Descritores de Imagem

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Descritores de Imagem"

Transcrição

1 Descritores de Imagem André Tavares da Silva 31 de março de Descritores de imagem (continuação) 1.1 Frameworks de detecção de objetos SIFT (scale-invariant features transform) (Lowe, 1999) SIFT é uma técnica de processamento de imagens que permite a detecção e extração de descritores locais, razoavelmente invariáveis a mudanças de iluminação, ruído de imagem, rotação, escala e pequenas mudanças de perspectiva. Proporcionou um passo importante na representação de objetos através de suas partes, gerando um grande avanço em diversas áreas, como, reconhecimento de objetos, navegação automática de robôs, rastreamento e criação de imagens panorâmicas. Utiliza uma representação que se utiliza de uma pilha de imagens contendo níveis de detalhe do espaço de escala linear (gura 1). Essa pilha de imagens em vários níveis de detalhe é geralmente denominada oitavas de Gaussianas. Cada nível f i da pirâmide contém uma oitava obtida através da sub-amostragem sobre oitava f i 1, localizada no nível imediatamente inferior. Esse processo é repetido recursivamente até que se obtenha o nível de representação desejado, geralmente contendo blocos de 8 8 pixels, associado as maiores escalas observáveis. A obtenção de descritores SIFT é feita nas seguintes etapas: - Detecção de extremos (máximos e mínimos): Nesta primeira etapa é feita procura para todas escalas e localizações de uma imagem. Isto é feito utilizando-se a função Diferença de Gaussianas (DoG) de modo a se identicar pontos de interesse invariáveis à escala e rotação. - Localização de pontos chave: Para cada localização em que foi detectado um extremo, um modelo detalhado é ajustado de modo a se determinar localização e escala. Pontos chaves, ou pontos de interesse, são então selecionados baseando-se em medidas de estabilidade. - Denição de orientação: É denida a orientação de cada ponto chave através dos gradientes locais da imagem. Toda operação a partir de então será feita com relação a dados da imagem transformados em relação à orientação, escala e localização de cada ponto chave. Desta maneira se obtém invariância a estas transformações. 1

2 Figura 1: Representação multiescala usada no SIFT (Lowe, 1999). - Descritor dos pontos chaves: Nesta etapa é feita a construção dos descritores ao se medir gradientes locais em uma região vizinha a cada ponto de interesse. Estas medidas são então transformadas para uma representação que permite níveis signicativos de distorção e mudança na iluminação. Para cada ponto de interesse, são denidas n n regiões, com k k pixels cada, ao redor da localização do ponto chave. Geralmente n = k = 4. Para cada região, é feito um histograma em 8 direções. Este histograma é feito com as magnitudes dos pixels pertencentes a cada região. O descritor é então representado pelos histogramas das regiões. Viola e Jones (2001) O método de detecção de objetos Viola-Jones é o primeiro framework de detecção de objetos para fornecer taxas de detecção competitivos em tempo real. Embora possa ser treinado para detectar uma variedade de classes de objeto, foi motivada principalmente pelo problema de detecção de faces. Este algoritmo é implementado em OpenCV como cvhaardetectobjects(). O recurso empregado pelo framework de detecção utiliza as somas dos pixels da imagem com áreas retangulares (gura 2). Embora tenham alguma semelhança com transformada de Haar, ela é um pouco mais complexa uma vez que os recursos utilizados por Viola e Jones contam com mais de uma área retangular. A gura 2 mostra quatro diferentes tipos de características utilizados no quadro. O valor das características é a soma dos pixels dentro de rectângulos claros subtraídos da soma dos pixels dentro de rectângulos sombreados. Como é de se esperar, essas 2

3 Figura 2: Tipos de padrões usados em Viola-Jones. características retangulares são bastante primitivos se comparado a alternativas mais modernas. Apesar de serem sensíveis às características verticais e horizontais, o feedback é consideravelmente mais grosseiro. No entanto, com o uso de uma representação global da imagem elas podem ser calculadas on-the-y, o que lhes confere uma vantagem considerável em velocidade diante dos demais. Como cada área retangular em uma característica é sempre do lado de pelo menos outra, qualquer característica de dois retângulos pode ser calculado em seis referências na matriz (imagem), qualquer característica de três retângulos em oito e qualquer característica de quatro retângulo em nove. A velocidade com que as características podem ser calculadas podem não compensar seu número. Por exemplo, em uma sub-janela de 24x24 pixels, há um total de características. Seria proibitivamente caro avaliar todos eles. Assim, o framework de detecção de objetos proposto por Viola e Jones utiliza uma variante do algoritmo de aprendizagem AdaBoost tanto para selecionar as melhores características quanto para treinar classicadores utilizam este método. 3

