Processamento de Imagens COS756 / COC603

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Processamento de Imagens COS756 / COC603"

Transcrição

1 Processamento de Imagens COS756 / COC603 aula 08 - deteção de características de baixo-nível (low-level feature detection) parte II Antonio Oliveira Ricardo Marroquim 1 / 1

2 aula de hoje feature detection overview Laplaciano da Gaussiana pontos de interesse método de Harris curvatura 2 / 1

3 LoG Laplaciano derivada de segunda ordem (progressiva e regressiva) f (x 0 + x) = f (x 0 )+f (x 0 ) x + f (x 0 ) x 2 + f (x 0 ) x 3 +O( x 4 ) 2! 3! f (x 0 x) = f (x 0 ) f (x 0 ) x + f (x 0 ) x 2 f (x 0 ) x 3 +O( x 4 ) 2! 3! somando temos a diferança central (e fazendo x = 1): f (x 0 ) = f (x 0 + x) + f (x 0 x) 2f (x 0 ) 3 / 1

4 Laplaciano operador isotrópico arestas se encontram nos zero-crossings / 1

5 Laplaciano Laplaciano da Gaussiana (LoG) segunda derivada do filtro Gaussiano 2 (g(x, y) I ) = ( 2 g(x, y)) I 2 g(x, y, σ) x g(x, y, σ) g(x, y, σ) y 2 = x 2 + g(x, y, σ) = ( x 2 + y 2 ) 1 σ 2 2 σ 2 e g(x, y, σ) y 2 x 2 +y 2 2σ 2 5 / 1

6 keypoint features problemas a serem resolvidos: quais pontos são bons? como representar esta informação? como procurar a correspondência em outra imagem? 6 / 1

7 panorâmica 7 / 1

8 panorâmica 8 / 1

9 panorâmica 9 / 1

10 objetivo encontrar o pixel correspondente em duas imagens dificilmente terá exatamente mesmos valores RGB ex. diferença de iluminação entre as fotos mesmo assim, estaria sujeito a erros (dois pixels iguais em uma mesma imagem) 10 / 1

11 cantos variação de intensidade em qualquer direção arestas: problema de abertura regiões homogêneas: difícil fazer o matching 11 / 1

12 panorâmica 12 / 1

13 solução simples summed square difference: SSD(x, y) = i [I 1 (x + x, y + y) I 0 (x, y)] 2 onde ( x, y) é um deslocamento e i são os pixels dentro de uma janela de busca podemos também usar uma média ponderada SSD() = i w(x i )[I 1 (x + x, y + y) I 0 (x, y)] 2 ] 13 / 1

14 solução simples summed square difference: SSD(x, y) = i [I 1 (x + x, y + y) I 0 (x, y)] 2 onde ( x, y) é um deslocamento e i são os pixels dentro de uma janela de busca podemos também usar uma média ponderada SSD() = i w(x i )[I 1 (x + x, y + y) I 0 (x, y)] 2 ] problema onde procurar na imagem I 1? se a janela de busca for grande, o custo será alto 13 / 1

15 Harris detector mas quais são bons pontos a serem utilizados? auto-correlação AC(x, y) = w(x, y)[i (x, y) I (x + x, y + y)] 2 intuitivamente, quão diferente o pixel é dos seus vizinhos 14 / 1

16 15 / 1

17 Harris detector utilizando a aproximação quadrática pela série de Taylor I (x + x, y + y) = I (x, y) + xi x (x, y) + yi y (x, y) substituindo na equação anterior e passando para forma matricial temos: AC [ x y ] [ w i i I x (x i, y i ) 2 I x (x i, y i )I y (x i, y i ) I x (x i, y i )I y (x i, y i ) I y (x i, y i ) 2 ] [ x y ] 16 / 1

18 cônica matriz representa uma seção cônica na sua forma central Ax 2 + Bxy + Cy 2 + Dx + Ey + F = 0 M = [ A B/2 B/2 C ] 17 / 1

19 cônica análise do determinante detm < 0 hipérbola detm = 0 parábola detm > 0 elipse nossa matriz 18 / 1

20 cônica análise do determinante detm < 0 hipérbola detm = 0 parábola detm > 0 elipse nossa matriz simétrica positiva definida detm > 0 elipse autovalores positivos : λ 0, λ 1 > 0 18 / 1

21 Harris detector análise dos autovetores e autovalores (variação) o que podemos concluir a partir dos autovalores? 19 / 1

22 Harris detector o que podemos concluir a partir dos autovalores? 20 / 1

23 Harris detector o que podemos concluir a partir dos autovalores? dois autovalores pequenos pouca variação, área de intensidade mais ou menos constante 20 / 1

24 Harris detector o que podemos concluir a partir dos autovalores? dois autovalores pequenos pouca variação, área de intensidade mais ou menos constante um autovalor grande e um pequeno aresta 20 / 1

25 Harris detector o que podemos concluir a partir dos autovalores? dois autovalores pequenos pouca variação, área de intensidade mais ou menos constante um autovalor grande e um pequeno aresta dois autovalores grandes ponto, quina 20 / 1

26 Harris detector Harris (1988) usou a medida: det(m) αtrace(m) 2 = λ 0 λ 1 α(λ 0 + λ 1 ) 2 com α = 0.06 Triggs (2004) usou a medida (onde λ 0 < λ 1 ): λ 0 αλ 1 com α = / 1

