Fig. 6 (a) Sistema em malha fechada de um oscilador, e (b) modelo genérico de um ocilador LC.

Tamanho: px
Começar a partir da página:

Download "Fig. 6 (a) Sistema em malha fechada de um oscilador, e (b) modelo genérico de um ocilador LC."

Transcrição

1 Osciladores ressonantes do tipo C Todos os osciladores C podem ser representados e reduzidos a simples malhas de realimentação, como se pode verificar na Figura 6(a. Ao conjunto das condições a serem satisfeitas, para que exista uma oscilação estável, denomina-se critério de Barkhausen. Estas condições consistem na existência de um ganho em malha fechada igual à unidade e que o desvio de fase do sinal oscilatório, ao longo da mesma malha fechada, seja 0º ou múltiplo de 360º. A partir do momento que estas condições sejam cumpridas, isto é, que o critério de Barkhausen esteja verificado, o sinal na entrada do andar de ganho será amplificado e devolvido para a entrada pela malha de realimentação, resultando numa auto-sustentação do sinal produzido. Num oscilador C, o circuito constituído pelo paralelo de uma indutância, [H], com um condensador, C [F], também referido em alguma literatura como circuito tanque (tank circuit, é utilizado com o intuito de fazer cumprir o critério de Barkhausen. A Figura 6(b ilustra um simples modelo de um oscilador C incluindo as perdas no circuito sob a forma de uma resistência, R perdas [Ω], em paralelo com o condensador e a indutância. A resistência negativa (dada por -g m -1 será providenciada pelo amplificador com vista a anular o efeito dissipativo de R perdas. Na realidade não se trata de resistência alguma e muito menos negativa, o que se passa é que o amplificador injecta corrente adicional no paralelo C na medida certa da corrente que R perdas dissipa. Isto faz com que de facto o paralelo C em termos equivalente se comporte como um circuito ideal e as oscilações persistam indefinidamente sem ocorrência de amortecimento. De uma maneira intuitiva conclui-se que um elevado factor de qualidade, Q, do circuito tanque leva a menores variações na frequência do sinal produzido no oscilador (mais estável, representando uma melhor ressonância. Para obter melhores factores de qualidade no projecto do oscilador, os componentes activos e passivos devem apresentar o mínimo de perdas possíveis (devido a resistências parasitas. Fig. 6 (a Sistema em malha fechada de um oscilador, e (b modelo genérico de um ocilador C. Topologias e análise do funcionamento de osciladores C Das inúmeras topologias para osciladores C que existem disponíveis, todas tem em comum basearem-se num circuito com uma indutância (ou várias indutâncias ligada em paralelo com um condensador e com um ou vários componentes activos que simulam o efeito de resistência negativa. Os osciladores C mais utilizados são do tipo complementary cross-coupled C oscillator, contudo para melhor compreender o seu modo de operação, é imperativo que primeiro se proceda à análise dos osciladores que lhe deram origem: o all n-mosfet cross-coupled C oscillator e o all p-mosfet cross-coupled C oscillator. Possíveis topologias para estes tipos de osciladores estão representadas na Figura 7.

2 Fig. 7 Exemplos de topologias all n-mosfet cross-coupled C oscillators: (a e (b. Exemplos de topologias p-mosfet cross-coupled C oscillators: (c e (d. Considerando a topologia da Figura 7(a e efectuando uma análise DC ao circuito, conclui-se que ambas as tensões gate-source, V gs [V], e drain-source, V [V], são iguais ao máximo potencial de alimentação, V dd [V], ou seja V gs =V dd e V =V dd. Desprezando o efeito do substrato nos MOSFETs, a corrente nos canais desde o terminal drain até ao terminal source é dada por: I C n ox = µ ( ( Vgs Vth (1 onde µ n [cm V -1 s -1 ] representa a mobilidade dos electrões ao longo da superfície do canal do MOSFET, C ox é a capacidade do óxido da gate por unidade de área, V gs é a tensão entre a gate e a source do MOSFET, V th [V] é a tensão limiar do MOSFET e [µm] e [µm] são a largura e o comprimento do MOSFET, respectivamente. Alternativamente, refira-se que é comum designar-se por overdrive, a diferença de tensões V od =V gs -V th, significando que um MOSFET funciona na zona activa quando a tensão de overdrive é superior a zero. Com base na equação (4, o valor da corrente dos MOSFETs da Figura 7(a é facilmente calculada. Para poder demonstrar-se a possibilidade deste circuito gerar o efeito de uma

3 resistência negativa, os MOSFETs têm de ser substituídos pelos seus modelos equivalentes simplificados, conforme apresentado na Figura 8. Fig. 8 - (a Circuito eléctrico do all n-mosfet cross-coupled C oscillator e (b o respectivo modelo DC equivalente. Esta análise não tem em conta as capacidades internas e por isso, os modelos equivalentes dos MOSFETs a utilizar são os de baixa frequência. Assim, a transcondutância (o inverso da resistência no modo de operação considerado é definida como: I = I ( g m = µ ncox( ( Vgs Vth = µ ncox( Vgs O valor da resistência equivalente, R th [Ω], vista aos terminais do circuito oscilador é R th =-/g m. Para que este circuito oscile, o módulo da resistência negativa, R th, deve ser menor do que o valor da resistência de perdas, R perdas, do circuito C. À razão entre o módulo do valor da resistência negativa e o valor da resistência de perdas denomina-se factor de segurança de arranque. Para garantir a máxima fiabilidade e minimizar a probabilidade de falha dos osciladores integrados, geralmente são projectados para apresentar factores superiores a duas unidades. A Figura 7(c ilustra a topologia complementar à analisada, a qual é constituída unicamente por transístores do tipo p-mosfet. O modo de funcionamento é idêntico, bem como a análise de funcionamento com a excepção de algumas diferenças nas polaridades. Todavia, como a mobilidade dos electrões, µ p [cm V -1 s -1 ], é menor e o modulo da tensão limiar, V th, é maior nos transístores p-mosfet, quando comparados com os n-mosfet, será necessário usar uma maior área de layout, [µm ], por parte dos p-mosfets para conseguir obter-se valores de transcondutância idênticos aos obtidos com transístores n-mosfet. No exemplo atrás analisado, as tensões de operação DC estão bem definidas, sendo a resistência negativa exclusivamente dependente dos tamanhos dos MOSFETs e do valor da tensão de alimentação. Estas limitações de flexibilidade de projecto conduziram ao desenvolvimento de novas topologias, nomeadamente as topologias apresentadas nas Figuras 7(b e 7(d. Estas novas topologias permitem limitar a corrente de alimentação do circuito, dando uma maior flexibilidade para controlar o valor da resistência negativa. A corrente de polarização denomina-se tail current, I tail [A], e é a