4 Figura 3: Passos para identicação de pessoas pelo HOG (Dalal e Triggs, 2005). HOG (Histogram of Oriented Gradients) (Dalal e Triggs, 2005) A ideia principal do descritor Histograma de Gradientes Orientados é que a aparência e forma de objetos em uma imagem podem ser descritos através da distribuição dos gradientes de intensidade dos pixels ou pelas direções das bordas. O processo para gerar o descritor pode ser dividido em quatro etapas: cálculo do gradiente em cada pixel, agrupamento dos pixels em células, agrupamento das células em blocos e obtenção do descritor. Primeiro utiliza-se máscaras derivada discreta pontual tanto no eixo vertical como horizontal para o cálculo do gradiente de cada pixel. O passo seguinte é responsável por agrupar os pixels de uma determinada região, criando-se o que se chama de célula. Após a segunda etapa, os blocos são criados através do agrupamento de células de uma certa região. Na etapa nal, cria-se o descritor. O descritor nada mais é do que uma lista dos histogramas de todas as células de todos os blocos. A atenuação do problema das variações locais de iluminação ou de contraste entre o primeiro plano e o plano de fundo, se dá através da normalização de cada histograma de acordo com seus próprios valores. O último passo no reconhecimento de objetos usando HOG é alimentar os descritores em um sistema de reconhecimento baseado em aprendizado supervisionado. No artigo original foi utilizado o classicador SVM (Support Vector Machines) utilizando um núcleo (kernel) linear, sendo usado para detecção de pedestres em vídeo. SURF (Speeded Up Robust Features) (Bay et al., 2008) Bay et al. (2008) propuseram uma versão relaxada do operador DoG na qual wavelets de Haar são usadas para calcular uma aproximação das derivadas de segunda ordem do núcleo Gaussiano. Essa aproximação foi usada pelos autores para a construção do método SURF. De fato, a forma dessas derivadas é muito similar às usadas no trabalho de Viola e Jones (2001). A deteção de pontos-chaves do método SURF explora o uso de imagens integrais para calcular ecientemente uma aproximação do operador DoG em diferentes escalas, o que lhe confere um desempenho de 3 a 7 vezes melhor do que o apresentado no SIFT. As posições detectadas são também renadas usando interpolação realizada no valor do determinante da matriz Hessiana. Como o operador DoG apresenta fortes respostas nos cantos e junções, o número de pontos-chaves detectados pelo SURF geralmente é bem menor do que os reportados pelos operadores LoG (Laplacian of Gaussian) ou DoG. Apesar disso, os autores armam que SURF reporta pontos-chaves tão estáveis quanto aqueles encontrados pelo SIFT. 4

5 SURF e SIFT apresentam as seguintes diferenças: - SURF usa um modelo aproximativo do espaço de escala, baseado em imagens integrais. - O detector de pontos usado pelo SURF não necessita que o tamanho original da imagem seja alterado; - A detecção dos pontos de interese no SURF é baseada na supressão de nãomáximos do determinante da matriz Hessiana enquanto o SIFT utiliza uma aproximação do traço dessa matriz. Em consequência disto, SURF tende a detectar cantos e regiões com textura enquanto SIFT geralmente tende a detectar bolhas e arestas. Referências Bibliográcas Bay, H., Tuytelaars, T. e Gool, L. V. Surf: Speeded up robust features. In Computer Vision and Image Understanding (CVIU), pages , Dalal, Navneet e Triggs, Bill. Histograms of oriented gradients for human detection. In Conference on Computer Vision and Pattern Recognition (CVPR), pages , Lowe, D. G. Object recognition from local scale-invariant features. In IEEE International Conference on Computer Vision (ICCV), volume 2, pages , Viola, Paul e Jones, Michael. Rapid object detection using a boosted cascade of simple features. In Conference on Computer Vision and Pattern Recognition (CVPR), pages ,

Face Recognition using RGB-D Images

Face Recognition using RGB-D Images Face Recognition using RGB-D Images Helder C. R. de Oliveira N.USP: 7122065 Polyana Nunes N.USP: 9043220 Sobre o Artigo Publication: 2013 IEEE Sixth International Conference Author(s) Goswami, G. (Índia

Leia mais

Face Detection. Image Processing scc moacir ICMC/USP São Carlos, SP, Brazil

Face Detection. Image Processing scc moacir ICMC/USP São Carlos, SP, Brazil Face Detection Image Processing scc0251 www.icmc.usp.br/ moacir moacir@icmc.usp.br ICMC/USP São Carlos, SP, Brazil 2011 Moacir Ponti Jr. (ICMCUSP) Face Detection 2011 1 / 24 Agenda 1 Detectando faces 2

Leia mais

Anotador automático de placas de publicidade em vídeos esportivos

Anotador automático de placas de publicidade em vídeos esportivos MAC0499 - Trabalho de Formatura Supervisionado Professor: Carlos Eduardo Ferreira Universidade de São Paulo Instituto de Matemática e Estatística Aluno: Ricardo Augusto Fernandes Orientador: Prof. Dr.

