Capítulo 5. Circuitos RC e díodos. 5.1 Actividade prática

Tamanho: px
Começar a partir da página:

Download "Capítulo 5. Circuitos RC e díodos. 5.1 Actividade prática"

Transcrição

1 Capítulo 5 Circuitos RC e díodos Os díodos emissores de luz (LED) são muito usados actualmente em aparelhos electrónicos. Um LED produz luz em forma muito eficiente, com um consumo eléctrico de apenas uns poucos mili-watt. São construídos em diferentes formas, tamanhos e cores. Cada algarismo num écran numérico é obtido com um conjunto de 8 LED; para obter cada um dos números acendem-se as combinações de LED necessárias. Um LED é construído com cristais semicondutores e tem um tempo de duração muito elevado. A luz que produz tem uma cor própria que não muda com a corrente ou as condições de operação. 5.1 Actividade prática Ligue um condensador, uma pilha e um voltímetro em paralelo, como se indica no diagrama de circuito que se segue: 45

2 5 Circuitos RC e díodos V C r ε Feche o circuito, carregando o condensador, até que a diferença de potencial medida no voltímetro permaneça constante e escreva esse valor(deverá acontecer quase instantaneamente, porque a resistência interna da pilha é pequena). Com a ajuda de um cronómetro (pode usar o relógio no ambiente de trabalho do seu PC) escreva os valores da diferença de potencial cada 30 segundos após abrir o interruptor. Registe numa tabela os valores obtidos da diferença de potencial em função do tempo, até quando a diferença de potencial for menor que 1 V; se o condensador tiver uma capacidade elevada (alguns micro farads), a sua descarga através do voltímetro será lenta, demorando alguns minutos até a diferença de potencial diminuir para 1 V. Desenhe o gráfico dos valores obtidos. 5.2 Descarga de um condensador Consideremos um condensador que, após ter sido carregado de alguma forma com carga inicial Q 0, é ligado em série a uma resistência: R C Q 0 R Q t < 0 t > 0 A partir do instante t = 0 em que se fecha o interruptor, circulará uma corrente pela resistência e a diferença de potencial no condensador será igual à diferença de potencial na resistência: R = Q C Como a carga no condensador diminui, a corrente também diminuirá até 0. Toda a carga transferida pela corrente sai do condensador; assim a corrente será igual à taxa de diminuição da carga no condensador: = dq dt

3 5 Circuitos RC e díodos Combinando as duas equações anteriores obtemos uma equação diferencial para a carga em função do tempo: dq dt É fácil conferir que a solução dessa equação é: = Q RC Q = Q 0 e t/rc A corrente obtém-se dividindo a carga por RC. A constante RC, com unidades de tempo, designa-se de constante de tempo. É o tempo que levaria a descarregar o condensador se a corrente mantivesse o seu valor inicial Q 0 /RC. Os gráficos da carga e da corrente, em função do tempo, são os seguintes: Q Q 0 RC Q 0 t t RC RC A constante de tempo RC é também igual ao tempo que a carga, e a corrente, demora a diminuir até 1/e do seu valor inicial; nomeadamente, o tempo que demora em diminuir até 37% do valor inicial. No circuito da actividade prática no início deste capítulo, a constante de tempo será o produto da capacidade do condensador, vezes a resistência do voltímetro; com os dados obtidos experimentalmente é possível obter a constante de tempo. 5.3 Acumulação de carga num condensador No circuito seguinte, um condensador sem nenhuma carga inicial vai ser ligado a uma fonte para carregá-lo. R representa a resistência interna da fonte, mais a resistência das armaduras do condensador, mais qualquer outra resistência que estiver ligada entre a fonte e o condensador.

4 5 Circuitos RC e díodos R C R ε ε Fecha-se o interruptor em t = 0 para carregar o condensador; nesse instante, a carga no condensador é nula. Consequentemente, a diferença de potencial no condensador também é nula e a corrente que circula pela resistência R nesse instante é: 0 = ε R Se t for suficientemente elevado, o condensador estará completamente carregado impedindo a transferência de mais cargas, a corrente será nula e a carga Q no condensador permanecerá constante com valor: Q = εc Assim, o condensador funciona como um interruptor fechado, em t = 0, e aberto para tempos suficientemente elevados. Para encontrarmos a expressão geral para a carga em função do tempo, usamos a regra das malhas para o circuito: R Q C = ε Neste caso, a corrente faz aumentar a carga no condensador e, portanto, a relação entre a carga e a corrente é: = dq dt Combinando as duas equações anteriores obtemos a equação diferencial do circuito: dq dt Q RC = ε R É fácil conferir que Q = εc é uma solução da equação; essa solução será válida no regime estacionário, quando o condensador está completamente carregado, mas não verifica a condição inicial Q = 0. Se substituirmos Q = εc q, veremos que q verifica a mesma equação diferencial da secção anterior; assim, usando para q a solução encontrada na secção anterior, obtemos o resultado: Q = εc (1 e t/rc)

5 5 Circuitos RC e díodos a derivada dessa função é a corrente. Os gráficos da carga e da corrente são os seguintes: Cε Q ε R t t RC RC 5.4 Semicondutores Os semicondutores são materiais semelhantes aos isoladores, sem cargas de condução, mas que podem adquirir cargas de condução, passando a ser condutores, através de diversos mecanismos: aumento da temperatura, incidência de luz, presença de cargas eléctricas externas ou existência de impurezas dentro do próprio material. Actualmente os semicondutores são construídos a partir de silício ou germânio. Os átomos de silício e de germânio têm 4 electrões de valência. Num cristal de silício ou germânio, os átomos estão colocados numa rede uniforme, e os 4 electrões de valência ligam o átomo aos átomos na vizinhança. Os átomos de arsénico têm 5 electrões de valência. Se forem introduzidos alguns átomos de arsénico num cristal de silício, cada um desses átomos estará ligado aos átomos de silício na

6 5 Circuitos RC e díodos rede por meio de 4 dos seus electrões; o quinto electrão de valência fica livre para conduzir corrente. Obtém-se assim um semicondutor de tipo N, que conduz a corrente através do mesmo mecanismo que nos metais. Os átomos de gálio têm três electrões de valência. Nos semicondutores de tipo P existem alguns átomos de gálio dentro de um cristal de silício (ou germânio); os 3 electrões de valência de cada átomo de gálio ligam-no à rede, ficando um buraco onde um átomo de silício tem um electrão de valência que não está ligado a outro electrão de um átomo vizinho. Esses buracos podem ser preenchidos pela passagem de um electrão de valência de um átomo vizinho, obtendo-se assim um mecanismo de condução da corrente que equivale ao deslocamento de cargas positivas (buracos). No diagrama seguinte representam-se com círculos os átomos de arsénico e de gálio introduzidos nos semicondutores de tipo N e P. Esses átomos encontram-se fixos na rede, em quanto que as cargas de condução (negativas no semicondutor N e positivas no semicondutor P) podem andar livremente no semicondutor. Semicondutor tipo N Semicondutor tipo P 5.5 Díodos Um díodo é um dispositivo obtido pela junção de um semicondutor de tipo N com um semicondutor de tipo P. Na fronteira entre os dois semicondutores produz-se uma migração de electrões do semicondutor N para o semicondutor P, ficando duas camadas, onde existem iões positivos e negativos e nenhuma carga de condução. Essas duas camadas produzem uma diferença de potencial que impede a passagem de mais cargas de condução: Díodo Quando o díodo é polarizado em modo directo, ligando uma fonte de forma a contrariar a diferença de potencial das duas camadas na fronteira, será produzida uma corrente que vai no sentido do semicondutor P para o N. Quando o díodo é polarizado em modo inverso, ligando o eléctrodo positivo da fonte ao semicondutor N, e o eléctrodo negativo ao semicondutor P, o tamanho das duas camadas de