4 principal responsável pela caracterização da potência média dissipada no circuito em pleno funcionamento. Em suma, com a introdução destas modificações consegue-se controlar o valor da resistência negativa e o valor da potência média dissipada no circuito. Portanto, a topologia complemetary cross-coupled C oscillator resulta da fusão das duas topologias apresentadas na Figura 7, e o seu circuito esquemático pode ser observado na Figura 9. Fig. 9 - Topologia do complementary cross-coupled C oscillator. Para a mesma dissipação de potência e com a mesma corrente I tail através dos transístores p-mosfet e n-mosfet, consegue-se obter uma resistência negativa que pode atingir o dobro do valor conseguido com as topologias anteriormente apresentadas. A resistência negativa total presente neste circuito através da combinação dos cross-coupled MOSFETs em paralelo é: R negativa = (3 g + g mnmos mpmos Resta a definição da frequência de operação do circuito oscilador C. Como o oscilador é constituído por um circuito ressonante C, a frequência de operação deste circuito é definida através de: f 0 1 = (4 π ( C C parasitas + onde f 0 [Hz] é o valor da frequência central do oscilador C, [H] é o valor da indutância do circuito oscilador, C [F] é o valor do condensador a utilizar no oscilador, e C parasitas [F] representa as capacidades parasitas que existem entre a gate e a source dos MOSFETs, as quais não foram anteriormente contabilizadas. Estas capacidades parasitas estão em paralelo com o condensador e a indutância. Em resumo, as principais vantagens que a topologia complementary cross-coupled C oscillator apresenta quando comparada com as versões all n-mosfet e all p-mosfet cross-coupled C oscillator incluem a oferta de uma maior transcondutância para um dado valor de corrente de polarização, permitindo reduzir a dissipação de potência e

5 área de layout gasta pelos componentes activos. Adicionalmente, possui uma melhor comutação por parte dos MOSFETs cross-coupled, ao mesmo tempo que utiliza uma única indutância, evitando problemas inerentes ao facto de os valores das indutâncias serem diferentes devido às tolerâncias quando utilizadas aos pares. Possui ainda uma menor queda de tensão DC nos MOSFETs, resultando numa menor velocidade de saturação destes componentes, reduzindo-se assim o ruído de fase. Para além destas vantagens, destaca-se a particularidade deste oscilador ser diferencial, facto que o torna mais imune a ruídos que possam perturbar o sinal ondulatório gerado. Note-se que tais ruídos podem ser provenientes do meio físico onde o sinal RF foi transmitido ou até mesmo da sua fonte de alimentação. A única desvantagem desta topologia é o efeito das capacidades parasitas dos MOSFETs que serão adicionadas à capacidade fixa que constitui o circuito C do oscilador, como se pode constatar na equação (7, fazendo com que o valor da frequência central do oscilador apresente um desvio ligeiro do valor teórico. Dimensionamento de um oscilador C Tomando como base o circuito esquemático da Figura 9, refira-se que os transístores M 1, M, M 3 e M 4 providenciam o efeito de resistência negativa ao circuito condensador em paralelo com a indutância através de realimentação positiva. Para que as oscilações cresçam, o inverso da transcondutância deve ser maior que o valor da resistência de perdas, R perdas [Ω], entre os terminais IN 1 e IN. O circuito ressonante é composto por uma indutância (normalmente da ordem dos nh e um condensador (normalmente da ordem dos pf que para frequências superiores a 1 GHz devem ser preferencialmente integrados com o microchip que contém os circuitos RF (on-chip ou alternativamente do tipo montagem superficial (do tipo SMD Surface Mounting Device. A escolha do tipo de indutância é um aspecto decisivo no projecto global de um sistema RF, pois o factor de qualidade, Q, das indutâncias on-chip é muito inferior ao conseguido com um componente externo. As indutâncias externas apresentarem muito facilmente factores de qualidade superiores a 60, ao passo que as indutâncias on-chip só conseguem atingir um factor de qualidade de 10 após optimização do layout físico. Em aplicações muito específicas que exijam indutâncias on-chip com factores de qualidade superiores e por essa razão, excepcionais pode recorrer-se à micromaquinagem volúmica para remoção do substrato abaixo da indutância. Isto permite aumentar o factor de qualidade das indutâncias. Note-se ainda que um elevado factor qualidade reduz a potência dissipada no circuito ressonante, uma vez que reduz o valor da resistência de perdas que está em paralelo com a indutância e com o condensador. Uma vez iniciadas as oscilações por efeito do ruído térmico com energia suficiente para arrancar o funcionamento do circuito, a amplitude da oscilação crescerá indefinidamente até um valor limitado por uma corrente de polarização ou até à saturação do circuito. Por vezes há a necessidade de limitar a corrente de polarização (tail current para controlar-se a dissipação de potência. Em face de tudo isto, o primeiro parâmetro a determinar é o valor da transcondutância do circuito oscilador que garante uma oscilação estável. Para garantir um bom arranque da oscilação, os transístores M 1, M, M 3 e M 4 - devem ter valores de suficientemente grandes - para que o ganho, A, no arranque do oscilador seja tal que: A g m R (5 = perdas

6 É interessante notar que este valor do ganho é superior à unidade, violando o critério de Barkhausen! Na realidade, o ganho é inicialmente superior à unidade para que o circuito arranque mas, assim que as amplitudes das oscilações aumentam, os transístores entram na sua zona de funcionamento linear (ou triode region fazendo com que este ganho em regime permanente tenda para a unidade, verificando assim o critério de Barkhausen. Para obter o valor da transcondutância é necessário também saber o valor da resistência de perdas, a qual é obtida a partir do factor de qualidade da indutância e que é: πf = (6 Q R perdas 0 onde Q é o valor do factor de qualidade da indutância, o valor da indutância, f 0 é o valor da frequência a que a indutância vai operar e R s é o valor da resistência série da indutância. A partir do valor da resistência série, R s, é possível obter o valor da resistência de perdas: R perdas =Q R s. Assumir um ganho, A=3 para o arranque do oscilador constitui uma boa regra e a partir da equação (8, obtém-se a transcondutância g m. O segundo passo consistirá em dimensionar os tamanhos (e.g., dos MOSFETs, tendo por base a transcondutância G m previamente obtida. Isto é feito assumindo que todos os MOSFETs M 1, M, M 3 e M 4 possuem um comprimento de canal, [µm], igual ao valor mínimo permitido pela tecnologia e assumindo a mesma largura, [µm], para os n-mosfets M 1 e M 4, cujo valor deve ser muito maior que o comprimento - uma boa regra é considerar = 1 = =100 µm. Depois é só obter a corrente drain-source, I [A], nos MOSFETs: I gm = (7 µ ncox( Conhecidas as correntes I dos n-mosfets e assumindo que são iguais nos p-mosfets, então as larguras destes são:,3g m = 3 (8 µ C I = p ox O passo final consiste na obtenção do tamanho,, de M 5 tendo por base que a corrente I tail que percorre o seu canal é o dobro da corrente I anteriormente obtida, por forma que: ( 5 5 Itail = (9 µ C ( V V n ox gs5 th onde V gs5 [V] é a tensão entre a gate e a source de M 5, a qual deve ser superior à sua tensão limiar, V th, para assegurar o bom funcionamento do circuito.