27 algoritmo 1. calcular I x e I y : gradiente na direção x e y pode usar por exemplo: convolução da derivada de uma Gaussiana 2. calcular os produtos I 2 x = I x I x, I 2 y = I y I y e I xy = I x I y 3. convoluir as três imagens com uma Gaussiana 4. para cada pixel: encontrar os autovalores e utilizar uma das medidas 5. limiarizar para encontrar máximos 6. limitar número de máximos por região 22 / 1

28 23 / 1

29 24 / 1

Fundamentos da Computação Gráfica

Fundamentos da Computação Gráfica Fundamentos da Computação Gráfica Trabalho 2 Visão. Detecção de cantos. Manuel Alejandro Nodarse Moreno (1322198) Introdução. Detecção de cantos é uma abordagem utilizada em sistemas de visão computacional

Leia mais

A primeira coisa a fazer é saber quais são as equações das curvas quando elas já se encontram na melhor

A primeira coisa a fazer é saber quais são as equações das curvas quando elas já se encontram na melhor Identificação de Cônicas Uma equação do segundo grau ax + bxy + cy + dx + ey + f = 0 define de maneira implícita uma curva no plano xy: o conjunto dos pontos (x, y) que satisfazem a equação. Por exemplo,

Leia mais

Processamento digital de imagens

Processamento digital de imagens Processamento digital de imagens Agostinho Brito Departamento de Engenharia da Computação e Automação Universidade Federal do Rio Grande do Norte 3 de março de 2016 Transformação e filtragem de imagens

Leia mais

Processamento de Imagens COS756 / COC603

Processamento de Imagens COS756 / COC603 Processamento de Imagens COS756 / COC603 aula 03 - operações no domínio espacial Antonio Oliveira Ricardo Marroquim 1 / 38 aula de hoje operações no domínio espacial overview imagem digital operações no

Leia mais

MATRIZES POSITIVAS DEFINIDAS

MATRIZES POSITIVAS DEFINIDAS MATRIZES POSITIVAS DEFINIDAS Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá IEFF-ITA 7 de novembro de 2011 Roteiro 1 2 3 Roteiro 1 2 3 Por que saber se uma matriz é definida positiva? Importância do sinal

Leia mais

Sumário. VII Geometria Analítica Jorge Delgado Katia Frensel Lhaylla Crissaff

Sumário. VII Geometria Analítica Jorge Delgado Katia Frensel Lhaylla Crissaff 1 Coordenadas no plano 1 1.1 Introdução........................................ 2 1.2 Coordenada e distância na reta............................ 3 1.3 Coordenadas no plano.................................

Leia mais

Sistemas de Equações Lineares e Matrizes

Sistemas de Equações Lineares e Matrizes Sistemas de Equações Lineares e Matrizes. Quais das seguintes equações são lineares em x, y, z: (a) 2x + 2y 5z = x + xy z = 2 (c) x + y 2 + z = 2 2. A parábola y = ax 2 + bx + c passa pelos pontos (x,

Leia mais

Matrizes positivas definidas, semidefinidas, etc.

Matrizes positivas definidas, semidefinidas, etc. Matrizes positivas definidas, semidefinidas, etc. Amit Bhaya, Programa de Engenharia Elétrica COPPE/UFRJ Universidade Federal do Rio de Janeiro amit@nacad.ufrj.br http://www.nacad.ufrj.br/ amit Funções

Leia mais

Visão Computacional CPS754

Visão Computacional CPS754 Visão Computacional CPS754 aula 12 - matriz fundamental Antonio Oliveira Ricardo Marroquim 1 / 1 visão computacional tópicos métodos numéricos para computar F 2 / 1 básico equação básica lembrando da condição

Leia mais

Scale-Invariant Feature Transform

Scale-Invariant Feature Transform Scale-Invariant Feature Transform Renato Madureira de Farias renatomdf@gmail.com Prof. Ricardo Marroquim Relatório para Introdução ao Processamento de Imagens (COS756) Universidade Federal do Rio de Janeiro,

Leia mais

FILTRAGEM DE IMAGEM NO DOMÍNIO ESPACIAL (Operações aritméticas orientadas à vizinhança)

FILTRAGEM DE IMAGEM NO DOMÍNIO ESPACIAL (Operações aritméticas orientadas à vizinhança) PROCESSAMENTO DE IMAGEM #5 Operações Aritméticas Orientadas à Vizinhanças Filtragem no Domínio Espacial (Máscaras) Máscaras de suavização (média e mediana) e aguçamento (laplaciano) Correlação x Convolução

Leia mais

Filtragem. Processamento digital de imagens. CPGCG/UFPR Prof. Dr. Jorge Centeno

Filtragem. Processamento digital de imagens. CPGCG/UFPR Prof. Dr. Jorge Centeno Filtragem Processamento digital de imagens CPGCG/UFPR Prof. Dr. Jorge Centeno Operações de vizinhança (Filtros) Filtros lineares Filtro passa-baixas (suavização) Filtro passa-altas (realce) Filtros direcionais

Leia mais

CAPÍTULO 1 Operações Fundamentais com Números 1. CAPÍTULO 2 Operações Fundamentais com Expressões Algébricas 12