7 5 Circuitos RC e díodos cargas fixas na fronteira aumenta, e não há passagem de corrente. A figura seguinte mostra os dois modos de operação do díodo e, no lado direito, a representação diagramática: Modo directo N P N P = 0 Modo inverso O díodo representa-se com uma seta que aponta do ânodo (semicondutor P), para o cátodo (semicondutor N); a seta indica o sentido em que pode passar corrente. A característica do díodo é semelhante à característica de um receptor: V 0.65 V V e pode ser aproximada bem pela equação do receptor: V = V d r d onde a tensão de condução directa V d é a diferença de potencial mínima que tem que ser fornecida para ultrapassar a barreira de potencial na junção PN; costuma ter um valor entre 0.6 V e 0.7 V, para díodos de silício, e perto de 0.2 V, para díodos de germânio. O declíve da

8 5 Circuitos RC e díodos característica, r d costuma ser pequeno, por volta de 50 Ω; não deverá ser confundido com a resistência do díodo, que é V /. No modo inverso, existe uma corrente residual, da ordem dos micro-ampere, mas por ser tão reduzida geralmente pode ser ignorada. A diferença de potencial e a corrente não podem aumentar muito, pois o díodo será queimado. No modo inverso, a diferença de potencial não pode ultrapassar os 5 V num díodo típico. No modo directo, a corrente não pode ultrapassar uns poucos ma; assim, a diferença de potencial, no modo directo estará sempre muito perto da tensão de condução directa. Como a tensão de condução directa é muito pequena, normalmente é preciso proteger o díodo por meio de uma resistência ligada em série. Os díodos são muito úteis para controlar o fluxo da corrente num circuito. Por exemplo, considere o seguinte circuito usado numa calculadora que funciona com luz: Célula solar C Calculadora A célula solar é usada para produzir a corrente que alimenta a calculadora. O condensador acumula carga quando houver luz a incidir sobre a célula fotoeléctrica, e liberta essa carga quando não houver luz suficiente, mantendo a calculadora em funcionamento por alguns minutos mais. O díodo serve para garantir que a carga acumulada no condensador é toda transferida para a calculadora e não para a célula fotoeléctrica sendo dissipada em calor. 5.6 Díodos emissores de luz (LED) Os díodos emissores de luz (LED) são díodos que produzem luz quando são polarizados em modo directo, passando corrente através deles. Para distinguir o cátodo do ânodo, o primeiro costuma ser um fio mais curto e estar perto de uma zona onde a cobertura plástica é plana. A figura seguinte mostra um LED vermelho e o diagrama de circuito usado para representar os LED: Ânodo Cátodo Ânodo Cátodo A energia electrostática que os portadores de carga perdem na passagem da interface entre os dois semicondutores é transformada em luz, que tem uma cor própria do tipo de átomos que

9 5 Circuitos RC e díodos forem usados no LED. A tensão de condução directa, V d, é maior que no caso dos díodos e depende da cor da luz produzida; a tabela a seguir mostra os valores dessa tensão e da corrente máxima para os LED de diferentes cores. Cor V d (V) max (ma) Vermelha Laranja Amarela Verde Azul Perguntas e problemas 1. A resistência de um díodo no modo directo: (a) Aumenta em função da corrente no díodo. (b) Diminui em função da corrente no díodo. (c) É constante, independentemente da corrente. (d) É nula. (e) É infinita. 2. Considere a descarga de dois condensadores idênticos, com carga inicial idêntica, Q 0, através de duas resistências diferentes, R 1 > R 2. Para a resistência R 1 as grandezas seguintes são maiores, mais pequenas, ou as mesmas que para a resistência R 2? (a) Tempo necessário para que a carga inicial diminua metade. (b) Potencial nos terminais do condensador num dado instante. (c) Corrente na resistência num dado instante. (d) Energia total dissipada em calor na resistência. (e) Potência dissipada na resistência num determinado instante. 3. Um condensador de 50 µf é carregado com uma fonte de 6 V, através de uma resistência de 100 kω. (a) Calcule a corrente inicial. (b) Passado algum tempo, a corrente é de 20 µa; calcule as diferenças de potencial no condensador e na resistência nesse instante. (c) Calcule a carga armazenada no condensador no instante referido na alínea anterior. 4. No circuito do diagrama, (a) calcule a constante de tempo. (b) Se no instante inicial a carga no condensador de 5 µf for 15 nc. Qual será a carga nos condensadores de 15 µf e 3 µf no mesmo instante? (c) Qual será a carga total armazenada entre os pontos A e B após 0.5 segundo? Nesse mesmo instante calcule a energia total armazenada no circuito e as correntes nas três resistências.

10 5 Circuitos RC e díodos A 60 kω 70 kω 5 µf 15 µf 90 kω 3 µf B 5. Um LED vermelho vai ser instalado no tablier de um automóvel para servir de indicador do alarme. A bateria do carro fornece 12 V e o LED precisa de uma corrente de 10 ma para funcionar correctamente. Calcule o valor da resistência que deverá ser ligada em série com o LED (admita r d = 30 Ω para o LED). 6. No diagrama seguinte, calcule a corrente em cada resistência, sabendo que os dois díodos são idênticos e com valores V d = 0.6 V, e r d = 28 Ω. 9 V 20 Ω 1.4 kω 2.7 kω 7. A memoria RAM de um computador funciona com uma fonte de alimentação de 5 V, extraindo uma corrente de 80 ma. O conteúdo da memoria será apagado se a tensão de alimentação diminuir por baixo de 3 V. Para proteger os dados na memória em caso de cortes na fonte de alimentação, liga-se um condensador de 1 F aos terminais da fonte de alimentação. Faça uma estimativa do tempo que o condensador poderá manter os dados na memoria. Deverá admitir que a única resistência no circuito é a da memoria RAM. 8. Um condensador de 0.5 µf descarrega-se através de uma resistência R. Qual é o valor que R deve ter para que 0.1 segundo depois de se iniciar a descarga, a potência dissipada na resistência tenha o valor máximo possível? 9. O modelo da condução nos semicondutores prevê que a relação entre a diferença de potencial e a corrente num díodo, polarizado em modo direito, verifica a equação: V = k bt e ( log 1 ) o sendo k b = J/K a constante de Boltzmann, e a carga elementar, T a temperatura medida em graus Kelvin, K, e o a corrente de saturação, que depende