Microssistemas de RF

Microssistemas de RF Microssistemas de RF João Paulo Carmo, PhD Investigador Principal Universidade do Minho Departamento de Electrónica Industrial Centro MicroElectroMechanical Systems (CMEMS) de I&D jcarmo@dei.uminho.pt

Leia mais

CAPÍTULO 6 RESOLUÇÕES DOS EXERCÍCIOS PROPOSTOS

CAPÍTULO 6 RESOLUÇÕES DOS EXERCÍCIOS PROPOSTOS CAPÍTULO 6 ESOLUÇÕES DOS EXECÍCIOS POPOSTOS Exercício 6.1 : Ver texto (página 11). Exercício 6. : Ver texto (páginas 19 a 131). Exercício 6.3 : Ver texto (página 11). Exercício 6.4 : Ver texto (página

Leia mais

Introdução sobre Pares Diferenciais (Bipolares e MOS)

Introdução sobre Pares Diferenciais (Bipolares e MOS) p. 1/1 Resumo Introdução sobre Pares Diferenciais (Bipolares e MOS) Par Diferencial com Transistor MOS Gama de Tensão em Modo Comum Operação com sinal diferencial Operação para grandes sinais Operação

Leia mais

SSC0180- ELETRÔNICA PARA COMPUTAÇÃO. Professor: Vanderlei Bonato Estagiária: Leandro S. Rosa

SSC0180- ELETRÔNICA PARA COMPUTAÇÃO. Professor: Vanderlei Bonato Estagiária: Leandro S. Rosa SSC0180- ELETRÔNICA PARA COMPUTAÇÃO Professor: Vanderlei Bonato Estagiária: Leandro S. Rosa 2 Aspectos práticos sobre transistores Serão discutidos os seguintes aspectos: Como os transistores operam; Atrasos

Leia mais

Folha 5 Transístores bipolares.

Folha 5 Transístores bipolares. Folha 5 Transístores bipolares. 1. Considere um transístor npn que possui uma queda de potencial base emissor de 0.76 V quando a corrente de colector é de 10 ma. Que corrente conduzirá com v BE = 0.70

Leia mais

Realimentação. gerados tanto por os componentes do circuito como interferências externas. (continua) p. 2/2

Realimentação. gerados tanto por os componentes do circuito como interferências externas. (continua) p. 2/2 p. 1/2 Resumo Realimentação Dessensibilização do Ganho Extensão de Largura de Banda Redução de Ruído Redução de Distorção não Linear As quatro tipologias básicas Amplificadores de Tensão Amplificadores

Leia mais

NBESTA00713SA Eletrônica Analógica Aplicada AULA 18. Osciladores. Prof. Rodrigo Reina Muñoz T2 de 2018

NBESTA00713SA Eletrônica Analógica Aplicada AULA 18. Osciladores. Prof. Rodrigo Reina Muñoz T2 de 2018 AULA 8 Osciladores Prof. odrigo eina Muñoz rodrigo.munoz@ufabc.edu.br T2 de 208 Conteúdo Estabilidade Critério de Barkhausen Diferentes tipos de oscildores 2 Osciladores São circuitos que produzem um sinal

Leia mais

Exemplo 4.1 (pag.245)

Exemplo 4.1 (pag.245) Exemplo 4.1 (pag.245) Considere um processo tecnológico com min =0,4 μm, t ox =8nm, μ n =450 cm 2 /V.s, e V t =0,7 V. a) Determine C ox e k n. b) Para um MOSFET com W/=8 μm/0,8 μm, determine os valores

Leia mais

Misturador Monolítico a 2.4GHz em Tecnologia CMOS 0.35µm usando Célula de Gilbert

Misturador Monolítico a 2.4GHz em Tecnologia CMOS 0.35µm usando Célula de Gilbert Misturador Monolítico a 2.4GHz em Tecnologia CMOS 0.35µm usando Célula de Gilbert Ricardo Barreto, ítor Fialho, Fernando Fortes ISEL-DEETC Rua Conselheiro Emídio Navarro, 1949-014 Lisboa Telefone: +351

Leia mais

Conversão de Saída Diferencial para saída única

Conversão de Saída Diferencial para saída única p. 1/ Resumo Conversão de Saída Diferencial para saída única O par diferencial MOS com carga activa O ganho diferencial do par diferencial MOS Ganho em Modo Comum e CMRR do par diferencial MOS com carga

Leia mais

Dispositivos e Circuitos de RF

Dispositivos e Circuitos de RF Dispositivos e ircuitos de RF Prof. Daniel Orquiza de arvalho Tópicos abordados: (apítulo 13 pgs 604 a 612 do livro texto) de RF Oscilador de Hartley Oscilador de olpitts são usados como fontes de sinal

Leia mais

Díodo Zener. Para funcionar com polarização inversa. Modelo mais simples assume r z =0. Electrónica 1

Díodo Zener. Para funcionar com polarização inversa. Modelo mais simples assume r z =0. Electrónica 1 Díodo Zener Para funcionar com polarização inversa. Modelo mais simples assume r z =0 exemplo como é que calcula I, I Z e I L? Díodo Zener Ef.Zener(V z 7V) Especificações: corrente

Leia mais

TRANSISTORES DE EFEITO DE CAMPO DE JUNÇÃO JFET

TRANSISTORES DE EFEITO DE CAMPO DE JUNÇÃO JFET TRANSISTORES DE EFEITO DE CAMPO DE JUNÇÃO JFET Transistores bipolares dispositivos controlados por corrente (corrente do coletor é controlada pela corrente da base). Transistores de efeito de campo (FET

Leia mais

Transistor NMOSFET (Metal-Oxide-Semiconductor Field Effect Transistor, canal N, tipo Enriquecimento) I DS D

Transistor NMOSFET (Metal-Oxide-Semiconductor Field Effect Transistor, canal N, tipo Enriquecimento) I DS D G V GS Transistor NMOSFET (Metal-Oxide-Semiconductor Field Effect Transistor, canal N, tipo Enriquecimento) I DS D S V DS Porta (G-Gate) Fonte Dreno (S-Source) Metal (D-Drain) Óxido N+ Sem. N+ P Substrato

Leia mais

Transístores MOS João Canas Ferreira

Transístores MOS João Canas Ferreira Transístores MOS João Canas Ferreira FEUP/DEEC Setembro de 2007 Tópicos de Projecto de Circuitos VLSI VLSI Transístores 1 Conteúdo Transístores MOS: modelos estáticos modelo clássico modelo DSM Comportamento

Leia mais

Amplificadores de Estágio Simples (1) Aula 5 Prof. Nobuo Oki

Amplificadores de Estágio Simples (1) Aula 5 Prof. Nobuo Oki Amplificadores de Estágio Simples (1) Aula 5 Prof. Nobuo Oki Estágio Amplificadores Simples (1) Estágio Amplificadores Simples (2) Conceitos Básicos (1) Conceitos de grande e pequenos sinais : Quando x

Leia mais

Eletrônica II. Germano Maioli Penello. II _ html.