CAPÍTULO 1 Operações Fundamentais com Números 1. CAPÍTULO 2 Operações Fundamentais com Expressões Algébricas 12 Sumário CAPÍTULO 1 Operações Fundamentais com Números 1 1.1 Quatro operações 1 1.2 O sistema dos números reais 1 1.3 Representação gráfica de números reais 2 1.4 Propriedades da adição e multiplicação

Leia mais

CC-226 Aula 05 - Teoria da Decisão Bayesiana

CC-226 Aula 05 - Teoria da Decisão Bayesiana CC-226 Aula 05 - Teoria da Decisão Bayesiana Carlos Henrique Q. Forster - Instituto Tecnológico de Aeronáutica 2008 Classificador Bayesiano Considerando M classes C 1... C M. N observações x j. L atributos

Leia mais

0 < c < a ; d(f 1, F 2 ) = 2c

0 < c < a ; d(f 1, F 2 ) = 2c Capítulo 14 Elipse Nosso objetivo, neste e nos próximos capítulos, é estudar a equação geral do segundo grau em duas variáveis: Ax + Bxy + Cy + Dx + Ey + F = 0, onde A 0 ou B 0 ou C 0 Para isso, deniremos,

Leia mais

Processamento de Imagem. Filtragem no Domínio Espacial Professora Sheila Cáceres

Processamento de Imagem. Filtragem no Domínio Espacial Professora Sheila Cáceres Processamento de Imagem Filtragem no Domínio Espacial Professora Sheila Cáceres Filtragem A filtragem de imagens pode ser realizada no domínio do espaço e da frequência Operadores de filtragem são classificados

Leia mais

Processamento de Malhas Poligonais

Processamento de Malhas Poligonais Processamento de Malhas Poligonais Tópicos Avançados em Computação Visual e Interfaces I Prof.: Marcos Lage www.ic.uff.br/~mlage mlage@ic.uff.br Conteúdo: Notas de Aula Curvas 06/09/2015 Processamento

Leia mais

Capítulo III Processamento de Imagem

Capítulo III Processamento de Imagem Capítulo III Processamento de Imagem Proc. Sinal e Imagem Mestrado em Informática Médica Miguel Tavares Coimbra Resumo 1. Manipulação ponto a ponto 2. Filtros espaciais 3. Extracção de estruturas geométricas

Leia mais

Segunda prova de Álgebra Linear - 01/07/2011 Prof. - Juliana Coelho

Segunda prova de Álgebra Linear - 01/07/2011 Prof. - Juliana Coelho Segunda prova de Álgebra Linear - 01/07/011 Prof - Juliana Coelho JUSTIFIQUE SUAS RESPOSTAS! Questões contendo só a resposta, sem desenvolvimento ou justificativa serão desconsideradas! QUESTÃO 1, pts

Leia mais

Autovetor e Autovalor de um Operador Linear

Autovetor e Autovalor de um Operador Linear Autovetor e Autovalor de um Operador Linear Definição Seja T : V V um operador linear. Um vetor v V, v 0, é dito um autovetor de T se existe um número real λ tal que T (v) = λv. O número real λ acima é

Leia mais

Processamento de Imagens COS756 / COC603

Processamento de Imagens COS756 / COC603 Processamento de Imagens COS756 / COC603 aula 02 - câmeras digitais Antonio Oliveira Ricardo Marroquim 1 / 1 aula de hoje câmera digitais overview modelo de câmera capturando imagens ruído processamento...

Leia mais

Álgebra Linear Teoria de Matrizes

Álgebra Linear Teoria de Matrizes Álgebra Linear Teoria de Matrizes 1. Sistemas Lineares 1.1. Coordenadas em espaços lineares: independência linear, base, dimensão, singularidade, combinação linear 1.2. Espaço imagem (colunas) - Espaço

Leia mais

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Álgebra Linear e Geometria Analítica Prof. Aline Paliga EMENTA Vetores Dependência Linear Bases Produto Escalar Produto Vetorial Produto Misto Coordenadas Cartesianas

Leia mais

Geometria Analítica - Aula

Geometria Analítica - Aula Geometria Analítica - Aula 19 246 IM-UFF K. Frensel - J. Delgado Aula 20 Vamos analisar a equação Ax 2 + Cy 2 + Dx + Ey + F = 0 nos casos em que exatamente um dos coeficientes A ou C é nulo. 1. Parábola

Leia mais

FILTROS ESPACIAIS PASSA-BAIXA

FILTROS ESPACIAIS PASSA-BAIXA UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO CMP65 - INTRODUÇÃO AO PROCESSAMENTO DE IMAGENS PROFESSOR JACOB SCARCHANSKI FILTROS ESPACIAIS PASSA-BAIXA POR DANIEL NEHME

Leia mais

Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas)

Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas) Cálculo a Várias Variáveis I - MAT 116 0141 Cronograma para P: aulas teóricas (segundas e quartas) Aula 10 4 de março (segunda) Aula 11 6 de março (quarta) Referências: Cálculo Vol James Stewart Seções

Leia mais

Vetor de Variáveis Aleatórias

Vetor de Variáveis Aleatórias Vetor de Variáveis Aleatórias Luis Henrique Assumpção Lolis 25 de junho de 2013 Luis Henrique Assumpção Lolis Vetor de Variáveis Aleatórias 1 Conteúdo 1 Vetor de Variáveis Aleatórias 2 Função de Várias