11 5 Circuitos RC e díodos do tipo de díodo. Admitindo temperatura ambiente de 293 K, e corrente de saturação de 1 na, desenhe a característica tensão-corrente, para valores de corrente entre 0 e 1 A e diferença de potencial entre 0 e 1 V. 5.8 Respostas 1. b. 2. (a) Maior. (b) Maior. (c) Depende de t. (d) gual. (e) Depende de t 3. (a) 60 µa. (b) 4 V no condensador e 2 V na resistência. (c) 0.2 kc. 4. (a) 0.67 s. (b) 15 nc, 12 nc. (c) 12.8 nc, 12.1 pj, 60 = 19,1 ma, 70 = 10,7 ma, 90 = 8,4 ma kω. 6. A corrente nas resistências de 20 Ω e 1.4 kω é 0.58 ma, e a corrente na resistência de 2.7 kω é nula s kω 9. Gráfico: V (V) (A)

Componentes eletrónicos. Maria do Anjo Albuquerque

Componentes eletrónicos. Maria do Anjo Albuquerque Componentes eletrónicos Motherboard de um computador e respetivos componentes eletrónicos Alguns componentes eletrónicos Características dos díodos de silício São o tipo mais simples de componente eletrónico

Leia mais

ESCOLA SECUNDÁRIA FILIPA DE VILHENA. Utilização e Organização dos Laboratórios Escolares. Actividade Laboratorial Física 12º Ano

ESCOLA SECUNDÁRIA FILIPA DE VILHENA. Utilização e Organização dos Laboratórios Escolares. Actividade Laboratorial Física 12º Ano ESCOLA SECUNDÁRIA FILIPA DE VILHENA Utilização e Organização dos Laboratórios Escolares Actividade Laboratorial Física 12º Ano Característica de um LED e determinação da constante de Planck (Actividade

Leia mais

CIRCUITOS DE CORRENTE CONTÍNUA

CIRCUITOS DE CORRENTE CONTÍNUA Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T5 Física Experimental I - 2007/08 CIRCUITOS DE CORRENTE CONTÍNUA 1. Objectivo Verificar as leis fundamentais de conservação da

Leia mais

6. CIRCUITOS DE CORRENTE CONTÍNUA

6. CIRCUITOS DE CORRENTE CONTÍNUA 6. CCUTOS DE COENTE CONTÍNUA 6. Força Electromotriz 6.2 esistências em Série e em Paralelo. 6.3 As egras de Kirchhoff 6.4 Circuitos C 6.5 nstrumentos Eléctricos Análise de circuitos simples que incluem

Leia mais

6. CIRCUITOS DE CORRENTE CONTÍNUA

6. CIRCUITOS DE CORRENTE CONTÍNUA 6. CCUTOS DE COENTE CONTÍNUA 6.. Força Electromotriz 6.2. esistências em Série e em Paralelo. 6.3. As egras de Kirchhoff 6.4. Circuitos C 6.5. nstrumentos Eléctricos Análise de circuitos simples que incluem

Leia mais

Problema Circuito RL excitado por um escalão de tensão

Problema Circuito RL excitado por um escalão de tensão PRTE III -Circuitos Dinâmicos Lineares Problema 3. - Circuito LC em regime estacionário (dc) Considere o circuito da figura 3., que representa uma rede RLC alimentada por um gerador de tensão contínua.

Leia mais

ENGENHARIA DE SISTEMAS MICROPROCESSADOS

ENGENHARIA DE SISTEMAS MICROPROCESSADOS ENGENHARIA DE SISTEMAS MICROPROCESSADOS Prof. Pierre Vilar Dantas Turma: 0040-A Horário: 4N Aula 04-16/08/2017 Acesse o link para participar do grupo do WhatsApp https://chat.whatsapp.com/k2x5j3nwqghgjru7gmeuac

Leia mais

Corrente e resistência

Corrente e resistência Cap. 27 Corrente e resistência Prof. Oscar Rodrigues dos Santos oscarsantos@utfpr.edu.br Circuito 1 Força eletromotriz Quando as cargas de movem em através de um material condutor, há diminuição da sua

Leia mais

ELETRÔNICA ANALÓGICA. Professor: Rosimar Vieira Primo

ELETRÔNICA ANALÓGICA. Professor: Rosimar Vieira Primo ELETRÔNICA ANALÓGICA Professor: Rosimar Vieira Primo Eletrônica Analógica DIODOS SEMICONDUTORES DE JUNÇÃO PN Professor: Rosimar Vieira Primo Diodos 2 Diodo de junção PN A união de um cristal tipo p e um

Leia mais

1. Objectivos Verificação experimental de uma relação exponencial entre duas grandezas físicas. Fazer avaliações numéricas.

1. Objectivos Verificação experimental de uma relação exponencial entre duas grandezas físicas. Fazer avaliações numéricas. Ciências Experimentais P9: Carga e descarga do condensador 1. Objectivos Verificação experimental de uma relação exponencial entre duas grandezas físicas. Fazer avaliações numéricas. 2. Introdução O condensador

Leia mais

3ª Ficha. Corrente, resistência e circuitos de corrente contínua

3ª Ficha. Corrente, resistência e circuitos de corrente contínua 3ª Ficha Corrente, resistência e circuitos de corrente contínua 1- Um condutor eléctrico projectado para transportar corrente elevadas possui um comprimento de 14.0 m e uma secção recta circular com diâmetro

Leia mais

Introdução Diodo dispositivo semicondutor de dois terminais com resposta V-I (tensão/corrente) não linear (dependente da polaridade!