Eletrônica II. Germano Maioli Penello.  II _ html. Eletrônica II Germano Maioli Penello gpenello@gmail.com http://www.lee.eng.uerj.br/~germano/eletronica II _ 2015-1.html Aula 07 1 Resumo da aula passada 2 Modelo de circuito equivalente para pequenos sinais

Leia mais

Folha 3 Amplificadores operacionais (ampops).

Folha 3 Amplificadores operacionais (ampops). Folha 3 Amplificadores operacionais (ampops). 1. Os fios de ligação aos terminais de saída de um transdutor captam um ruído de interferência com frequência de 60 Hz e 1 V de amplitude. O sinal de saída

Leia mais

Microssistemas de RF

Microssistemas de RF Microssistemas de João Paulo Carmo, PhD Investigador Principal Universidade do Minho Departamento de Electrónica Industrial Centro MicroElectroMechanical Systems (CMEMS) de I&D jcarmo@dei.uminho.pt http://lattes.cnpq.br/558996924054528

Leia mais

INSTITUTO POLITÉCNICO DE TOMAR

INSTITUTO POLITÉCNICO DE TOMAR INSTITUTO POLITÉCNICO DE TOMAR Departamento de Engenharia Electrotecnica Electrónica II 2007-2008 Recurso Data: 15-07-2008 ---------------------------------------------------------------------------------------------------------------

Leia mais

Eletrônica II. Germano Maioli Penello. II _ html.

Eletrônica II. Germano Maioli Penello.  II _ html. Eletrônica II Germano Maioli Penello gpenello@gmail.com http://www.lee.eng.uerj.br/~germano/eletronica II _ 2015-1.html Aula 04 1 Revisão aula passada É comum ter situações temos um sinal de baixa intensidade

Leia mais

O MOSFET como Amplificador. ENG04055 Concepção de CI Analógicos Eric Fabris

O MOSFET como Amplificador. ENG04055 Concepção de CI Analógicos Eric Fabris O MOSFET como Amplificador Amplificador Básico Amplificador Fonte Comum Topologia Básica Representação Gráfica da Reta de Carga eterminação da Curva de Transferência v i i O v S f ( v f ( v V GS GS R )

Leia mais

Universidade Federal de Juiz de Fora Laboratório de Eletrônica CEL 037 Página 1 de 5

Universidade Federal de Juiz de Fora Laboratório de Eletrônica CEL 037 Página 1 de 5 Universidade Federal de Juiz de Fora Laboratório de Eletrônica CEL 037 Página 1 de 5 1 Título Prática 11 MOSFETs (parte 1) 2 Objetivos eterminar experimentalmente os parâmetros de um MOSFET. Estudar a

Leia mais

IFBA. CELET Coordenação do Curso Técnico em Eletrônica Professor: Edvaldo Moraes Ruas, EE. Vitória da Conquista

IFBA. CELET Coordenação do Curso Técnico em Eletrônica Professor: Edvaldo Moraes Ruas, EE. Vitória da Conquista IFBA 1 a Parte CELET Coordenação do Curso Técnico em Eletrônica Professor: Edvaldo Moraes Ruas, EE Vitória da Conquista - 2009 JFET s - estrutura e símbolo Transistor de junção por efeito de campo (Junction

Leia mais

Ruído. Aula 11 Prof. Nobuo Oki

Ruído. Aula 11 Prof. Nobuo Oki Ruído Aula 11 Prof. Nobuo Oki Considerações Gerais Ruído O ruído limita o nível mínimo do sinal que um circuito pode processar com uma qualidade aceitável. O problema do ruído relaciona-se com a potência

Leia mais

Aula 2 Amplificadores de Pequenos Sinais Capacitores de Acoplamento e de Desvio

Aula 2 Amplificadores de Pequenos Sinais Capacitores de Acoplamento e de Desvio Aula 2 Amplificadores de Pequenos Sinais Capacitores de Acoplamento e de Desvio Prof. Dr. Hugo Valadares Siqueira Princípio da Superposição O Princípio da Superposição para circuitos elétricos contendo

Leia mais

PROJETO DE AVALIAÇÃO - P1

PROJETO DE AVALIAÇÃO - P1 PROJETO DE AVALIAÇÃO - P1 COE710 - Projeto Físico e Fabricação de Circuitos Integrados Prof.: Carlos Fernando Teodósio Soares 2018/3 Resumo Este documento tem como finalidade apresentar as especificações

Leia mais

Microssistemas de RF

Microssistemas de RF Microssistemas de RF João Paulo armo, PhD Investigador Principal Universidade do Minho Departamento de Electrónica Industrial entro MicroElectroMechanical Systems (MEMS) de I&D jcarmo@dei.uminho.pt http://lattes.cnpq.br/558996924054528

Leia mais

Capítulo 5 e 6 - Transistor Efeito de Campo FET e Polarização do FET

Capítulo 5 e 6 - Transistor Efeito de Campo FET e Polarização do FET Capítulo 5 e 6 - Transistor Efeito de Campo FET e Polarização do FET Prof. Eng. Leandro Aureliano da Silva Introdução Os TBJ s são dispositivos controlados por corrente, isto é, I C é controlada por I

Leia mais

Capítulo 2. Espelhos de Corrente. 2.1 Espelho de Corrente em Inversão Forte, na Configuração Cascode

Capítulo 2. Espelhos de Corrente. 2.1 Espelho de Corrente em Inversão Forte, na Configuração Cascode 50 Espelhos de Corrente Capítulo Os espelhos de corrente são elementos fundamentais nos circuitos integrados CMOS. Através deles, é possível realizar cópias muito precisas de uma corrente de referência,

Leia mais

Osciladores em Quadratura Integrados em Tecnologia CMOS

Osciladores em Quadratura Integrados em Tecnologia CMOS Osciladores em Quadratura Integrados em Tecnologia CMOS (Fully Integrated CMOS Quadrature Oscillators) Luís B. Oliveira e Jorge. Fernandes Instituto Superior Técnico IST / Instituto de Engenharia de Sistemas

Leia mais

Filipe José Nogueira Duarte da Silva Vasco Daniel Carvalho Ferreira dos Santos Joel Pedro Peixoto de Carvalho

Filipe José Nogueira Duarte da Silva Vasco Daniel Carvalho Ferreira dos Santos Joel Pedro Peixoto de Carvalho Filipe José Nogueira Duarte da Silva asco Daniel Carvalho Ferreira dos Santos Joel Pedro Peixoto de Carvalho 1. Segundo as características apresentadas no datasheet do transístor Q1 BF494 verificamos que,

Leia mais

Transistor. Este dispositivo de controle de corrente recebeu o nome de transistor.