Leia mais

Aula 9 Cônicas - Rotação de sistemas de coordenadas

Aula 9 Cônicas - Rotação de sistemas de coordenadas MÓDULO 1 - AULA 9 Aula 9 Cônicas - Rotação de sistemas de coordenadas Objetivos Entender mudanças de coordenadas por rotações. Identificar uma cônica rotacionada a partir da sua equação geral. Identificar

Leia mais

MATRIZES, DETERMINANTES E SISTEMAS LINEARES SISTEMAS LINEARES

MATRIZES, DETERMINANTES E SISTEMAS LINEARES SISTEMAS LINEARES MATRIZES, DETERMINANTES E SISTEMAS LINEARES SISTEMAS LINEARES SISTEMAS LINEARES Equação linear Equação linear é toda equação da forma: a 1 x 1 + a 2 x 2 + a 3 x 3 +... + a n x n = b em que a 1, a 2, a

Leia mais

Sistemas Dinâmicos e Caos Lista de Problemas 2.1 Prof. Marco Polo

Sistemas Dinâmicos e Caos Lista de Problemas 2.1 Prof. Marco Polo Sistemas Dinâmicos e Caos - 2016.2 - Lista de Problemas 2.1 1 Sistemas Dinâmicos e Caos Lista de Problemas 2.1 Prof. Marco Polo Questão 01: Oscilador harmônico Considere o oscilador harmônico ẋ = y, ẏ

Leia mais

CSE-020 Revisão de Métodos Matemáticos para Engenharia

CSE-020 Revisão de Métodos Matemáticos para Engenharia CSE-020 Revisão de Métodos Matemáticos para Engenharia Engenharia e Tecnologia Espaciais ETE Engenharia e Gerenciamento de Sistemas Espaciais L.F.Perondi Engenharia e Tecnologia Espaciais ETE Engenharia

Leia mais

Matrizes e Linearidade

Matrizes e Linearidade Matrizes e Linearidade 1. Revisitando Matrizes 1.1. Traço, Simetria, Determinante 1.. Inversa. Sistema de Equações Lineares. Equação Característica.1. Autovalor & Autovetor 4. Polinômios Coprimos 5. Função

Leia mais

x exp( t 2 )dt f(x) =

x exp( t 2 )dt f(x) = INTERPOLAÇÃO POLINOMIAL 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia Aproximação

Leia mais

Resumo com exercícios resolvidos dos assuntos:

Resumo com exercícios resolvidos dos assuntos: www.engenhariafacil.weebly.com (0)- Considerações iniciais: Resumo com exercícios resolvidos dos assuntos: Máximos e mínimos absolutos e Multiplicador de Lagrange -Grande parte das funções não possui máximos

Leia mais

II. Funções de uma única variável

II. Funções de uma única variável II. Funções de uma única variável 1 II.1. Conceitos básicos A otimização de de funções de de uma única variável consiste no no tipo mais elementar de de otimização. Importância: Tipo de problema encontrado

Leia mais

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 06. Prof. Dr. Marco Antonio Leonel Caetano

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 06. Prof. Dr. Marco Antonio Leonel Caetano MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação Aula 06 Prof. Dr. Marco Antonio Leonel Caetano 1 Guia de Estudo para Aula 06 Aplicação de AutoValores - Usando autovalor para encontrar pontos

Leia mais

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão)

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão) R é ordenado: Se a, b, c R i) a < b se e somente se b a > 0 (a diferença do maior com o menor será positiva) ii) se a > 0 e b > 0 então a + b > 0 (a soma de dois números positivos é positiva) iii) se a

Leia mais

Álgebra Linear Diagonalização de Operadores

Álgebra Linear Diagonalização de Operadores Introdução e Motivação Preliminares Diagonalização de Operadores Aplicações Referências Álgebra Linear Diagonalização de Operadores Universidade Estadual Vale do Acaraci - Sobral - CE Semana da Matemática

Leia mais

Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática

Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática Valor Absoluto: O valor absoluto de a, representa-se por a e é a distância do número a a

Leia mais

Processamento de Imagens Marcia A. S. Bissaco

Processamento de Imagens Marcia A. S. Bissaco Engenharia Biomédica Processamento de Imagens Marcia A. S. Bissaco 1 Exemplos filtros Média Mediana Passa_B Passa_A Borda_H Borda_V Sobel_Y Sobel_X Oliveira, Henrique J. Quintino (UMC-SP), 2 Media Mediana

Leia mais

Álgebra Linear I - Aula 21

Álgebra Linear I - Aula 21 Álgebra Linear I - Aula 1 1. Matrizes ortogonalmente diagonalizáveis: exemplos. Matrizes simétricas. Roteiro 1 Matrizes ortogonalmente diagonalizáveis: exemplos Exemplo 1. Considere a matriz M = 4 4 4

Leia mais

P (A) n(a) AB tra. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares.