Leia mais

Capítulo III Processamento de Imagem

Capítulo III Processamento de Imagem Capítulo III Processamento de Imagem Proc. Sinal e Imagem Mestrado em Informática Médica Miguel Tavares Coimbra Resumo 1. Manipulação ponto a ponto 2. Filtros espaciais 3. Extracção de estruturas geométricas

Leia mais

Aplicação de Histograma de Gradientes Orientados para detecção de hidrômetros em imagens de fundo complexo

Aplicação de Histograma de Gradientes Orientados para detecção de hidrômetros em imagens de fundo complexo Aplicação de Histograma de Gradientes Orientados para detecção de hidrômetros em imagens de fundo complexo Juliana Patrícia Detroz Professor: André Tavares da Silva Universidade do Estado de Santa Catarina

Leia mais

Simulação Gráfica. Segmentação de Imagens Digitais. Julio C. S. Jacques Junior

Simulação Gráfica. Segmentação de Imagens Digitais. Julio C. S. Jacques Junior Simulação Gráfica Segmentação de Imagens Digitais Julio C. S. Jacques Junior Segmentação Subdivide uma imagem em suas partes ou objetos constituintes. O nível até o qual essa subdivisão deve ser realizada

Leia mais

3 Transformação SIFT (Scale Invariant Feature Transform)

3 Transformação SIFT (Scale Invariant Feature Transform) 3 Transformação SIFT (Scale Invariant Feature Transform) Este capítulo apresenta as seguintes seções: - 3.1 Uma Introdução Sobre Descritores Locais: A técnica SIFT ( Scale Invariant Feature Transform )

Leia mais

Visão computacional. Juliana Patrícia Detroz Orientador: André Tavares Silva

Visão computacional. Juliana Patrícia Detroz Orientador: André Tavares Silva Visão computacional Juliana Patrícia Detroz Orientador: André Tavares Silva Visão computacional Tentativa de replicar a habilidade humana da visão através da percepção e entendimento de uma imagem; Fazer

Leia mais

PMR2560 Visão Computacional Detecção de bordas. Prof. Eduardo L. L. Cabral

PMR2560 Visão Computacional Detecção de bordas. Prof. Eduardo L. L. Cabral PMR56 Visão Computacional Detecção de bordas Prof. Eduardo L. L. Cabral Objetivos Processamento de imagens: Características; Detecção de bordas. Características Tipos de características: Bordas; Cantos;

Leia mais

O reconhecimento facial é dividido em três etapas: i) detecção da face, ii) extração de características e iii) reconhecimento da face.

O reconhecimento facial é dividido em três etapas: i) detecção da face, ii) extração de características e iii) reconhecimento da face. ESTUDO SOBRE MÉTODOS DE RECONHECIMENTO FACIAL EM FOTOGRAFIAS DIGITAIS Ana Elisa SCHMIDT¹, Elvis Cordeiro NOGUEIRA² ¹ Orientadora e docente do IFC-Campus Camboriú; ² Aluno do curso de Bacharelado em Sistemas

Leia mais

Fundamentos da Computação Gráfica

Fundamentos da Computação Gráfica Fundamentos da Computação Gráfica Trabalho 2 Visão. Detecção de cantos. Manuel Alejandro Nodarse Moreno (1322198) Introdução. Detecção de cantos é uma abordagem utilizada em sistemas de visão computacional

Leia mais

Localização de Robôs Móveis por Aparência Visual

Localização de Robôs Móveis por Aparência Visual Felipe Gustavo Bombardelli Localização de Robôs Móveis por Aparência Visual Curitiba 2014 Felipe Gustavo Bombardelli Localização de Robôs Móveis por Aparência Visual Trabalho de Graduação apresentado

Leia mais

Relatório sobre os Resultados obtidos através do uso dos algoritmos SIFT e RANSAC para Reconstrução de um Objeto a partir de uma Nuvem de Pontos

Relatório sobre os Resultados obtidos através do uso dos algoritmos SIFT e RANSAC para Reconstrução de um Objeto a partir de uma Nuvem de Pontos Relatório sobre os Resultados obtidos através do uso dos algoritmos SIFT e RANSAC para Reconstrução de um Objeto a partir de uma Nuvem de Pontos Gustavo Moreira PUC-Rio, Departamento de Informática Rua

Leia mais

Processamento de Imagens COS756 / COC603

Processamento de Imagens COS756 / COC603 Processamento de Imagens COS756 / COC603 aula 08 - deteção de características de baixo-nível (low-level feature detection) parte II Antonio Oliveira Ricardo Marroquim 1 / 1 aula de hoje feature detection