Transistor. Este dispositivo de controle de corrente recebeu o nome de transistor. Transistor Em 1947, John Bardeen e Walter Brattain, sob a supervisão de William Shockley no AT&T Bell Labs, demonstraram que uma corrente fluindo no sentido de polaridade direta sobre uma junção semicondutora

Leia mais

Atuadores. Exemplos de atuadores: Translação linear com motor de passo. Mecânicos : -Motor elétrico (DC, AC, de passo) -Motor piezoelétrico -Válvulas

Atuadores. Exemplos de atuadores: Translação linear com motor de passo. Mecânicos : -Motor elétrico (DC, AC, de passo) -Motor piezoelétrico -Válvulas Atuadores Em instrumentação Eletrônica, Atuador é um elemento que, a partir de um sinal elétrico, vai ser capaz de atuar na grandeza que se deseja controlar A atuação ocorre dentro de limites pré-determinados

Leia mais

Amplificadores Diferenciais. Aula 8 Prof. Nobuo Oki

Amplificadores Diferenciais. Aula 8 Prof. Nobuo Oki Amplificadores Diferenciais Aula 8 Prof. Nobuo Oki Vantagens dos Amplificadores Diferenciais (1) O amplificadores diferenciais possuem as seguintes vantagens: 1. Circuitos diferenciais possuem maior imunidade

Leia mais

Amplificador Operacional OTA Miller

Amplificador Operacional OTA Miller Amplificador de 2 Estágios Amplificador Operacional OTA Miller O que é um Amplificador Operacional? O OPAMP é um amplificador de alto ganho, acoplado em DC projetado para operar em realimentação negativa

Leia mais

6. Classes de Operação

6. Classes de Operação 56 6. Classes de Operação 6.1.Introdução Amplificadores de potência são classificados de acordo com sua classe de operação. As classes são definidas conforme o ponto de polarização, topologias do circuito

Leia mais

Circuitos Eletrónicos Básicos

Circuitos Eletrónicos Básicos Circuitos Eletrónicos Básicos Licenciatura em Engenharia Eletrónica Transparências de apoio às aulas Cap. 1: Circuitos com um transístor 1º semestre 2013/2014 João Costa Freire Instituto Superior Técnico

Leia mais

PSI ELETRÔNICA II. Prof. João Antonio Martino AULA

PSI ELETRÔNICA II. Prof. João Antonio Martino AULA PSI3322 - ELETRÔNICA II Prof. João Antonio Martino AULA 3-2017 Exercício: Desenhe as curvas características do NMOSFET abaixo e o perfil de carga μ nεox k n μ n.c t ox m n = 500 cm 2 /V.s e ox /t ox =

Leia mais

Microeletrônica. Prof. Fernando Massa Fernandes. Aula 18. Sala 5017 E.

Microeletrônica. Prof. Fernando Massa Fernandes. Aula 18. Sala 5017 E. Microeletrônica Aula 18 Prof. Fernando Massa Fernandes Sala 5017 E fernando.fernandes@uerj.br https://www.fermassa.com/microeletronica.php 2 Resistores, capacitores e Cap. 5 MOSFETs Já vimos todas as camadas

Leia mais

Capítulo 9 Amplificador Operacional

Capítulo 9 Amplificador Operacional Capítulo 9 Amplificador Operacional Considerações Gerais Amplificadores operacionais fazem parte de várias implementações analógicas e mistas. O projeto de um amplificador operacional ainda é um desafio

Leia mais

Amplificador de Áudio em Class G

Amplificador de Áudio em Class G Amplificador de Áudio em Class G por Pedro Ferreira ISEL, 30 de Setembro 2005 Resumo Este projecto consiste no dimensionamento e construção de um amplificador de áudio em Class G com monitorização e controlo

Leia mais

Licenciatura em Engenharia Electrotécnica e de Computadores

Licenciatura em Engenharia Electrotécnica e de Computadores Licenciatura em Engenharia Electrotécnica e de Computadores Ramo de Telecomunicações, Electrónica e Computadores Electrónica 3 003/004, ª Chamada 4 Novembro de 003 ª Parte (sem consulta). (, val) Pretende-se

Leia mais

Transístores MOS. Projecto de Circuitos VLSI FEUP/LEEC 2005/06. Inclui figuras de: Digital Integrated Circuits, J. Rabaey, A. Chandrakasan, B.

Transístores MOS. Projecto de Circuitos VLSI FEUP/LEEC 2005/06. Inclui figuras de: Digital Integrated Circuits, J. Rabaey, A. Chandrakasan, B. Transístores MOS Projecto de Circuitos VLSI FEUP/LEEC 2005/06 Inclui figuras de: Digital Integrated Circuits, J. Rabaey, A. Chandrakasan, B. Nikolic Transístor MOS Poli-silício Alumínio Conceito de tensão

Leia mais

Microeletrônica. Germano Maioli Penello.

Microeletrônica. Germano Maioli Penello. Microeletrônica Germano Maioli Penello http://www.lee.eng.uerj.br/~germano/microeletronica%20_%202015-1.html Sala 5145 (sala 17 do laboratorio de engenharia elétrica) Aula 18 1 Modelos para projetos digitais

Leia mais

ANÁLISE E PROJETO DE UM OSCILADOR COLPITTS COM DUPLA REALIMENTAÇÃO POSITIVA OPERANDO EM ALTA FREQUÊNCIA E ULTRABAIXA TENSÃO DE ALIMENTAÇÃO

ANÁLISE E PROJETO DE UM OSCILADOR COLPITTS COM DUPLA REALIMENTAÇÃO POSITIVA OPERANDO EM ALTA FREQUÊNCIA E ULTRABAIXA TENSÃO DE ALIMENTAÇÃO ANÁLISE E PROJETO DE UM OSCILADOR COLPITTS COM DUPLA REALIMENTAÇÃO POSITIVA OPERANDO EM ALTA FREQUÊNCIA E ULTRABAIXA TENSÃO DE ALIMENTAÇÃO Orientador: Fernando Rangel de Sousa Laboratório de Radiofrequência,

Leia mais

4. AMPLIFICADORES OPERACIONAIS

4. AMPLIFICADORES OPERACIONAIS . AMPLIFICADOES OPEACIONAIS Fernando Gonçalves Instituto Superior Técnico Teoria dos Circuitos e Fundamentos de Electrónica - 00/005 O Amplificador Operacional O amplificador operacional é um componente