Introdução Diodo dispositivo semicondutor de dois terminais com resposta V-I (tensão/corrente) não linear (dependente da polaridade! Agenda Diodo Introdução Materiais semicondutores, estrutura atômica, bandas de energia Dopagem Materiais extrínsecos Junção PN Polarização de diodos Curva característica Modelo ideal e modelos aproximados

Leia mais

Curso Científico-Humanístico de Ciências e Tecnologias Disciplina de Física e Química A 10ºAno

Curso Científico-Humanístico de Ciências e Tecnologias Disciplina de Física e Química A 10ºAno Agrupamento de Escolas João da Silva Correia DEPARTAMENTO DE CIÊNCIAS NATURAIS E EXPERIMENTAIS Curso Científico-Humanístico de Ciências e Tecnologias Disciplina de Física e Química A 10ºAno FICHA DE TRABALHO

Leia mais

DETERMINAÇÃO EXPERIMENTAL DA CONSTANTE DIELÉCTRICA DE UM FILME DE POLIÉSTER (FOLHA DE ACETATO)

DETERMINAÇÃO EXPERIMENTAL DA CONSTANTE DIELÉCTRICA DE UM FILME DE POLIÉSTER (FOLHA DE ACETATO) TRABALHO PRÁTICO Nº 6 DETERMINAÇÃO EXPERIMENTAL DA CONSTANTE DIELÉCTRICA DE UM FILME DE POLIÉSTER (FOLHA DE ACETATO) Objectivo - Este trabalho pretende ilustrar a constituição e o funcionamento de um condensador,

Leia mais

CONDENSADORES E DIELÉCTRICOS

CONDENSADORES E DIELÉCTRICOS TRABALHO PRÁTICO Nº 4 - LICENCIATURA EM FÍSICA CONDENSADORES E DIELÉCTRICOS Objectivo - Este trabalho pretende ilustrar a constituição e o funcionamento de um condensador, bem como determinar, de uma forma

Leia mais

Circuitos eléctricos

Circuitos eléctricos Circuitos eléctricos O que é? n Designa-se de circuito eléctrico o caminho por onde a corrente eléctrica passa. n A corrente eléctrica é um movimento orientado de cargas, que se estabelece num circuito

Leia mais

Diodo de junção PN. Diodos 2

Diodo de junção PN. Diodos 2 DIODOS a Diodos 1 Diodo de junção PN A união de um cristal tipo p e um cristal tipo n, obtémse uma junção pn, que é um dispositivo de estado sólido simples: o diodo semicondutor de junção. Devido a repulsão

Leia mais

Circuitos com díodos: exercícios. CESDig & CEletro 2018/19 - Elect. Fundamentals Floyd & Buchla Pearson Education. Trustees of Boston University

Circuitos com díodos: exercícios. CESDig & CEletro 2018/19 - Elect. Fundamentals Floyd & Buchla Pearson Education. Trustees of Boston University Circuitos com díodos: exercícios 1 Circuitos com díodos Até agora foram estudados circuitos lineares. Contudo, há várias funções que só podem ser desempenhadas por elementos/circuitos nãolineares. Os exemplos

Leia mais

Teoria dos dispositivos Semicondutores

Teoria dos dispositivos Semicondutores Teoria dos dispositivos Semicondutores Capítulo 6 Dispositivo semicondutores Universidade de Pernambuco Escola Politécnica de Pernambuco Professor: Gustavo Oliveira Cavalcanti Editado por: Arysson Silva

Leia mais

AULA 1 - JUNÇÃO PN (DIODO)

AULA 1 - JUNÇÃO PN (DIODO) AULA 1 - JUNÇÃO PN (DIODO) 1. INTRODUÇÃO Os diodos semicondutores são utilizados em quase todos os equipamentos eletrônicos encontrados em residências, escritórios e indústrias. Um dos principais usos

Leia mais

Circuitos. ε= dw dq ( volt= J C ) Definição de fem:

Circuitos. ε= dw dq ( volt= J C ) Definição de fem: Aula-7 Circuitos Circuitos Resolver um circuito de corrente contínua (DC) é calcular o valor e o sentido da corrente. Como vimos, para que se estabeleça uma corrente duradoura num condutor, é necessário

Leia mais

CAPÍTULO 4 DIODOS COM FINALIDADES ESPECÍFICAS

CAPÍTULO 4 DIODOS COM FINALIDADES ESPECÍFICAS CAPÍTULO 4 DODOS COM FNALDADES ESPECÍFCAS Este capítulo discute a aplicação de alguns diodos especiais, com características específicas. São estes o diodo zener (usado como regulador de tensão) e o diodo

Leia mais

DETERMINAÇÃO EXPERIMENTAL DA CONSTANTE DIELÉCTRICA DE UM FILME DE POLIÉSTER (FOLHA DE ACETATO)

DETERMINAÇÃO EXPERIMENTAL DA CONSTANTE DIELÉCTRICA DE UM FILME DE POLIÉSTER (FOLHA DE ACETATO) TRABALHO PRÁTICO DETERMINAÇÃO EXPERIMENTAL DA CONSTANTE DIELÉCTRICA DE UM FILME DE POLIÉSTER (FOLHA DE ACETATO) 1. Noções básicas Consideremos dois condutores A e B, isolados e inicialmente descarregados,

Leia mais

Circuitos Electrónicos

Circuitos Electrónicos 1 ASSUNTO Continuação de: - circuitos electrónicos - aplicações electrónicas: - mais componentes electrónicos. 2 PALAVRAS CHAVE Indução Resistências não lineares; Termístor stor; LDR; Condensador; Díodo;

Leia mais

Aula 9 Dispositivos semicondutores Diodos e aplicações

Aula 9 Dispositivos semicondutores Diodos e aplicações ELETRICIDADE Aula 9 Dispositivos semicondutores Diodos e aplicações Prof. Marcio Kimpara Universidade Federal de Mato Grosso do Sul 2 Material semicondutor Alguns materiais apresentam propriedades de condução

Leia mais

CONDENSADORES E DIELÉCTRICOS

CONDENSADORES E DIELÉCTRICOS TRABALHO PRÁTICO Nº 4 - LICENCIATURA EM FÍSICA CONDENSADORES E DIELÉCTRICOS Objectivo - Este trabalho pretende ilustrar a constituição e o funcionamento de um condensador, bem como determinar, de uma forma

Leia mais

Símbolo do diodo emissor de luz LED

Símbolo do diodo emissor de luz LED Diodos Especiais Introdução Com a diversificação dos tipos de materiais e da forma de construção utilizados para o desenvolvimento de componentes semicondutores, foi possível observar a ocorrência de diferentes

Leia mais

Diodo de Junção 1 Cap. 3 Sedra/Smith Cap. 1 Boylestad

Diodo de Junção 1 Cap. 3 Sedra/Smith Cap. 1 Boylestad Diodo de Junção 1 Cap. 3 Sedra/Smith Cap. 1 Boylestad JUNÇÃO SEMICONDUTORA PN Notas de Aula SEL 313 Circuitos Eletrônicos 1 1 o. Sem/2016 Prof. Manoel Fundamentos e Revisão de Conceitos sobre Semicondutores

Leia mais

DETERMINAÇÃO EXPERIMENTAL DA CONSTANTE DIELÉCTRICA DE UM FILME DE POLIÉSTER (FOLHA DE ACETATO)

DETERMINAÇÃO EXPERIMENTAL DA CONSTANTE DIELÉCTRICA DE UM FILME DE POLIÉSTER (FOLHA DE ACETATO) TRABALHO PRÁTICO DETERMINAÇÃO EXPERIMENTAL DA CONSTANTE DIELÉCTRICA DE UM FILME DE POLIÉSTER (FOLHA DE ACETATO) Objectivo Este trabalho pretende ilustrar a constituição e o funcionamento de um condensador,

Leia mais

R R R. 7. corrente contínua e circuitos os circuitos são constituídos por um gerador e cargas ligadas em: Série. resistências & lei de Ohm R A