Leia mais

RECONHECIMENTO IDENTIFICAÇÃO BASEADA EM APARÊNCIA

RECONHECIMENTO IDENTIFICAÇÃO BASEADA EM APARÊNCIA RECONHECIMENTO IDENTIFICAÇÃO BASEADA EM APARÊNCIA Envolve a pergunta: É esta parte da imagem uma parte do objeto X? (modelo dado, região da imagem dada) Utiliza imagens ao invés de características como

Leia mais

Métodos de Segmentação de Imagem para Análise da Marcha

Métodos de Segmentação de Imagem para Análise da Marcha Métodos de Segmentação de Imagem para Análise da Marcha Maria João M. Vasconcelos, João Manuel R. S. Tavares maria.vasconcelos@fe.up.pt, tavares@fe.up.pt 3º Congresso Nacional de Biomecânica 11-12 Fevereiro

Leia mais

Extração de características: textura

Extração de características: textura Extração de características: textura Image Processing scc0251 www.icmc.usp.br/ moacir moacir@icmc.usp.br ICMC/USP São Carlos, SP, Brazil 2011 Moacir Ponti (ICMCUSP) Extração de características: textura

Leia mais

Criação de mosaico usadando o SURF e o matcher FLANN

Criação de mosaico usadando o SURF e o matcher FLANN Criação de mosaico usadando o SURF e o matcher FLANN Felipe Jordão Pinheiro de Andrade Universidade Federal do Maranhão, São Luis, BRA Abstract. O trabalho propoe uma metodologia para a criação de um mosaico

Leia mais

Identificação de Produtos por Imagem Utilizando o Algoritmo SURF

Identificação de Produtos por Imagem Utilizando o Algoritmo SURF Identificação de Produtos por Imagem Utilizando o Algoritmo SURF Um Comparativo Entre Redes Perceptron Multicamadas e Máquinas de Vetor de Suporte Guilherme Defreitas Juraszek, Alexandre Gonçalves Silva

Leia mais

DESENVOLVIMENTO DE SISTEMA PARA GERAÇÃO DE MOSAICO DE IMAGENS VISANDO LOCALIZAÇÃO E NAVEGAÇÃO DE ROBÔS MÓVEIS

DESENVOLVIMENTO DE SISTEMA PARA GERAÇÃO DE MOSAICO DE IMAGENS VISANDO LOCALIZAÇÃO E NAVEGAÇÃO DE ROBÔS MÓVEIS DESENVOLVIMENTO DE SISTEMA PARA GERAÇÃO DE MOSAICO DE IMAGENS VISANDO LOCALIZAÇÃO E NAVEGAÇÃO DE ROBÔS MÓVEIS Edson CAVALCANTI Neto (1), Guilherme Costa HOLANDA (1), Antonio Themoteo VARELA (1), André

Leia mais

Extração de atributos usando o método LBP - Local Binary Pattern

Extração de atributos usando o método LBP - Local Binary Pattern Extração de atributos usando o método LBP - Local Binary Pattern Lia Nara Balta Quinta. 2 de maio de 2006 1 Antecedentes e Justificativa O Brasil possui, atualmente, um grande rebanho bovino, porém em

Leia mais

READING DIGITS IN NATURAL IMAGES WITH UNSUPERVISED FEATURE LEARNING

READING DIGITS IN NATURAL IMAGES WITH UNSUPERVISED FEATURE LEARNING READING DIGITS IN NATURAL IMAGES WITH UNSUPERVISED FEATURE LEARNING Fernanda Maria Sirlene READING DIGITS IN NATURAL IMAGES WITH UNSUPERVISED FEATURE LEARNING NIPS Workshop on Deep Learning and Unsupervised

Leia mais

Image Descriptors: color

Image Descriptors: color Image Descriptors: color Image Processing scc0251 www.icmc.usp.br/ moacir moacir@icmc.usp.br ICMC/USP São Carlos, SP, Brazil 2011 Moacir Ponti Jr. (ICMCUSP) Image Descriptors: color 2011 1 / 29 Agenda

Leia mais

Casamento de padrões em imagens e vídeos usando características de imagens

Casamento de padrões em imagens e vídeos usando características de imagens Casamento de padrões em imagens e vídeos usando características de imagens Kassius Vinicius Sipolati Bezerra DCEL / CEUNES / UFES São Mateus, ES, Brazil Edilson de Aguiar DCEL / CEUNES / UFES São Mateus,

Leia mais

COMPARAÇÃO DE TÉCNICAS DE VISÃO COMPUTACIONAL NA IDENTIFICAÇÃO DE CABEÇOTES FUNDIDOS USANDO WEBCAM PARA GUIAR UM ROBÔ INDUSTRIAL