Leia mais

Geradores de Sinal e Circuitos Formatadores de Ondas osciladores lineares

Geradores de Sinal e Circuitos Formatadores de Ondas osciladores lineares p. 1/2 Resumo O critério de oscilação Controlo de Amplitude Não Linear O oscilador Wien-Bridge O oscilador de deslocamento de Fase O oscilador de Quadratura O oscilador Filtro Activo Sintonizado p. 2/2

Leia mais

Capítulo 11 Referência Bandgap

Capítulo 11 Referência Bandgap Capítulo 11 Referência Bandgap Introdução Os circuitos analógicos se utilizam de fontes de correntes e de tensões de referências de forma extensiva. Tais referências são sinais cc que exibem pouca dependência

Leia mais

Inversor CMOS. Bloco básico em circuitos digitais. Potência dissipada em regime estático é (praticamente) nula

Inversor CMOS. Bloco básico em circuitos digitais. Potência dissipada em regime estático é (praticamente) nula Inversor CMOS 5 V X X X X Bloco básico em circuitos digitais Potência dissipada em regime estático é (praticamente) nula source e sinking podem ser dimensionados tamanho dos dispositivos logic switching

Leia mais

A figura 1 apresenta um esboço da polarização de um J-FET canal N: junção PN inversamente polarizada, VGS 0, e VDS positivo (VDS > 0).

A figura 1 apresenta um esboço da polarização de um J-FET canal N: junção PN inversamente polarizada, VGS 0, e VDS positivo (VDS > 0). EXPERIMENTO N O 06 Transistor de Efeito de Campo OBJETIVO: Estudar o funcionamento do J-FET MATERIAIS: Instrumentos: Osciloscópio duplo traço Gerador de funções Materiais (responsabilidade do aluno): Fonte

Leia mais

Eletrônica II. Germano Maioli Penello. II _ html.

Eletrônica II. Germano Maioli Penello.   II _ html. Eletrônica II Germano Maioli Penello gpenello@gmail.com http://www.lee.eng.uerj.br/~germano/eletronica II _ 2015-1.html Aula 06 1 Revisão: MOSFET como amplificador Na saturação, o MOSFET funciona como

Leia mais

MOSFET: Polarização do MOSFET Aula 4

MOSFET: Polarização do MOSFET Aula 4 MOSFET: Polarização do MOSFET Aula 4 69 Aula Matéria Cap./página 1ª 03/08 Eletrônica PS33 Programação para a Primeira Prova Estrutura e operação dos transistores de efeito de campo canal n, características

Leia mais

Transistores de Efeito de Campo FET Parte II

Transistores de Efeito de Campo FET Parte II EN2719 Dispositivos Eletrônicos AULA 12 Transistores de Efeito de Campo FET Parte II Prof. Rodrigo Reina Muñoz rodrigo.munoz@ufabc.edu.br T1 2018 Conteúdo Transistores de Efeito de Campo JFET MOSFETS Exercícios

Leia mais

Projecto de Amplificadores Operacionais. AmpOp de transcondutância - OTA

Projecto de Amplificadores Operacionais. AmpOp de transcondutância - OTA Projecto de Amplificadores Operacionais OTA básico 1º andar 2º andar 3º andar saída V > I I > V V > I I > V v 2 v 1 M1 I1 M2 v out 1 AmpOp de transcondutância OTA Comparativamente com os AmpOp os OTA apresentam:

Leia mais

Amplificador realimentado Série-Paralelo

Amplificador realimentado Série-Paralelo p. 1/2 Resumo Amplificador realimentado Série-Paralelo Amplificador realimentado Série-Série Amplificador realimentado Paralelo-Paralelo Amplificador realimentado Paralelo-Série Amplificador realimentado

Leia mais

3 Osciladores em Realimentação

3 Osciladores em Realimentação 3 Osciladores em Realimentação 3.1. Introdução Ao longo deste capítulo será introduzida e descrita a coniguração básica de um oscilador realimentado, seu critério de oscilação e sua operação em unção do

Leia mais

Transistores MOSFET. TE214 Fundamentos da Eletrônica Engenharia Elétrica

Transistores MOSFET. TE214 Fundamentos da Eletrônica Engenharia Elétrica Transistores MOSFET TE214 Fundamentos da Eletrônica Engenharia Elétrica Sumário Introdução Estrutura e Operação Física Introdução Dispositivo semicondutor de três (3) terminais Aplicações: amplificadores

Leia mais

ANÁLISE DE CIRCUITOS LABORATÓRIO

ANÁLISE DE CIRCUITOS LABORATÓRIO ANÁLISE DE CIRCUITOS LABORATÓRIO Ano Lectivo 20 / 20 Curso Grupo Classif. Rubrica Trabalho N.º 4 A Bobina Plano de Trabalhos e Relatório: 1. As bobinas nos circuitos em corrente alternada sinusoidal. A

Leia mais

Montagens Básicas com Díodos

Montagens Básicas com Díodos Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar Departamento de Engenharia Electrotécnica ELECTRÓNICA I Trabalho Prático N.º 2 Montagens Básicas com Díodos Efectuado pelos alunos:

Leia mais

Electrotecnia. Informática para a Saúde. Amplificadores Operacionais

Electrotecnia. Informática para a Saúde. Amplificadores Operacionais Electrotecnia Informática para a Saúde Amplificadores Operacionais Sumário Amplificadores Operacionais 1 Simbologia 2 Características 3 Funcionamento 4 Configurações Básicas: 4.1 Amplificador Inversor

Leia mais

Nota a respeito de FET, MosFET e PIC16F877A

Nota a respeito de FET, MosFET e PIC16F877A Nota a respeito de FET, MosFET e PIC16F877A No caso do pino de RA4, ele é de dreno aberto logo temos que colocar um resistor entre ele e VCC+. O pino RA4 está ligado no dreno (Drain) de um transistor MosFET.

Leia mais

Eletrônica II. Germano Maioli Penello. II _ html.

Eletrônica II. Germano Maioli Penello.  II _ html. Eletrônica II Germano Maioli Penello gpenello@gmail.com http://www.lee.eng.uerj.br/~germano/eletronica II _ 2015-1.html Aula 10 1 Polarização de transistores A polarização serve para definir a corrente

Leia mais

10 10 Resposta em emfrequência dos Amplificadores

10 10 Resposta em emfrequência dos Amplificadores 0 0 Resposta em emfrequência dos Amplificadores 0. 0. As As Três TrêsBandas de de Frequência n Nesta disciplina o estudo da resposta em frequência dos amplificadores, incide nos amplificadores de acoplamento

Leia mais

Transistores de Efeito de Campo FET Parte I

Transistores de Efeito de Campo FET Parte I EN2719 Dispositivos Eletrônicos AULA 11 Transistores de Efeito de Campo FET Parte I Prof. Rodrigo Reina Muñoz rodrigo.munoz@ufabc.edu.br T1 2018 Conteúdo Transistores de Efeito de Campo JFET MOSFETS Exercícios