R R R. 7. corrente contínua e circuitos os circuitos são constituídos por um gerador e cargas ligadas em: Série. resistências & lei de Ohm R A resistências & lei de Ohm R A V R 7. corrente contínua e circuitos os circuitos são constituídos por um gerador e cargas ligadas em: Série Paralelo corrente Rsérie R R Rparalelo R R2 2 SÉREigual corrente

Leia mais

Electrónica Fundamental 10º ano

Electrónica Fundamental 10º ano Planificação Anual 2016/2017 Curso Profissional de Técnico de Gestão de Equipamentos Informáticos Electrónica Fundamental 10º ano 1 MÓDULO 1: Noções Básicas de Electricidade 24 aulas de 45 = 18h Datas:

Leia mais

c) Se o valor da amplitude de v I for reduzido em 10%, quais são os novos valores máximo e médio de i B?

c) Se o valor da amplitude de v I for reduzido em 10%, quais são os novos valores máximo e médio de i B? Folha 4 Díodos. 1. Para cada um dos circuitos das figuras abaixo a entrada v I é sinusoidal com 10 V de amplitude e frequência 1kHz. Considerando os díodos ideais represente graficamente o sinal de saída

Leia mais

Aluno turma ELETRÔNICA ANALÓGICA AULA 02

Aluno turma ELETRÔNICA ANALÓGICA AULA 02 Aluno turma ELETRÔNICA ANALÓGICA AULA 02 CAPÍTULO 2 - DIODOS O primeiro componente fabricado com materiais semicondutores foi o diodo semicondutor que é utilizado até hoje para o entendimento dos circuitos

Leia mais

Sistemas eléctricos e magnéticos

Sistemas eléctricos e magnéticos Sistemas eléctricos e magnéticos Circuitos eléctricos Prof. Luís Perna 00/ Corrente eléctrica Qual a condição para que haja corrente eléctrica entre dois condutores A e B? Que tipo de corrente eléctrica

Leia mais

Energia e fenómenos elétricos

Energia e fenómenos elétricos Energia e fenómenos elétricos 1. Associa o número do item da coluna I à letra identificativa do elemento da coluna II. Estabelece a correspondência correta entre as grandezas elétricas e os seus significados.

Leia mais

CIRCUITOS ELÉTRICOS DC

CIRCUITOS ELÉTRICOS DC Experiência 4 CIRCUITOS ELÉTRICOS DC 67 Corrente elétrica Define-se corrente elétrica como a quantidadede carga que passa pela secção de um fio condutor por unidadede tempo: A direção da corrente elétrica

Leia mais

Respostas Finais Lista 6. Corrente Elétrica e Circuitos de Corrente Contínua ( DC )

Respostas Finais Lista 6. Corrente Elétrica e Circuitos de Corrente Contínua ( DC ) Respostas Finais Lista 6 Corrente Elétrica e Circuitos de Corrente Contínua ( DC ) Q 26.3) Essa diferença esta mais associada à energia entregue à corrente de um circuito por algum tipo de bateria e à

Leia mais

Tópico 01: Estudo de circuitos em CC com Capacitor e Indutor Profa.: Ana Vitória de Almeida Macêdo

Tópico 01: Estudo de circuitos em CC com Capacitor e Indutor Profa.: Ana Vitória de Almeida Macêdo Disciplina Eletrotécnica Tópico 01: Estudo de circuitos em CC com Capacitor e Indutor Profa.: Ana Vitória de Almeida Macêdo Capacitor São dispositivos cuja finalidade é armazenar cargas elétricas em suas

Leia mais

MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2013/2014. EIC0014 FÍSICA II 2o ANO 1 o SEMESTRE

MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2013/2014. EIC0014 FÍSICA II 2o ANO 1 o SEMESTRE MESTRADO NTEGRADO EM ENG. NFORMÁTCA E COMPUTAÇÃO 2013/2014 EC0014 FÍSCA 2o ANO 1 o SEMESTRE Nome: Duração 2 horas. Prova com consulta de formulário e uso de computador. O formulário pode ocupar apenas

Leia mais

INDUÇÃO ELETROMAGNÉTICA

INDUÇÃO ELETROMAGNÉTICA Eletricidade INDUÇÃO ELETROMAGNÉTICA O uso de motores elétricos e circuitos de corrente alternada revolucionou a sociedade moderna. Hoje, seu uso é tão disseminado que é difícil imaginar a vida sem eletricidade.

Leia mais

Física dos Semicondutores

Física dos Semicondutores Física dos Semicondutores Resistividade Condutor (fácil fluxo de cargas) Semicondutor Isolante (difícil fluxo de cargas) COBRE: r = 10-6 W.cm GERMÂNIO: r = 50 W.cm SILÍCIO: r = 50 x 10-3 W.cm MICA: r =

Leia mais

Biosensores e Sinais Biomédicos 2009/2010

Biosensores e Sinais Biomédicos 2009/2010 Faculdade de Ciências e Tecnologia da Universidade de Coimbra Biosensores e Sinais Biomédicos 2009/2010 TP3: ESTUDO E APLICAÇÃO DE FOTOSENSORES Objectivo Determinação da resposta de uma fotoresistência

Leia mais

And« Física 12. São dispositivos para armazenar energia. Os condensadores são usados, por exemplo, em:

And« Física 12. São dispositivos para armazenar energia. Os condensadores são usados, por exemplo, em: 25042016 CAPACDADE E CONDENSADORES And«CONDENSADORES São dispositivos para armazenar energia. Os condensadores são usados, por exemplo, em: Recetores de radio Dispositivos de armazenamento com flash Desfibrilhadores,

Leia mais

Diodos de Junção PN. Florianópolis, abril de 2013.

Diodos de Junção PN. Florianópolis, abril de 2013. Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina Departamento Acadêmico de Eletrônica Eletrônica I Diodos de Junção PN Florianópolis, abril de 2013. Prof. Clóvis Antônio Petry. Bibliografia

Leia mais

Capítulo 27: Circuitos

Capítulo 27: Circuitos Capítulo 7: Circuitos Índice Força letromotriz Trabalho, nergia e Força letromotriz Calculo da Corrente de um Circuito de uma Malha Diferença de Potencial entre dois Pontos Circuitos com mais de uma Malha

Leia mais

Prof. Willyan Machado Giufrida Curso de Engenharia Química. Ciências dos Materiais. Comportamento Elétrico

Prof. Willyan Machado Giufrida Curso de Engenharia Química. Ciências dos Materiais. Comportamento Elétrico Prof. Willyan Machado Giufrida Curso de Engenharia Química Ciências dos Materiais Comportamento Elétrico Portadores de cargas e condução A condução de eletricidade nos materiais ocorre por meio de espécies

Leia mais

Condutividade: maior que a dos isolantes, menor que a dos condutores Germânio Ge : inicialmente Silício Si : actualmente: mais abundante e mais fácil

