frequência n Nesta disciplina o estudo da resposta em frequência dos amplificadores, incide nos amplificadores de acoplamento

Leia mais

INSTITUTO POLITÉCNICO DE TOMAR

INSTITUTO POLITÉCNICO DE TOMAR INSTITUTO POLITÉCNICO DE TOMAR Escola Superior de Tecnologia de Tomar Departamento de Engenharia Electrotécnica Electrónica I 2007-2008 Exame Duração: 2:00 Horas Data: 31-01-2008 Importante: Todas as respostas

Leia mais

Indução Magnética. E=N d Φ dt

Indução Magnética. E=N d Φ dt Indução Magnética Se uma bobina de N espiras é colocada em uma região onde o fluxo magnético está variando, existirá uma tensão elétrica induzida na bobina, e que pode ser calculada com o auxílio da Lei

Leia mais

Tecnologia em Automação Industrial ELETRÔNICA II. Aula 03. Transistores JFET. Prof. Dra. Giovana Tripoloni Tangerino

Tecnologia em Automação Industrial ELETRÔNICA II. Aula 03. Transistores JFET. Prof. Dra. Giovana Tripoloni Tangerino Tecnologia em Automação Industrial ELETRÔNICA II Aula 03 Transistores JFET Prof. Dra. Giovana Tripoloni Tangerino https://giovanatangerino.wordpress.com giovanatangerino@ifsp.edu.br giovanatt@gmail.com

Leia mais

Transistores de Efeito de Campo FET Parte I

Transistores de Efeito de Campo FET Parte I EN2719 Dispositivos Eletrônicos AULA 11 Transistores de Efeito de Campo FET Parte I Prof. Rodrigo Reina Muñoz rodrigo.munoz@ufabc.edu.br T1 2018 Conteúdo Transistores de Efeito de Campo JFET MOSFETS Exercícios

Leia mais

F-328 Física Geral III

F-328 Física Geral III F-328 Física Geral III Aula exploratória- 10B UNICAMP IFGW username@ifi.unicamp.br F328 1S2014 1 A ei de enz O sentido da corrente induzida é tal que ela se opõe à variação do fluxo magnético que a produziu.

Leia mais

Tecnologia em Automação Industrial 2016 ELETRÔNICA II

Tecnologia em Automação Industrial 2016 ELETRÔNICA II Tecnologia em Automação Industrial 2016 ELETRÔNICA II Aula 05 Transistores JFET Prof. Dra. Giovana Tripoloni Tangerino https://giovanatangerino.wordpress.com giovanatangerino@ifsp.edu.br giovanatt@gmail.com

Leia mais

Aula 7 Transistores. Patentes

Aula 7 Transistores. Patentes Aula 7 Transistores 1 Patentes 2 1 Definição Transistor TRANSfer resstor Dispositivo semicondutor que pode controlar corrente a partir de corrente ou a partir de tensão ndiretamente pode ser utilizado

Leia mais

Ruído. Aula 11 Prof. Nobuo Oki

Ruído. Aula 11 Prof. Nobuo Oki Ruído Aula 11 Prof. Nobuo Oki Considerações Gerais Ruído O ruído limita o nível mínimo do sinal que um circuito pode processar com uma qualidade aceitável. O problema do ruído relaciona-se com a potência

Leia mais

Física C Extensivo V. 5

Física C Extensivo V. 5 GABAITO Física C Extensivo V. 5 Exercícios 0) a) = 4 + = 6 Ω 06) = Ω b) V = 48 = 6 i = A c) = = 4. = V V = V =. = 6 V d) P = P = 4. = 6 w P = P =. = 08 w e) P total = P + P = 44 w f) gerador ideal P fornecida

Leia mais

Integração de Filtros. Integração de Filtros

Integração de Filtros. Integração de Filtros Filtro P.A. com pico de ressonância Integração de Filtros A forma mais tradicional de sintetizar filtros recorre a elementos passivos RL. Desvantagens: Para f L elevado. Núcleo de ferrite diminui

Leia mais

Licenciatura em Engenharia Electrotécnica e de Computadores

Licenciatura em Engenharia Electrotécnica e de Computadores Licenciatura em Engenharia Electrotécnica e de Computadores Ramo de Telecomunicações, Electrónica e Computadores Electrónica 3 003/004, ª Chamada 4 Novembro de 003 ª Parte (sem consulta). (, val) Pretende-se

Leia mais

Conversão de Saída Diferencial para saída única

Conversão de Saída Diferencial para saída única p. 1/ Resumo Conversão de Saída Diferencial para saída única O par diferencial MOS com carga activa O ganho diferencial do par diferencial MOS Ganho em Modo Comum e CMRR do par diferencial MOS com carga

Leia mais

Circuitos Eletrónicos Básicos

Circuitos Eletrónicos Básicos Circuitos Eletrónicos Básicos Licenciatura em Engenharia Eletrónica Transparências de apoio às aulas Cap. 1: Circuitos com um transístor 1º semestre 2013/2014 João Costa Freire Instituto Superior Técnico

Leia mais

Física C Extensivo V. 5

Física C Extensivo V. 5 GABAITO Física C Extensivo V. 5 Exercícios 0) a) eq 4 + 6 Ω 06) Ω b) V 48 6 i A c) 4. V V V. 6 V d) P P 4. 6 w P P. 08 w e) P total P + P 44 w f) gerador ideal P fornecida P dissipada 44 w 0) V total V

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Estatística. Grupo I

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Estatística. Grupo I Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Estatística 6º Teste de avaliação versão B Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas

Leia mais

Fig. 6 (a) Sistema em malha fechada de um oscilador, e (b) modelo genérico de um ocilador LC.

Fig. 6 (a) Sistema em malha fechada de um oscilador, e (b) modelo genérico de um ocilador LC. Osciladores ressonantes do tipo C Todos os osciladores C podem ser representados e reduzidos a simples malhas de realimentação, como se pode verificar na Figura 6(a. Ao conjunto das condições a serem satisfeitas,

Leia mais

ELECTROMAGNETISMO. EXAME 1ª Chamada 18 de Junho de 2010 RESOLUÇÕES

ELECTROMAGNETISMO. EXAME 1ª Chamada 18 de Junho de 2010 RESOLUÇÕES ELECTROMAGNETISMO EXAME 1ª Chamada 18 de Junho de 2010 RESOLUÇÕES 1. a. Dado a simetria cilíndrica da distribuição de carga, a componente axial (paralela ao eixo do cilindro) do campo eléctrico é nula.

Leia mais

Aula 12: O Inversor CMOS. Prof. Seabra PSI/EPUSP

Aula 12: O Inversor CMOS. Prof. Seabra PSI/EPUSP Aula : nversor CMS PS/EPUSP 80 Eletrônica PS33 Programação para a Primeira Prova Aula Data Matéria Capítulo/página Teste Semana da Pátria (04/09 a 08/09/07 3/09 Amplificadores MS porta comum e fonte comum

Leia mais