P (A) n(a) AB tra. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares. NOTAÇÕES N = f; ; 3; : : :g i : unidade imaginária: i = R : conjunto dos números reais jzj : módulo do número z C C : conjunto dos números complexos Re z : parte real do número z C [a; b] = fx R; a x bg

Leia mais

2. Passos fundamentais para o processamento de imagens

2. Passos fundamentais para o processamento de imagens Filtro de Canny Jeverson Siqueira 1, Wallace Caldeira 1, Miguel Matrakas 1 1 Ciência da Computacão Faculdades Anglo Americano de Foz do Iguaçu (FAA) CEP: 85868-03 Foz do Iguaçu PR Brasil siqueira.jeverson@gmail.com,

Leia mais

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma:

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: 46 VALOR ESPERADO CONDICIONADO Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: Variável contínua E + ( X Y

Leia mais

Curvas e Superfícies

Curvas e Superfícies Curvas e Superfícies Fontes: M.C.F. de Oliveira D.F. Rogers & J.A. Adams, Mathematical Elements for Computer Graphics, McGraw-Hill, 1999 Hearn & Baker, Cap. 8 (8-8 a 8-18) An Interactive Introduction to

Leia mais

APLICAÇÕES NA GEOMETRIA ANALÍTICA

APLICAÇÕES NA GEOMETRIA ANALÍTICA 4 APLICAÇÕES NA GEOMETRIA ANALÍTICA Gil da Costa Marques 4.1 Geometria Analítica e as Coordenadas Cartesianas 4. Superfícies 4..1 Superfícies planas 4.. Superfícies limitadas e não limitadas 4.3 Curvas

Leia mais

Detecção e Correção Automáticas de Olhos Vermelhos

Detecção e Correção Automáticas de Olhos Vermelhos Setor de Tecnologia da Universidade Federal do Paraná Curso de Engenharia Elétrica TE 072 Processamento Digital de Sinais Detecção e Correção Automáticas de Olhos Vermelhos Trabalho elaborado pelo aluno

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 2º Grau. Alex Oliveira Engenharia Civil

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 2º Grau. Alex Oliveira Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.2 Função do 2º Grau Alex Oliveira Engenharia Civil Função do Segundo Grau Chama-se função do segundo grau ou função quadrática a função f: R R que

Leia mais

Exemplos de equações diferenciais

Exemplos de equações diferenciais Transformadas de Laplace - EDO's Prof. E.T.Galante Denição. Uma equação diferencial é uma equação na qual: a incógnita é uma função; há ao menos uma derivada da função incógnita. Antes de mais nada, vamos

Leia mais

Correção geométrica de imagens de sensoriamento remoto REGISTRO. Profa. Ligia Flávia Antunes Batista

Correção geométrica de imagens de sensoriamento remoto REGISTRO. Profa. Ligia Flávia Antunes Batista Correção geométrica de imagens de sensoriamento remoto REGISTRO Profa. Ligia Flávia Antunes Batista Importância eliminação de distorções sistemáticas estudos multi-temporais integração de dados em SIG

Leia mais

Exponencial de uma matriz

Exponencial de uma matriz Exponencial de uma matriz Ulysses Sodré Londrina-PR, 21 de Agosto de 2001; Arquivo: expa.tex Conteúdo 1 Introdução à exponencial de uma matriz 2 2 Polinômio característico, autovalores e autovetores 2

Leia mais

Filtragem de Imagens no Domínio Espacial. 35M34 Sala 3D5 Bruno Motta de Carvalho DIMAp Sala 15 Ramal 227

Filtragem de Imagens no Domínio Espacial. 35M34 Sala 3D5 Bruno Motta de Carvalho DIMAp Sala 15 Ramal 227 Filtragem de Imagens no Domínio Espacial 35M34 Sala 3D5 Bruno Motta de Carvalho DIMAp Sala 15 Ramal 227 Image Enhancement 2 Image enhancement em Português significa algo como melhoria de imagens, mas o

Leia mais

9º ANO FUNÇÕES. Função Quadrática. Nuno Marreiros

9º ANO FUNÇÕES. Função Quadrática. Nuno Marreiros Nuno Marreiros 9º ANO FUNÇÕES Função Quadrática Ponto de partida Já foi estudada a função de proporcionalidade direta bem como a função de proporcionalidade inversa. Hoje vamos aprender e estudar um pouco

Leia mais

CCI-22 LISTA DE EXERCÍCIOS

CCI-22 LISTA DE EXERCÍCIOS CCI-22 LISTA DE EXERCÍCIOS Capítulos 1 e 2: 1) Considere floats com 4 dígitos decimais de mantissa e expoentes inteiros entre -5 e 5. Sejam X =,7237.1 4, Y =,2145.1-3, Z =,2585.1 1. Utilizando um acumulador

Leia mais

Processamento de Imagem. Prof. MSc. André Yoshimi Kusumoto

Processamento de Imagem. Prof. MSc. André Yoshimi Kusumoto Processamento de Imagem Prof. MSc. André Yoshimi Kusumoto andrekusumoto.unip@gmail.com Filtragem de Imagens A utilização de filtros tem como objetivo melhorar a qualidade das imagens através da: ampliação

Leia mais

Programa. 3. Curvas no Plano: equação de lugar geométrico no plano; equações reduzidas da elipse,

Programa. 3. Curvas no Plano: equação de lugar geométrico no plano; equações reduzidas da elipse, Programa 1. Vetores no Plano e no Espaço: conceito; adição de vetores; multiplicação de vetor por n real; combinação linear de vetores; coordenadas; produto interno; produto vetorial; produto misto. 2.