Condutividade: maior que a dos isolantes, menor que a dos condutores Germânio Ge : inicialmente Silício Si : actualmente: mais abundante e mais fácil Díodo ideal Circuitos Electrónicos Básicos Elementos da coluna IV da Tabela Periódica. Semicondutores Condutividade: maior que a dos isolantes, menor que a dos condutores Germânio Ge : inicialmente Silício

Leia mais

2 - Circuitos Basicos

2 - Circuitos Basicos 2 - Circuitos Basicos Carlos Marcelo Pedroso 18 de março de 2010 1 Introdução A matéria é constituída por átomos, que por sua vez são compostos por 3 partículas fundamentais. Estas partículas são os prótons,

Leia mais

Projectos de Iluminação com LED s A ponte para o Futuro

Projectos de Iluminação com LED s A ponte para o Futuro Projectos de Iluminação com LED s A ponte para o Futuro Um pouco de História: A importância da iluminação na história do Homem vem desde os tempos mais remotos, através da utilização da luz natural. A

Leia mais

q 1 q 2 2 V 5 V MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2018/2019 EIC0014 FÍSICA II 2º ANO, 1º SEMESTRE 23 de janeiro de 2019 Nome:

q 1 q 2 2 V 5 V MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2018/2019 EIC0014 FÍSICA II 2º ANO, 1º SEMESTRE 23 de janeiro de 2019 Nome: MESTRADO NTEGRADO EM ENG. NFORMÁTCA E COMPUTAÇÃO 208/209 EC004 FÍSCA 2º ANO, º SEMESTRE 23 de janeiro de 209 Nome: Duração 2 horas. Prova com consulta de formulário e uso de computador. O formulário pode

Leia mais

Departamento de Matemática e Ciências Experimentais

Departamento de Matemática e Ciências Experimentais Departamento de Matemática e Ciências Experimentais Física e Química A 10.º Ano Atividade Prático-Laboratorial AL 2.1 Física Assunto: Características de uma pilha Objetivo geral Determinar as características

Leia mais

Associações de resistências e condensadores

Associações de resistências e condensadores apítulo 4 Associações de resistências e condensadores Por volta de 1745, na Universidade de Leiden foi usada uma garrafa de vidro para isolar uma lâmina metálica, colocada no se interior, onde podiam ser

Leia mais

Curso Científico-Humanístico de Ciências e Tecnologias Disciplina de Física e Química A 10ºAno

Curso Científico-Humanístico de Ciências e Tecnologias Disciplina de Física e Química A 10ºAno Agrupamento de Escolas João da Silva Correia DEPARTAMENTO DE CIÊNCIAS NATURAIS E EXPERIMENTAIS Curso Científico-Humanístico de Ciências e Tecnologias Disciplina de Física e Química A 10ºAno FICHA DE TRABALHO

Leia mais

ELETRICIDADE E ELETRÔNICA EMBARCADA

ELETRICIDADE E ELETRÔNICA EMBARCADA MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE ECUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE SANTA CATARINA CAMPUS FLORIANÓPOLIS ELETRICIDADE E ELETRÔNICA EMBARCADA E-mail: vinicius.borba@ifsc.edu.br

Leia mais

ENERGIA SOLAR: CONCEITOS BASICOS

ENERGIA SOLAR: CONCEITOS BASICOS Uma introdução objetiva dedicada a estudantes interessados em tecnologias de aproveitamento de fontes renováveis de energia. Prof. M. Sc. Rafael Urbaneja 6. DIODO 6.1. FUNÇÃO BÁSICA O diodo é um componente

Leia mais

Capacitância C = Q / V [F]

Capacitância C = Q / V [F] Capacitância Na figura abaixo, como exemplo, tem-se duas placas paralelas, feitas de um material condutor e separadas por um espaço vazio. Essas placas estão ligadas a uma fonte de tensão contínua através

Leia mais

Caracterização de uma Lâmpada

Caracterização de uma Lâmpada Caracterização de uma Lâmpada Laboratório de Eletricidade e Magnetismo Introdução Resistores não-lineares são dispositivos que não seguem a lei de Ohm quando submetidos a uma tensão ou corrente. Quando

Leia mais

Eletrônica Geral. Diodos Junção PN. Prof. Daniel dos Santos Matos

Eletrônica Geral. Diodos Junção PN. Prof. Daniel dos Santos Matos Eletrônica Geral Diodos Junção PN Prof. Daniel dos Santos Matos 1 Introdução Os semicondutores são materiais utilizados na fabricação de dispositivos eletrônicos, como por exemplo diodos, transistores

Leia mais

2 Eletrodinâmica. Corrente Elétrica. Lei de Ohm. Resistores Associação de Resistores Geradores Receptores. 4 Instrumento de Medidas Elétricas

2 Eletrodinâmica. Corrente Elétrica. Lei de Ohm. Resistores Associação de Resistores Geradores Receptores. 4 Instrumento de Medidas Elétricas 2. Eletrodinâmica Conteúdo da Seção 2 1 Conceitos Básicos de Metrologia 4 Instrumento de Medidas Elétricas 2 Eletrodinâmica Corrente Elétrica Resistência Elétrica Lei de Ohm Potência Elétrica Resistores

Leia mais

Halliday Fundamentos de Física Volume 3

Halliday Fundamentos de Física Volume 3 Halliday Fundamentos de Física Volume 3 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica, LTC, Forense,

Leia mais

CAPÍTULO 3 - CIRCUITOS RETIFICADORES ELETRÔNICA ANALÓGICA AULA 04

CAPÍTULO 3 - CIRCUITOS RETIFICADORES ELETRÔNICA ANALÓGICA AULA 04 CAPÍTULO 3 - CIRCUITOS RETIFICADORES ELETRÔNICA Aluno turma ELETRÔNICA ANALÓGICA AULA 04 1- Retificadores Todos os aparelhos eletrônicos necessitam de corrente contínua para funcionar, todavia, a rede

Leia mais

5. Componentes electrónicos

5. Componentes electrónicos Sumário: Constituição atómica da matéria Semicondutores Díodos Transístores LEI FÍSICA 1 Constituição da matéria: A matéria pode ser encontrada no estado sólido, líquido ou gasoso. Toda a matéria é constituída

Leia mais

Escola Secundária c/3 Ciclo Rainha Santa Isabel, Estremoz ELETRÓNICA FUNDAMENTAL CONDENSADORES CONDENSADORES JOAQUIM VIEIRA

Escola Secundária c/3 Ciclo Rainha Santa Isabel, Estremoz ELETRÓNICA FUNDAMENTAL CONDENSADORES CONDENSADORES JOAQUIM VIEIRA 1 CONDENSADOR Letra de identificação: C Unidade de medida: F (Farad) Função: Armazenar energia elétrica Aplicações: fonte auxiliar de energia, Acoplamento /desacoplamento, correção do fator de potência,