COMPARAÇÃO DE TÉCNICAS DE VISÃO COMPUTACIONAL NA IDENTIFICAÇÃO DE CABEÇOTES FUNDIDOS USANDO WEBCAM PARA GUIAR UM ROBÔ INDUSTRIAL COMPARAÇÃO DE TÉCNICAS DE VISÃO COMPUTACIONAL NA IDENTIFICAÇÃO DE CABEÇOTES FUNDIDOS USANDO WEBCAM PARA GUIAR UM ROBÔ INDUSTRIAL Victor Hugo Bueno Preuss, victor.preuss@gmail.com 1 Ramon Cascaes Semim,

Leia mais

RECONHECIMENTO FACIAL UTILIZANDO EIGENFACES

RECONHECIMENTO FACIAL UTILIZANDO EIGENFACES Universidade Federal do Rio de Janeiro Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia Programa de Engenharia de Sistemas e Computação Rio de Janeiro, RJ Brasil RECONHECIMENTO

Leia mais

SISTEMA DE RECONHECIMENTO BASEADO EM RANDOM FOREST PARA CARACTERES DE CAPTCHAS. Ademir Rafael Marques Guedes, Victor Luiz Guimarães

SISTEMA DE RECONHECIMENTO BASEADO EM RANDOM FOREST PARA CARACTERES DE CAPTCHAS. Ademir Rafael Marques Guedes, Victor Luiz Guimarães SISTEMA DE RECONHECIMENTO BASEADO EM RANDOM FOREST PARA CARACTERES DE CAPTCHAS Ademir Rafael Marques Guedes, Victor Luiz Guimarães Universidade Federal de Ouro Preto(UFOP) Departamento de Computação ABSTRACT

Leia mais

Extração de características de imagens. Descritores de cor

Extração de características de imagens. Descritores de cor Extração de características de imagens Descritores de cor Descritores de imagens Problema: computar, de forma eficiente, valores que descrevam uma imagem (ou parte dela) Vetores de características (feature

Leia mais

Anotador automático de placas de publicidade em vídeos esportivos

Anotador automático de placas de publicidade em vídeos esportivos Universidade de São Paulo Instituto de Matemática e Estatística Curso de Ciência da Computação Ricardo Augusto Fernandes Anotador automático de placas de publicidade em vídeos esportivos São Paulo 2011

Leia mais

Processamento digital de imagens

Processamento digital de imagens Processamento digital de imagens Agostinho Brito Departamento de Engenharia da Computação e Automação Universidade Federal do Rio Grande do Norte 3 de março de 2016 Transformação e filtragem de imagens

Leia mais

[2CTA121] Processamento de Imagens em Alimentos: Conceitos e Aplicações

[2CTA121] Processamento de Imagens em Alimentos: Conceitos e Aplicações [2CTA121] Processamento de Imagens em Alimentos: Conceitos e Aplicações Dr. Sylvio Barbon Junior PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DE ALIMENTOS - UEL 2016 Assunto Aula 4 Segmentação de Imagens 2 de

Leia mais

EXTRAÇÃO SEMI - AUTOMÁTICA DE FEIÇÕES LINEARES E A CALIBRAÇÃO DOS PARÂMETROS INTRÍNSECOS DE CÂMERAS Projeto de Pesquisa PIBIC/CNPq ( )

EXTRAÇÃO SEMI - AUTOMÁTICA DE FEIÇÕES LINEARES E A CALIBRAÇÃO DOS PARÂMETROS INTRÍNSECOS DE CÂMERAS Projeto de Pesquisa PIBIC/CNPq ( ) USP UNIVERSIDADE DE SÃO PAULO EP ESCOLA POLITÉCNICA EXTRAÇÃO SEMI - AUTOMÁTICA DE FEIÇÕES LINEARES E A CALIBRAÇÃO DOS PARÂMETROS INTRÍNSECOS DE CÂMERAS Projeto de Pesquisa PIBIC/CNPq (2000-2001) LEONARDO

Leia mais

Processamento de Imagens Marcia A. S. Bissaco

Processamento de Imagens Marcia A. S. Bissaco Engenharia Biomédica Processamento de Imagens Marcia A. S. Bissaco 1 Exemplos filtros Média Mediana Passa_B Passa_A Borda_H Borda_V Sobel_Y Sobel_X Oliveira, Henrique J. Quintino (UMC-SP), 2 Media Mediana

Leia mais

Comparação entre HOG+SVM e Haar-like em cascata para a detecção de campos de futebol em imagens aéreas e orbitais

Comparação entre HOG+SVM e Haar-like em cascata para a detecção de campos de futebol em imagens aéreas e orbitais Comparação entre HOG+SVM e Haar-like em cascata para a detecção de campos de futebol em imagens aéreas e orbitais Juliano E. C. Cruz 1 Elcio H. Shiguemori 2 Lamartine N. F. Guimarães 2 1 Instituto Nacional

Leia mais

Implementação do algoritmo SIFT para detecção de objetos em imagens.