Leia mais

2. Sistemas lineares

2. Sistemas lineares 2. Sistemas lineares 2.1 Conceitos fundamentais. 2.2 Sistemas triangulares. 2.3 Eliminação de Gauss. 2.4 Decomposição LU. 2.5 Decomposição de Cholesky. 2.6 Decomposição espectral. 2.7 Uso da decomposição.

Leia mais

DETERMINANTE Calcule o determinante da matriz obtida pelo produto de A B. sen(x) sec(x) cot g(x)

DETERMINANTE Calcule o determinante da matriz obtida pelo produto de A B. sen(x) sec(x) cot g(x) DETERMINANTE 2016 1. (Uerj 2016) Considere uma matriz A com 3 linhas e 1 coluna, na qual foram escritos os valores 1, 2 e 13, nesta ordem, de cima para baixo. Considere, também, uma matriz B com 1 linha

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros

Leia mais

Cálculo Numérico Computacional Exercícios. que coïncida com f até na terceira derivada:

Cálculo Numérico Computacional Exercícios. que coïncida com f até na terceira derivada: Cálculo Numérico Computacional Exercícios fórmula e Taylor T. Praciano-Pereira Dep. e Matemática Univ. Estaual Vale o Acaraú Sobral, 7 e fevereiro e 7 Relembrano: Fórmula e Taylor A equação a reta tangente

Leia mais

Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais

Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais 1. Verifique, recorrendo ao algoritmo da divisão, que: 6 4 0x 54x + 3x + é divisível por x 1.. De um modo geral, que relação

Leia mais

Sistemas de Equações lineares

Sistemas de Equações lineares LEIC FEUP /4 Sistemas- Sistemas de Equações lineares SEL- Dado o sistema coeficientes + + + +, resolva-o invertendo a matriz dos SEL- SEL- Considere o seguinte sistema de equações lineares: + + + a + a

Leia mais

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1)

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1) Lista de Exercícios Estudo Analítico das Cônicas e Quádricas 1. Determine o foco, o vértice, o parâmetro e a diretriz da parábola P e faça um esboço. a) P : y 2 = 4x b) P : y 2 +8x = 0 c) P : x 2 +6y =

Leia mais

Geometria Analítica. Katia Frensel - Jorge Delgado. NEAD - Núcleo de Educação a Distância. Curso de Licenciatura em Matemática UFMA

Geometria Analítica. Katia Frensel - Jorge Delgado. NEAD - Núcleo de Educação a Distância. Curso de Licenciatura em Matemática UFMA Geometria Analítica NEAD - Núcleo de Educação a Distância Curso de Licenciatura em Matemática UFMA Katia Frensel - Jorge Delgado Março, 2011 ii Geometria Analítica Conteúdo Prefácio ix 1 Coordenadas na

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares ALGA- / - Sistemas de Equações Lineares Sistemas de equações lineares Introdução Uma equação linear nas incógnitas ou variáveis x ; x ; :::; x n é uma expressão da forma: a x + a x + ::: + a n x n = b

Leia mais

- identificar operadores ortogonais e unitários e conhecer as suas propriedades;

- identificar operadores ortogonais e unitários e conhecer as suas propriedades; DISCIPLINA: ELEMENTOS DE MATEMÁTICA AVANÇADA UNIDADE 3: ÁLGEBRA LINEAR. OPERADORES OBJETIVOS: Ao final desta unidade você deverá: - identificar operadores ortogonais e unitários e conhecer as suas propriedades;

Leia mais

Exercícios e questões de Álgebra Linear

Exercícios e questões de Álgebra Linear CEFET/MG Exercícios e questões de Álgebra Linear Versão 1.2 Prof. J. G. Peixoto de Faria Departamento de Física e Matemática 25 de outubro de 2012 Digitado em L A TEX (estilo RevTEX). 2 I. À GUISA DE NOTAÇÃO

Leia mais

TEOREMA ( Propriedades das operações matriciais)

TEOREMA ( Propriedades das operações matriciais) TEOREMA ( Propriedades das operações matriciais) Supomos as dimensões das matrizes A, B, C tais que as operações abaixo consideradas estão bem definidas. Temos então: I. A+B=B+A (comutatividade da soma

Leia mais

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira:

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira: Aula 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r se define da seguinte maneira: (r1, r ) 0o se r1 e r são coincidentes, Se as retas são concorrentes, isto

Leia mais

Aula 13 de Bases Matemáticas

Aula 13 de Bases Matemáticas Aula 3 de Bases Matemáticas Rodrigo Hausen Versão: 8 de julho de 206 Catálogo de Funções Reais No estudo de unções é extremamente útil conhecer as propriedades e gráicos de algumas unções reais. Função

Leia mais

PARTE 10 REGRA DA CADEIA

PARTE 10 REGRA DA CADEIA PARTE 10 REGRA DA CADEIA 10.1 Introdução Em Cálculo 1A, quando queríamos derivar a função h(x = (x 2 3x + 2 37, fazíamos uso da regra da cadeia, que é uma das mais importantes regras de derivação e nos

Leia mais

E. S. JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROISMO. Conteúdo Programáticos / Matemática e a Realidade. Curso de Nível III Técnico de Laboratório

E. S. JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROISMO. Conteúdo Programáticos / Matemática e a Realidade. Curso de Nível III Técnico de Laboratório E. S. JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROISMO Curso de Nível III Técnico de Laboratório Técnico Administrativo PROFIJ Conteúdo Programáticos / Matemática e a Realidade 2º Ano Ano Lectivo de 2008/2009

Leia mais

Importante: havia 6 modelos de prova, com os dados numéricos diferentes. Os valores numéricos das soluções estão no final deste arquivo.