Leia mais

Trabalho 3: Circuitos Elétricos

Trabalho 3: Circuitos Elétricos Licenciatura em Ciências da Saúde Trabalho 3: Circuitos Elétricos Objetivos Verificação da lei de Ohm. Carga e descarga de um condensador num circuito RC. Medição de sinais elétricos fisiológicos. Introdução

Leia mais

Capacitores. Prof. Carlos T. Matsumi

Capacitores. Prof. Carlos T. Matsumi Circuitos Elétricos II Prof. Carlos T. Matsumi 1 Conhecidos também como condensadores; São componentes que acumulam carga elétricas; Podem ser: Circuitos Elétricos II Polarizados (ex. capacitor eletrolítico)

Leia mais

Centro Universitário de Itajubá Eletrônica Básica

Centro Universitário de Itajubá Eletrônica Básica Centro Universitário de Itajubá Eletrônica Básica Prof. Evaldo Renó Faria Cintra 1 Diodos de Finalidade Específica Diodo Zener LED Diodo Schottky 2 + V Z - Símbolo utilizado para representar o diodo ZENER

Leia mais

Diodos. Vanderlei Alves S. da Silva

Diodos. Vanderlei Alves S. da Silva Diodos Vanderlei Alves S. da Silva Diodo é um componente semicondutor capaz de deixar a corrente elétrica circular por um sentido e bloquear no sentido inverso. São formados, basicamente, por dois cristais,

Leia mais

O 7490 na prática O circuito integrado 7490 tem a aparência mostrada na figura 1.

O 7490 na prática O circuito integrado 7490 tem a aparência mostrada na figura 1. Contador binário até 99 (ART063) Escrito por Newton C. Braga A numeração binária é a base de funcionamento dos computadores e de todos os circuitos de eletrônica digital. Por esse motivo, além de ser ensinada

Leia mais

Teoria de Circuitos e Fundamentos de Electrónica: Díodos

Teoria de Circuitos e Fundamentos de Electrónica: Díodos íodos ispositios de material semicondutor (silício e germânio) Normalmente descritos como interruptores: passam corrente apenas numa direcção íodos ispositios de material semicondutor (silício e germânio)

Leia mais

O que é um circuito eléctrico?

O que é um circuito eléctrico? SISTEMAS ELÉCTRICOS E ELECTRÓNICOS A produção em larga escala é recente e revolucionou por completo o nosso dia-a-dia A electricidade é tão antiga como o Universo! O que é um circuito eléctrico? Éum conjunto

Leia mais

Carga e Descarga do Condensador em C.C.

Carga e Descarga do Condensador em C.C. Departamento de Engenharia Electrotécnica e de Computadores Ekit - Carga e Descarga do Condensador em C.C. Maio de 2008 Elaborado por: Nuno Lucas Aluno Nº Nome Data Objectivo Neste trabalho, pretende estudar-se

Leia mais

Análise de Circuitos com Díodos

Análise de Circuitos com Díodos Teoria dos Circuitos e Fundamentos de Electrónica 1 Análise de Circuitos com Díodos Teresa Mendes de Almeida TeresaMAlmeida@ist.utl.pt DEEC Área Científica de Electrónica T.M.Almeida IST-DEEC- ACElectrónica

Leia mais

Lei de Ohm e Resistores reais Cap. 2: Elementos de circuito

Lei de Ohm e Resistores reais Cap. 2: Elementos de circuito 2. Análise de Circuitos Elétricos Simples REDES e CIRCUITOS: A interconexão de dois ou mais elementos de circuitos simples forma uma rede elétrica. Se a rede tiver pelo menos um caminho fechado, ela é

Leia mais

Folha 5 Transístores bipolares.

Folha 5 Transístores bipolares. Folha 5 Transístores bipolares. 1. Considere um transístor npn que possui uma queda de potencial base emissor de 0.76 V quando a corrente de colector é de 10 ma. Que corrente conduzirá com v BE = 0.70

Leia mais

Notas de Aula: Eletrônica Analógica e Digital

Notas de Aula: Eletrônica Analógica e Digital Notas de Aula: Eletrônica Analógica e Digital - Materiais Semicondutores; - Diodo Semicondutor. Materiais Semicondutores Intrínsecos Existem vários tipos de materiais semicondutores. Os mais comuns e mais

Leia mais

1. O circuito elétrico representado abaixo é composto por fios e bateria ideais:

1. O circuito elétrico representado abaixo é composto por fios e bateria ideais: 1. O circuito elétrico representado abaixo é composto por fios e bateria ideais: Com base nas informações, qual o valor da resistência R a) 5. b) 6 Ω. c) 7 Ω. d) 8. e) 9. Ω Ω Ω indicada? 2. Bárbara recebeu

Leia mais

Experimento II Lei de Ohm e circuito RC

Experimento II Lei de Ohm e circuito RC Experimento II Lei de Ohm e circuito RC Objetivos específicos da Semana III O objetivo principal da experiência da Semana III é estudar o fenômeno de descarga de um capacitor, usando para isso um tipo

Leia mais

FICHA DE TRABALHO DE FÍSICA E QUÍMICA A DEZEMBRO 2010

FICHA DE TRABALHO DE FÍSICA E QUÍMICA A DEZEMBRO 2010 FICHA DE TRABALHO DE FÍSICA E QUÍMICA A DEZEMBRO 2010 APSA Nº11 11º Ano de Escolaridade 1- Classifique como verdadeiras ou falsas cada uma das seguintes afirmações, corrigindo estas últimas sem recorrer

Leia mais

Resistência elétrica e Protoboard

Resistência elétrica e Protoboard Resistência elétrica e Protoboard 1. A resistência elétrica A resistência elétrica é um componente eletrónico que oferece uma oposição à passagem da corrente elétrica. Este componente tem diversas aplicações

Leia mais

5 META: Medir a constante de Planck.

5 META: Medir a constante de Planck. AULA META: Medir a constante de Planck. OBJETIVOS: Ao m da aula os alunos deverão: Entender o principio de funcionamento do LED. Saber associar a luz emitida pelo LED com a energia do gap destes materiais.