Implementação do algoritmo SIFT para detecção de objetos em imagens. Universidade Federal do Rio de Janeiro Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia Programa de Engenharia de Sistemas e Computação Rio de Janeiro, RJ - Brasil Implementação

Leia mais

Máquinas de Vetores de Suporte Aplicadas à Classificação de Defeitos em Couro Bovino

Máquinas de Vetores de Suporte Aplicadas à Classificação de Defeitos em Couro Bovino Máquinas de Vetores de Suporte Aplicadas à Classificação de Defeitos em Couro Bovino Ricardo Cezar Bonfim Rodrigues 24 de abril de 2006 1 Antecedentes e Justificativa Hoje, em diversos processos industriais,

Leia mais

SIMPLES: UM DESCRITOR DE CARACTERÍSTICAS LOCAIS RÁPIDO E SIMPLES

SIMPLES: UM DESCRITOR DE CARACTERÍSTICAS LOCAIS RÁPIDO E SIMPLES SIMPLES: UM DESCRITOR DE CARACTERÍSTICAS LOCAIS RÁPIDO E SIMPLES MARCOS CESAR VOLTOLINI, HAE YONG KIM Dept. Eng. Sistemas Eletrônicos, Escola Politécnica, USP Av. Prof. Luciano Gualberto, trav. 3, 158,

Leia mais

Operações Pontuais. 1 operando. 2 operandos. Processamento e Análise de Imagem - A. J. Padilha - v ac

Operações Pontuais. 1 operando. 2 operandos. Processamento e Análise de Imagem - A. J. Padilha - v ac Operações Pontuais 1 operando T OP 2 operandos Pré-Processamento - 1 Operações Pontuais Nas operações pontuais, cada ponto da imagem-resultado - g(i,j) - é obtido por uma transformação T do ponto de coordenadas

Leia mais

Realce de imagens parte 1: operações pontuais SCC0251 Processamento de Imagens

Realce de imagens parte 1: operações pontuais SCC0251 Processamento de Imagens Realce de imagens parte 1: operações pontuais SCC0251 Processamento de Imagens Prof. Moacir Ponti Jr. www.icmc.usp.br/~moacir Instituto de Ciências Matemáticas e de Computação USP 2013/1 Moacir Ponti Jr.

Leia mais

Detecção e Correção Automáticas de Olhos Vermelhos

Detecção e Correção Automáticas de Olhos Vermelhos Setor de Tecnologia da Universidade Federal do Paraná Curso de Engenharia Elétrica TE 072 Processamento Digital de Sinais Detecção e Correção Automáticas de Olhos Vermelhos Trabalho elaborado pelo aluno

Leia mais

INF Fundamentos da Computação Gráfica Professor: Marcelo Gattass Aluno: Rogério Pinheiro de Souza

INF Fundamentos da Computação Gráfica Professor: Marcelo Gattass Aluno: Rogério Pinheiro de Souza INF2608 - Fundamentos da Computação Gráfica Professor: Marcelo Gattass Aluno: Rogério Pinheiro de Souza Trabalho 02 Visualização de Imagens Sísmicas e Detecção Automática de Horizonte Resumo Este trabalho

Leia mais

Transformação de Imagens Digitais em Código CNC Aprimoradas com Redes Neurais Artificiais

Transformação de Imagens Digitais em Código CNC Aprimoradas com Redes Neurais Artificiais Transformação de Imagens Digitais em Código CNC Aprimoradas com Redes Neurais Artificiais Abstract. Jader Teixeira 1, Alex Vinícios Telocken 1 1 Universidade de Cruz Alta (UNICRUZ) jader033139@unicruz.edu.br,

Leia mais

2 Reconhecimento Facial

2 Reconhecimento Facial 2 Reconhecimento Facial Em termos gerais, o reconhecimento facial é o processo pelo qual se mede o grau de similaridade entre duas imagens faciais com o proposito de identificar a um indivíduo ou de verificar

Leia mais

Método para auxiliar o reconhecimento de cédulas monetárias pelos deficientes visuais

Método para auxiliar o reconhecimento de cédulas monetárias pelos deficientes visuais Método para auxiliar o reconhecimento de cédulas monetárias pelos deficientes visuais Victor Vequetine. Teixeira 1, Marcelo Zanchetta do Nascimento 2, Juliana Cristina Braga 1 1 Centro de Matemática, Computação

Leia mais

Aula 5 - Segmentação de Imagens

Aula 5 - Segmentação de Imagens Aula 5 - Segmentação de Imagens Parte 1 Prof. Adilson Gonzaga 1 Segmentação Agrupamento de partes de uma imagem em unidades homogêneas relativamente a determinadas características. Segmentação é o processo