Importante: havia 6 modelos de prova, com os dados numéricos diferentes. Os valores numéricos das soluções estão no final deste arquivo. Importante: havia 6 modelos de prova, com os dados numéricos diferentes. Os valores numéricos das soluções estão no final deste arquivo. Aplicada Instituto de Matemática Universidade Federal do Rio de

Leia mais

Geometria Analítica. Superfícies. Prof Marcelo Maraschin de Souza

Geometria Analítica. Superfícies. Prof Marcelo Maraschin de Souza Geometria Analítica Superfícies Prof Marcelo Maraschin de Souza Superfícies Quadráticas A equação geral do 2º grau nas três variáveis x,y e z ax 2 + by 2 + cz 2 + 2dxy + 2exz + 2fyz + mx + ny + pz + q

Leia mais

Aula 6 - Processamento de Imagens de Radar

Aula 6 - Processamento de Imagens de Radar Aula 6 - Processamento de Imagens de Radar 1. Eliminação de Ruído Speckle A qualidade radiométrica do dado SAR é afetada por fatores inerentes ao instrumento, bem como à geometria de iluminação. As duas

Leia mais

Matéria das Aulas e Exercícios Recomendados Cálculo II- MAA

Matéria das Aulas e Exercícios Recomendados Cálculo II- MAA Matéria das Aulas e Exercícios Recomendados Cálculo II- MAA Número da Aula Data da Aula 1 02/09 Sequências Numéricas, definição, exemplos, representação geométrica, convergência e divergência, propriedades,

Leia mais

Conversão por Varrimento

Conversão por Varrimento Conversão por Varrimento Conversão vectorial? matricial Representação Vectorial Representação Matricial 2 Rasterização de Primitivas? Rasterização - converter de uma definição geométrica para pixels (matricial)?

Leia mais

SEGEMENTAÇÃO DE IMAGENS. Nielsen Castelo Damasceno

SEGEMENTAÇÃO DE IMAGENS. Nielsen Castelo Damasceno SEGEMENTAÇÃO DE IMAGENS Nielsen Castelo Damasceno Segmentação Segmentação Representação e descrição Préprocessamento Problema Aquisição de imagem Base do conhecimento Reconhecimento e interpretação Resultado

Leia mais

Referência: E. Hecht, óptica, Fundação Calouste Gulbekian, segunda edição portuguesa (2002); Óptica moderna Fundamentos e Aplicações S. C.

Referência: E. Hecht, óptica, Fundação Calouste Gulbekian, segunda edição portuguesa (2002); Óptica moderna Fundamentos e Aplicações S. C. Aula 6 Ótica geométrica (complementos) Referência: E. Hecht, óptica, Fundação Calouste Gulbekian, segunda edição portuguesa (00); Óptica moderna Fundamentos e Aplicações S. C. Zílio (e-book) -Desenho e

Leia mais

FEN- 06723 Processamento Digital de Imagens. Projeto 2 Utilização de máscaras laplacianas

FEN- 06723 Processamento Digital de Imagens. Projeto 2 Utilização de máscaras laplacianas FEN- 06723 Processamento Digital de Imagens Projeto 2 Utilização de máscaras laplacianas Marcelo Musci Mestrado Geomática/UERJ-2004 Abstract The Laplacian is also called as second difference function,

Leia mais

SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY

SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY PLANO DE ENSINO IDENTIFICAÇÃO Curso: Engenharia de Plásticos Período/Módulo: 3º Período Disciplina/Unidade Curricular: Álgebra Linear Código:

Leia mais

Comprimento de Arco. 1.Introdução 2.Resolução de Exemplos 3.Função Comprimento de Arco 4.Resolução de Exemplo

Comprimento de Arco. 1.Introdução 2.Resolução de Exemplos 3.Função Comprimento de Arco 4.Resolução de Exemplo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Comprimento de Arco

Leia mais

Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica. ENG1705 Dinâmica de Corpos Rígidos.

Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica. ENG1705 Dinâmica de Corpos Rígidos. Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica ENG1705 Dinâmica de Corpos Rígidos (Período: 2016.1) Notas de Aula Capítulo 1: VETORES Ivan Menezes ivan@puc-rio.br

Leia mais

Exercícios Resolvidos Teorema da Divêrgencia. Teorema de Stokes

Exercícios Resolvidos Teorema da Divêrgencia. Teorema de Stokes Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Exercícios Resolvidos Teorema da Divêrgencia. Teorema de tokes Exercício 1 Considere a superfície definida por e o campo

Leia mais

MAT Poli Cônicas - Parte I

MAT Poli Cônicas - Parte I MAT2454 - Poli - 2011 Cônicas - Parte I Uma equação quadrática em duas variáveis, x e y, é uma equação da forma ax 2 +by 2 +cxy +dx+ey +f = 0, em que pelo menos um doscoeficientes a, b oucénão nulo 1.