Leia mais

Capítulo 10 Estabilidade e Compensação. em Freqüência. que possui a seguinte função de transferência. Considerações Gerais

Capítulo 10 Estabilidade e Compensação. em Freqüência. que possui a seguinte função de transferência. Considerações Gerais Capítulo 10 Estabilidade e Compensação Considerações Gerais em Freqüência A realimentação que é largamente utilizada por trazer diversas vantagens como as mostradas no capítulo 8, no entanto causa problemas

Leia mais

Função de Transferência do Amplificador re- alimentado

Função de Transferência do Amplificador re- alimentado p. 1/2 Resumo Efeito da Realimentação nos Pólos do Amplificador Amplificador só com um Pólo Amplificador com dois Pólos Amplificador com três ou mais Pólos Estabilidade usando Diagramas de Bode Compensação

Leia mais

Aula 18: Fontes e Espelhos de corrente MOS. Prof. Seabra PSI/EPUSP

Aula 18: Fontes e Espelhos de corrente MOS. Prof. Seabra PSI/EPUSP Aula 18: Fontes e Espelhos de corrente MOS 396 Aula Data Matéria Capítulo/página Teste 17 11/10 Ganho de modo Semana comum, da rejeição Pátria (04/09 de modo a comum. 08/09/017) Sedra, Cap. 7 11 13/09

Leia mais

7. Estabilidade. 7.1.Introdução

7. Estabilidade. 7.1.Introdução 65 7. Estabilidade 7.1.Introdução A análise de estabilidade é um processo importante no projeto de amplificadores de potência para evitar que se torne um oscilador causando problemas de funcionamento no

Leia mais

O Amplificador Operacional 741. p. 2/2

O Amplificador Operacional 741. p. 2/2 p. 1/2 Resumo O Amplificador Operacional 741 Circuito de Polarização e circuito de protecção contra curto-circuito O andar de Entrada O Segundo andar e andar de Saída Polarização do 741 Análise de pequeno

Leia mais

Relatório - Prática 3 - MOSFET

Relatório - Prática 3 - MOSFET Universidade Federal do ABC Relatório - Prática 3 - MOSFET Disciplina: EN2701 Fundamentos de Eletrônica Discentes: André Lucas de O. Duarte 11058710 Douglas Nishiyama 11074309 Felipe Jun Ichi Anzai 21033410

Leia mais

Electrónica para Telecomunicações

Electrónica para Telecomunicações Dept. de Engenharia Electrotécnica e Computadores Fac. de Ciências e Tecnologia da Universidade de Coimbra Electrónica para Telecomunicações Trabalho Prático Nº3 Amplificador Sintonisado 1. INTRODUÇÃO

Leia mais

Análise de TJB para pequenos sinais Prof. Getulio Teruo Tateoki

Análise de TJB para pequenos sinais Prof. Getulio Teruo Tateoki Prof. Getulio Teruo Tateoki Constituição: -Um transístor bipolar (com polaridade NPN ou PNP) é constituído por duas junções PN (junção base-emissor e junção base-colector) de material semicondutor (silício

Leia mais

Circuitos Ativos em Micro-Ondas

Circuitos Ativos em Micro-Ondas Circuitos Ativos em Micro-Ondas Unidade 3 Prof. Marcos V. T. Heckler 1 Conteúdo Introdução Classes de operação de amplificadores Topologias clássicas para polarização de transistores Considerações sobre

Leia mais

Trabalho prático nº 4 de Electrónica 2008/2009

Trabalho prático nº 4 de Electrónica 2008/2009 Trabalho prático nº 4 de Electrónica 2008/2009 Título: Circuito amplificador com um transístor em montagem de emissor comum (com e sem degenerescência do emissor). Sumário Proceder se á à montagem de um

Leia mais

Integração de Filtros. Integração de Filtros

Integração de Filtros. Integração de Filtros Filtro P.A. com pico de ressonância Integração de Filtros A forma mais tradicional de sintetizar filtros recorre a elementos passivos RL. Desvantagens: Para f L elevado. Núcleo de ferrite diminui

Leia mais

Inversor CMOS: operação do circuito, características de transferência de tensão (p )

Inversor CMOS: operação do circuito, características de transferência de tensão (p ) PSI3322 - ELETRÔNICA II Prof. João Antonio Martino AULA 2-27 Inversor CMOS: operação do circuito, características de transferência de tensão (p. 29-22) Transistor NMOS Fonte (S-Source) Porta (G-Gate) Dreno

Leia mais

Professor João Luiz Cesarino Ferreira CURSO TÉCNICO DE ELETRÔNICA 4 MÓDULO

Professor João Luiz Cesarino Ferreira CURSO TÉCNICO DE ELETRÔNICA 4 MÓDULO CURSO TÉCNICO DE ELETRÔNICA 4 MÓDULO 2016 1 Famílias lógicas Definição Entende - se por famílias de circuitos lógicos, os tipos de estruturas internas que nos permitem a confecção destes blocos em circuitos

Leia mais

CIRCUITO AUTOPOLARIZAÇÃO Análise do modelo equivalente para o circuito amplificador em autopolarização a JFET.

CIRCUITO AUTOPOLARIZAÇÃO Análise do modelo equivalente para o circuito amplificador em autopolarização a JFET. MÓDULO 6: RESPOSTA EM FREQÜÊNCIA DO AMPLIFICADOR DE PEQUENOS SINAIS A JFET. 1. Introdução: O circuito amplificador de sinal a JFET possui ganho alto, uma impedância alta de entrada e ampla faixa de resposta

Leia mais

Tecnologia em Automação Industrial 2016 ELETRÔNICA II

Tecnologia em Automação Industrial 2016 ELETRÔNICA II Tecnologia em Automação Industrial 2016 ELETRÔNICA II Aula 22 Fonte chaveada Prof. Dra. Giovana Tripoloni Tangerino https://giovanatangerino.wordpress.com giovanatangerino@ifsp.edu.br giovanatt@gmail.com

Leia mais

Capítulo. Meta deste capítulo Entender o princípio de funcionamento de osciladores em duplo-t.