Leia mais

Reconhecimento de ações humanas utilizando histogramas de gradiente e vetores de tensores localmente agregados

Reconhecimento de ações humanas utilizando histogramas de gradiente e vetores de tensores localmente agregados Reconhecimento de ações humanas utilizando histogramas de gradiente e vetores de tensores localmente agregados Luiz Maurílio da Silva Maciel 1, Marcelo Bernardes Vieira 1 1 Departamento de Ciência da Computação

Leia mais

Representação e Descrição. Guillermo Cámara-Chávez

Representação e Descrição. Guillermo Cámara-Chávez Representação e Descrição Guillermo Cámara-Chávez Introdução Objetos ou Segmentos são representados como uma coleção de pixels em uma imagem Para o reconhecimento do objeto é necessário descrever as propriedades

Leia mais

Reconhecimento facial. uma aplicação prática do reconhecimento de padrões

Reconhecimento facial. uma aplicação prática do reconhecimento de padrões Reconhecimento facial uma aplicação prática do reconhecimento de padrões Márcio Koch, junho 2014 Pauta Apresentação Visão computacional Reconhecimento de padrões Analise de Componentes Principais Reconhecimento

Leia mais

CARACTERÍSTICAS DE IMAGENS: PONTOS E SUPERFÍCIES

CARACTERÍSTICAS DE IMAGENS: PONTOS E SUPERFÍCIES CARACTERÍSTICAS DE IMAGENS: PONTOS E SUPERFÍCIES O que são? CARACTERÍSTICAS DE IMAGENS (Image Features) o Propriedades Globais de uma imagem, ou de parte dela (característica global). Por exemplo: Médias

Leia mais

RECONHECIMENTO FACIAL 2D

RECONHECIMENTO FACIAL 2D RECONHECIMENTO FACIAL 2D PARA SISTEMAS DE AUTENTICAÇÃO EM DISPOSITIVOS MÓVEIS Luciano Pamplona Sobrinho Orientador: Paulo César Rodacki Gomes ROTEIRO Introdução Objetivos Fundamentação Teórica Conceitos

Leia mais

Trabalho Final de Processamento de Imagens: Panografia

Trabalho Final de Processamento de Imagens: Panografia Trabalho Final de Processamento de Imagens: Panografia 1. Introdução Vítor Silva Sousa 1 1 Escola Politécnica Universidade Federal do Rio de Janeiro (UFRJ) Rio de Janeiro RJ Brasil vitor.silva.sousa@gmail.com

Leia mais

SEL Visão Computacional. Aula 2 Processamento Espacial

SEL Visão Computacional. Aula 2 Processamento Espacial Departamento de Engenharia Elétrica - EESC-USP SEL-5895 - Visão Computacional Aula 2 Processamento Espacial Prof. Dr. Adilson Gonzaga Prof. Dr. Evandro Linhari Rodrigues Prof. Dr. Marcelo Andrade da Costa

Leia mais

Filtros espaciais. Processamento e Recuperação de Imagens Médicas. Prof. Luiz Otavio Murta Jr. Depto. De Computação e Matemática (FFCLRP/USP)

Filtros espaciais. Processamento e Recuperação de Imagens Médicas. Prof. Luiz Otavio Murta Jr. Depto. De Computação e Matemática (FFCLRP/USP) Processamento e Recuperação de Imagens Médicas Prof. Luiz Otavio Murta Jr. Depto. De Computação e Matemática (FFCLRP/USP) 1 Propriedades Operadores de suavização os elementos da máscara são positivos e

Leia mais

5 Análise Experimental

5 Análise Experimental 5 Análise Experimental 5.1. Base de dados para testes Foram gravados diversos vídeos que serviram para realizar os testes realizados nesta dissertação. Cada um dos vídeos gerados para medir qualidade da

Leia mais

Identificação de objetos móveis com uso de imagens aéreas obtidas por VANT. Rodrigo Augusto Rebouças 1 Matheus Habermann 1 Elcio Hideiti Shiguemori 1

Identificação de objetos móveis com uso de imagens aéreas obtidas por VANT. Rodrigo Augusto Rebouças 1 Matheus Habermann 1 Elcio Hideiti Shiguemori 1 Identificação de objetos móveis com uso de imagens aéreas obtidas por VANT Rodrigo Augusto Rebouças 1 Matheus Habermann 1 Elcio Hideiti Shiguemori 1 1 Instituto de Estudos Avançados IEAv/DCTA São José

Leia mais

Scale-Invariant Feature Transform

Scale-Invariant Feature Transform Scale-Invariant Feature Transform Renato Madureira de Farias renatomdf@gmail.com Prof. Ricardo Marroquim Relatório para Introdução ao Processamento de Imagens (COS756) Universidade Federal do Rio de Janeiro,