Leia mais

Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 02 / Processos Aleatórios

Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 02 / Processos Aleatórios Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 02 / Processos Aleatórios Prof. Eduardo Simas (eduardo.simas@ufba.br) Programa de Pós-Graduação em Engenharia Elétrica/PPGEE Universidade

Leia mais

Aula 2 Regressão e Correlação Linear

Aula 2 Regressão e Correlação Linear 1 ESTATÍSTICA E PROBABILIDADE Aula Regressão e Correlação Linear Professor Luciano Nóbrega Regressão e Correlação Quando consideramos a observação de duas ou mais variáveis, surge um novo problema: -as

Leia mais

Filtragem Espacial. Guillermo Cámara-Chávez

Filtragem Espacial. Guillermo Cámara-Chávez Filtragem Espacial Guillermo Cámara-Chávez Filtragem com Preservação de Bordas Filtros estatísticos passa-baixas podem suprimir detalhes importantes da imagem linhas finas, cantos de objetos. Isso acontece

Leia mais

CARACTERÍSTICAS DE IMAGENS: PONTOS E SUPERFÍCIES

CARACTERÍSTICAS DE IMAGENS: PONTOS E SUPERFÍCIES CARACTERÍSTICAS DE IMAGENS: PONTOS E SUPERFÍCIES O que são? CARACTERÍSTICAS DE IMAGENS (Image Features) o Propriedades Globais de uma imagem, ou de parte dela (característica global). Por exemplo: Médias

Leia mais

Estatística Aplicada ao Serviço Social

Estatística Aplicada ao Serviço Social Estatística Aplicada ao Serviço Social Módulo 7: Correlação e Regressão Linear Simples Introdução Coeficientes de Correlação entre duas Variáveis Coeficiente de Correlação Linear Introdução. Regressão

Leia mais

n. 4 DETERMINANTES: SARRUS E LAPLACE

n. 4 DETERMINANTES: SARRUS E LAPLACE n. 4 DETERMINANTES: SARRUS E LAPLACE A toda matriz quadrada está associado um número ao qual damos o nome de determinante. Determinante é uma função matricial que associa a cada matriz quadrada um escalar,

Leia mais

CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18

CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18 Sumário CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1 Sistema de Coordenadas Lineares 1 Intervalos Finitos 3 Intervalos Infinitos 3 Desigualdades 3 CAPÍTULO 2 Sistemas de

Leia mais

Sistemas de Equações Diferenciais Lineares

Sistemas de Equações Diferenciais Lineares CAPÍTULO 1 Sistemas de Equações Diferenciais Lineares Descrição do capítulo 1.1 Teoria preliminar 1.2 Sistemas lineares homogêneos 1.2.1 Autovalores reais distintos 1.2.2 Autovalores repetidos 1.2.3 Autovalores

Leia mais

Corda Elástica Presa Somente em uma das Extremidades

Corda Elástica Presa Somente em uma das Extremidades Corda Elástica Presa Somente em uma das Extremidades Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi 5 de outubro de 2010 2 Vamos determinar

Leia mais

Capítulo 5 Filtragem de Imagens

Capítulo 5 Filtragem de Imagens Capítulo 5 Filtragem de Imagens Capítulo 5 5.1. Filtragem no Domínio da Frequência 5.2. Filtragem no Domínio Espacial 2 Objetivo Melhorar a qualidade das imagens através da: ampliação do seu contraste;

Leia mais

Exercícios de MATEMÁTICA COMPUTACIONAL. 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares

Exercícios de MATEMÁTICA COMPUTACIONAL. 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares Exercícios de MATEMÁTICA COMPUTACIONAL Mestrado Integrado em Engenharia Biomédica 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares 1. Considere a equação sin(x) e x = 0. a) Prove que

Leia mais

Universidade de Coimbra Departamento de Engenharia Electrotecnica e Computadores Matemática Computacional

Universidade de Coimbra Departamento de Engenharia Electrotecnica e Computadores Matemática Computacional Ano Lectivo: 2007/2008 Sumários da turma Teórico-Prática [TP2]: Aula: 1 Data: 2008-02-12 Hora de Início: 15:00 Duração: 1h30m Apresentação da Unidade Curricular. Discussão de aspectos relacionados com

Leia mais

Processamento de Imagens

Processamento de Imagens Processamento de Imagens André Tavares da Silva andre.silva@udesc.br Roteiro O que é imagem Operações com imagens Convolução discreta Transformada de Fourier Transformada de Wavelets Morfologia matemática

Leia mais

1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0

1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0 Lista de exercícios. AL. 1 sem. 2015 Prof. Fabiano Borges da Silva 1 Matrizes Notações: 0 para matriz nula; I para matriz identidade; 1. Conhecendo-se somente os produtos AB e AC calcule A(B + C) B t A

Leia mais

Cálculo em Computadores 2007

Cálculo em Computadores 2007 Cálculo em Computadores 007 Formas quadráticas 1 Cálculo em Computadores 007 Formas quadráticas, cônicas e quádricas não degeneradas Índice 1 formas quadráticas 3 1.1 exemplos em Maple..........................................

Leia mais