Capítulo. Meta deste capítulo Entender o princípio de funcionamento de osciladores em duplo-t. 4 Oscilador Capítulo em Duplo-T Meta deste capítulo Entender o princípio de funcionamento de osciladores em duplo-t. objetivos Entender o princípio de funcionamento de um oscilador em duplo-t; Analisar

Leia mais

FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO Departamento de Engenharia Electrotécnica e de Computadores

FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO Departamento de Engenharia Electrotécnica e de Computadores FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO Departamento de Engenharia Electrotécnica e de Computadores ELECTRÓNICA 2 Em relação às seguintes afirmações escolha a que lhe parecer mais correcta: DÍODOS

Leia mais

Aula 8. Disciplina Eletrônica de Potência (ENGC48) Tema: Comutação e Perdas Térmicas. Eduardo Simas

Aula 8. Disciplina Eletrônica de Potência (ENGC48) Tema: Comutação e Perdas Térmicas. Eduardo Simas Universidade Federal da Bahia Escola Politécnica Departamento de Engenharia Elétrica Disciplina Eletrônica de Potência (ENGC48) Tema: Comutação e Perdas Térmicas Eduardo Simas (eduardo.simas@ufba.br) Aula

Leia mais

Capítulo 2 - Diodos para Microondas. Diodo P-I-N

Capítulo 2 - Diodos para Microondas. Diodo P-I-N Diodo P-I-N É composto por um bloco de cristal intrínseco que separa uma fina camada de cristal P + de uma fina camada de cristal N +. Como é impossível obter um cristal intrínseco 100% livre de impurezas,

Leia mais

T7 - Oscilações forçadas. sen (3)

T7 - Oscilações forçadas. sen (3) Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T7 FÍSICA EXPERIMENTAL I - 2007/08 OSCILAÇÕES FORÇADAS NUM CIRCUITO RLC 1. Objectivo Estudar um circuito RLC série ao qual é aplicada

Leia mais

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA SÉRIE DE EXERCÍCIO #1 (1) DIODOS EM SÉRIE No circuito da figura a seguir

Leia mais

Universidade Federal de São João del-rei. Material Teórico de Suporte para as Práticas

Universidade Federal de São João del-rei. Material Teórico de Suporte para as Práticas Universidade Federal de São João del-rei Material Teórico de Suporte para as Práticas 1 Amplificador Operacional Um Amplificador Operacional, ou Amp Op, é um amplificador diferencial de ganho muito alto,

Leia mais

13 CIRCUITOS DIGITAIS MOS

13 CIRCUITOS DIGITAIS MOS 13 CIRCUITOS DIGITAIS MOS 13.1. CONCEITOS BÁSICOS 13.1.1. Tecnologias de CIs Digitais e Famílias de Circuitos Lógicos Cada família é fabricada com uma mesma tecnologia, possui a mesma estrutura e oferece

Leia mais

PSI ELETRÔNICA II. Critérios de avaliação de aprendizagem:

PSI ELETRÔNICA II. Critérios de avaliação de aprendizagem: PSI3322 - ELETRÔNICA II Universidade de São Paulo Prof. João Antonio Martino (martino@usp.br) (WhatsApp: 11-97189-1550) Critérios de avaliação de aprendizagem: A média geral (MG) será calculada a partir

Leia mais

c) Se o valor da amplitude de v I for reduzido em 10%, quais são os novos valores máximo e médio de i B?

c) Se o valor da amplitude de v I for reduzido em 10%, quais são os novos valores máximo e médio de i B? Folha 4 Díodos. 1. Para cada um dos circuitos das figuras abaixo a entrada v I é sinusoidal com 10 V de amplitude e frequência 1kHz. Considerando os díodos ideais represente graficamente o sinal de saída

Leia mais

1 a AULA PRÁTICA - ESTUDO DE BJT (NPN)

1 a AULA PRÁTICA - ESTUDO DE BJT (NPN) a AULA PÁTICA - ESTUDO DE BJT (NPN) ) Objetio: * Obter características de CC de um transistor bipolar de junção NPN. * Fazer um projeto de polarização. ) Trabalho Preparatório: A) Descrea sucintamente

Leia mais

Problema MOS1. densidade de impurezas na fonte e no dreno: Determinar o ponto de funcionamento em repouso para: a) V = 0 V ; b) V = 3 V

Problema MOS1. densidade de impurezas na fonte e no dreno: Determinar o ponto de funcionamento em repouso para: a) V = 0 V ; b) V = 3 V CAPÍTLO 4 MO Cap. 4 1 Problema MO1 Considerar o circuito da figura, que contém um transistor MOFET de canal n, cujas características são as seguintes: MOFET: espessura do óxido: a = 0, μm; largura dos

Leia mais

Amplificador de Baixo Ruído Integrado em Tecnologia CMOS de Banda Estreita a 2.4 GHz

Amplificador de Baixo Ruído Integrado em Tecnologia CMOS de Banda Estreita a 2.4 GHz Amplificador de Baixo Ruído Integrado em Tecnologia CMOS de Banda Estreita a 2.4 GHz (A Narrowband, Fully Integrated CMOS 2.4 GHz Low Noise Amplifier) Miguel A. Martins e Jorge R. Fernandes Instituto Superior

Leia mais

CIRCUITO OSCILADOR RESSONANTE EM BAIXA TENSÃO DE ALIMENTAÇÃO

CIRCUITO OSCILADOR RESSONANTE EM BAIXA TENSÃO DE ALIMENTAÇÃO UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA IGOR FAGUNDES DA SILVA CIRCUITO OSCILADOR RESSONANTE EM BAIXA TENSÃO DE ALIMENTAÇÃO Porto Alegre 2014

Leia mais

Alguns exercícios (resolvidos) de PCVLSI

Alguns exercícios (resolvidos) de PCVLSI Alguns exercícios (resolvidos) de PCVLSI 2005/06 1 Enunciados Na resolução dos exercícios assuma a utilização de uma tecnologia CMOS 0.25 µm. V T0 (V) γ ( V ) V DSAT (V) k (A/V 2 ) λ (1/V) NMOS 0,43 0,4

Leia mais

Interruptores Semicondutores

Interruptores Semicondutores Interruptores Semicondutores Nikolas Libert Aula 8A Eletrônica de Potência ET53B Tecnologia em Automação Industrial Transistor Bipolar de Junção (TBJ) de Potência Transistor Bipolar de Junção (TBJ) de

Leia mais

O circuito LCR ressonante

O circuito LCR ressonante p. 1/3 Resumo O circuito LCR ressonante Realização de Filtro Passa-Baixo, Passa-Alto, Passa Banda, Notch, Passa-Tudo Realização de Filtros Activos de Segunda Ordem baseados em substituição de Indutância

Leia mais

AULA 03 Exercícios Lista 01 Lista 02 Lista 03 Resolução de exercícios em sala

AULA 03 Exercícios Lista 01 Lista 02 Lista 03 Resolução de exercícios em sala AULA 03 Exercícios Lista 01 Lista 02 Lista 03 Resolução de exercícios em sala AULA 04 Tensão e Corrente alternada Ondas senoidais Ondas quadradas Ondas triangulares Frequência e período Amplitude e valor

Leia mais

Amplificadores Cascode. Aula 7 Prof. Nobuo Oki

Amplificadores Cascode. Aula 7 Prof. Nobuo Oki Amplificadores Cascode Aula 7 Prof. Nobuo Oki Amplificador Cascode Simples(1) Serão consideradas diferentes topologias do amplificador cascode, incluindo 1. Amplificador cascode simples 2. Amplificador

Leia mais