Leia mais

1.2.5 Características de um gerador de tensão contínua. Balanço energético num circuito.

1.2.5 Características de um gerador de tensão contínua. Balanço energético num circuito. 1.2.5 Características de um gerador de tensão contínua. Balanço energético num circuito. Adaptado pelo Prof. Luís Perna Tal como os outros componentes de um circuito, um gerador também dissipa energia

Leia mais

TIRISTORES ROGÉRIO WEYMAR

TIRISTORES ROGÉRIO WEYMAR TIRISTORES CONTEÚDO SEMICONDUTORES - REVISÃO TIRISTORES SCR SCR - CARACTERÍSTICAS APLICAÇÕES SEMICONDUTORES Os semicondutores têm tido um impacto incrível em nossa sociedade. Eles são encontrados nos chips

Leia mais

Temática Electrónica de Potência Capítulo Onduladores Secção ESTRUTURA INTRODUÇÃO

Temática Electrónica de Potência Capítulo Onduladores Secção ESTRUTURA INTRODUÇÃO Temática Electrónica de Potência Capítulo Onduladores Secção ESTRUTURA INTRODUÇÃO Neste módulo, inicia-se o estudo das topologias (estruturas) dos onduladores mais utilizadas. Definem-se os dispositivos

Leia mais

O efeito fotoeléctrico

O efeito fotoeléctrico O efeito fotoeléctrico 27 de Outubro de 2005 1 O efeito fotoeléctrico Desde os ns do século 19 que se sabe que certos metais podem emitir electrões por incidência da luz. A este efeito chama-se efeito

Leia mais

Experimento - Estudo de um circuito RC

Experimento - Estudo de um circuito RC Experimento - Estudo de um circuito RC. Objetivos Verificar graficamente a validade da equação desenvolvida para carga e descarga de um capacitor. Determinar a constante de tempo de um circuito RC nas

Leia mais

Aula 19 Condução de Eletricidade nos Sólidos

Aula 19 Condução de Eletricidade nos Sólidos Aula 19 Condução de Eletricidade nos Sólidos Física 4 Ref. Halliday Volume4 Sumário Semicondutores; Semicondutores Dopados; O Diodo Retificador; Níveis de Energia em um Sólido Cristalino relembrando...

Leia mais

(A) O módulo da impedância total diminuirá. (B) A corrente eficaz aumentará. (C) O desfasamento entre a corrente e a tensão da fonte aumentará.

(A) O módulo da impedância total diminuirá. (B) A corrente eficaz aumentará. (C) O desfasamento entre a corrente e a tensão da fonte aumentará. MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2017/2018 EIC0014 FÍSICA II 2º ANO, 1º SEMESTRE 11 de janeiro de 2018 Nome: Duração 2 horas. Prova com consulta de formulário e uso de computador. O

Leia mais

Teoria dos Semicondutores e o Diodo Semicondutor. Prof. Jonathan Pereira

Teoria dos Semicondutores e o Diodo Semicondutor. Prof. Jonathan Pereira Teoria dos Semicondutores e o Diodo Semicondutor Prof. Jonathan Pereira Bandas de Energia Figura 1 - Modelo atômico de Niels Bohr 2 Bandas de Energia A quantidade de elétrons

Leia mais

= = V I R 2 I I 2 V 2 V 1 R 1. Lei das malhas: Lei dos nós: Divisor de tensão. Divisor de corrente. Electromagnetismo e Óptica (EO)

= = V I R 2 I I 2 V 2 V 1 R 1. Lei das malhas: Lei dos nós: Divisor de tensão. Divisor de corrente. Electromagnetismo e Óptica (EO) Electromagnetismo e Óptica LEC Tagus 1ºSem 011/1 Prof. J. C. Fernandes Electromagnetismo e Óptica (EO Corrente contínua. Circuitos Formulário Lei das malhas: Lei dos nós: i i 0 0 1 Divisor de corrente

Leia mais

Unidades. Coulomb segundo I = = Ampere. I = q /t. Volt Ampere R = = Ohm. Ohm m 2 m. r = [ r ] = ohm.m

Unidades. Coulomb segundo I = = Ampere. I = q /t. Volt Ampere R = = Ohm. Ohm m 2 m. r = [ r ] = ohm.m Eletricidade Unidades I = Coulomb segundo = Ampere I = q /t R = Volt Ampere = Ohm r = Ohm m 2 m [ r ] = ohm.m Grandeza Corrente Resistência Resistividade Condutividade SI (kg, m, s) Ampere Ohm Ohm.metro

Leia mais

Diodos FABRÍCIO RONALDO-DORIVAL

Diodos FABRÍCIO RONALDO-DORIVAL FABRÍCIO RONALDO-DORIVAL Estruturalmente temos: Material p íons receptores + lacunas livres Material n íons doadores + elétrons livres Material p Material n - + - + - + - + - + - + - + - + + - + - + -

Leia mais

Olimpíadas de Física Seleção para as provas internacionais. Prova Experimental B

Olimpíadas de Física Seleção para as provas internacionais. Prova Experimental B SOCIEDADE PORTUGUESA DE FÍSICA Olimpíadas de Física 2016 Seleção para as provas internacionais Prova Experimental B 21/maio/2016 Olimpíadas de Física 2016 Seleção para as provas internacionais Prova Experimental

Leia mais

Universidade Federal de São João del-rei. Material Teórico de Suporte para as Práticas

Universidade Federal de São João del-rei. Material Teórico de Suporte para as Práticas Universidade Federal de São João del-rei Material Teórico de Suporte para as Práticas 1 Amplificador Operacional Um Amplificador Operacional, ou Amp Op, é um amplificador diferencial de ganho muito alto,

Leia mais

Corrente elétrica e Resistência

Corrente elétrica e Resistência Capítulo 9 Corrente elétrica e Resistência 9.1 Transporte de Carga e Densidade de Corrente As correntes elétricas são causadas pelo movimento de portadores de carga. A corrente elétrica num fio é a medida

Leia mais

Conceitos Básicos de Teoria dos Circuitos

Conceitos Básicos de Teoria dos Circuitos Teoria dos Circuitos e Fundamentos de Electrónica Conceitos Básicos de Teoria dos Circuitos T.M.lmeida ST-DEEC- CElectrónica Teresa Mendes de lmeida TeresaMlmeida@ist.utl.pt DEEC Área Científica de Electrónica

Leia mais

Dispositivos Semicondutores. Diodos junções p-n Transistores: p-n-p ou n-p-n

Dispositivos Semicondutores. Diodos junções p-n Transistores: p-n-p ou n-p-n Dispositivos Semicondutores Diodos junções p-n Transistores: p-n-p ou n-p-n Junção p-n Junções p-n tipo-p tipo-n tensão reversa tensão direta zona isolante zona de recombinação buracos elétrons buracos

Leia mais

Capítulo 2 Diodos para Microondas

Capítulo 2 Diodos para Microondas Capítulo 2 Diodos para Microondas O objetivo deste capítulo é apresentar os principais diodos utilizados na faixa de microondas, bem como algumas de suas aplicações. Os diodos estudados são: Diodo Túnel

Leia mais

FACULDADE SANTO AGOSTINHO - FSA ENGENHARIA ELÉTRICA ELETRÔNICA DE POTÊNCIA TIRISTORES

FACULDADE SANTO AGOSTINHO - FSA ENGENHARIA ELÉTRICA ELETRÔNICA DE POTÊNCIA TIRISTORES FACULDADE SANTO AGOSTINHO - FSA ENGENHARIA ELÉTRICA ELETRÔNICA DE POTÊNCIA TIRISTORES Tiristores Introdução Dispositivos semicondutores de potência com 4 camadas PNPN; Utilizado com chave eletrônica; Principal

Leia mais