Leia mais

Análise de Desempenho de Algoritmos Detectores de Keypoints para um Sistema de Navegação Visual de Robôs Baseados em Smartphones

Análise de Desempenho de Algoritmos Detectores de Keypoints para um Sistema de Navegação Visual de Robôs Baseados em Smartphones Análise de Desempenho de Algoritmos Detectores de Keypoints para um Sistema de Navegação Visual de Robôs Baseados em Smartphones Bruno A. S. Santana, Rosiery da S. Maia, Wilfredo B. Figuerola, Anderson

Leia mais

CAPÍTULO 4 SEGMENTAÇÃO DE IMAGENS SAR

CAPÍTULO 4 SEGMENTAÇÃO DE IMAGENS SAR CAPÍTULO 4 SEGMENTAÇÃO DE IMAGENS SAR Segundo Gonzales e Wintz (1987), um dos primeiros passos do processo de análise de uma imagem digital consiste em particioná-la em seus elementos constituintes. O

Leia mais

Universidade Federal do Rio de Janeiro - IM/DCC & NCE

Universidade Federal do Rio de Janeiro - IM/DCC & NCE Universidade Federal do Rio de Janeiro - IM/DCC & NCE Processamento de Imagens Segmentação Antonio G. Thomé thome@nce.ufrj.br Sala AEP/133 Conceituação Segmentação é uma tarefa básica no processo de análise

Leia mais

Realce de imagens parte 2: ltragem espacial SCC5830/0251 Processamento de Imagens

Realce de imagens parte 2: ltragem espacial SCC5830/0251 Processamento de Imagens Realce de imagens parte 2: ltragem espacial SCC5830/0251 Processamento de Imagens Prof. Moacir Ponti Jr. www.icmc.usp.br/~moacir Instituto de Ciências Matemáticas e de Computação USP 2013/1 Moacir Ponti

Leia mais

Processamento digital de imagens

Processamento digital de imagens Processamento digital de imagens Agostinho Brito Departamento de Engenharia da Computação e Automação Universidade Federal do Rio Grande do Norte 11 de novembro de 2016 Fluxo óptico Usado para estimar

Leia mais

Textura. Textura 04/09/2014. Prof. Yandre Costa

Textura. Textura 04/09/2014. Prof. Yandre Costa UNIVERSIDADE ESTADUAL DE MARINGÁ PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO Prof. Yandre Costa - 1 Prof. Yandre Costa Prof. Yandre Costa - 2 é um importante atributo visual presente em imagens,

Leia mais

UNIVERSIDADE ESTADUAL DE MARINGÁ PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO. Prof. Yandr re Costa - 1. Prof. Yandre Costa.

UNIVERSIDADE ESTADUAL DE MARINGÁ PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO. Prof. Yandr re Costa - 1. Prof. Yandre Costa. UNIVERSIDADE ESTADUAL DE MARINGÁ PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO Prof. Yandr re Costa - 1 Textura Prof. Yandre Costa Prof. Yandr re Costa - 2 Textura é um importante atributo visual

Leia mais

Processamento de Imagem. Prof. MSc. André Yoshimi Kusumoto

Processamento de Imagem. Prof. MSc. André Yoshimi Kusumoto Processamento de Imagem Prof. MSc. André Yoshimi Kusumoto andrekusumoto.unip@gmail.com Filtragem de Imagens A utilização de filtros tem como objetivo melhorar a qualidade das imagens através da: ampliação

Leia mais

Processamento de Imagem. Filtragem no Domínio Espacial Professora Sheila Cáceres

Processamento de Imagem. Filtragem no Domínio Espacial Professora Sheila Cáceres Processamento de Imagem Filtragem no Domínio Espacial Professora Sheila Cáceres Filtragem A filtragem de imagens pode ser realizada no domínio do espaço e da frequência Operadores de filtragem são classificados

Leia mais

DETECÇÃO E CORREÇÃO AUTOMÁTICA DE OLHOS VERMELHOS EM FOTOGRAFIAS

DETECÇÃO E CORREÇÃO AUTOMÁTICA DE OLHOS VERMELHOS EM FOTOGRAFIAS UNIVERSIDADE FEDERAL DO PARANÁ PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA TE 810 PROCESSAMENTO DIGITAL DE SINAIS DETECÇÃO E CORREÇÃO AUTOMÁTICA DE OLHOS VERMELHOS EM FOTOGRAFIAS Trabalho apresentado

Leia mais

4 Extração direta das PELs

4 Extração direta das PELs 4 Extração direta das PELs A detecção de arestas em imagens está relacionada à extração de feições, sendo uma ferramenta fundamental em processamento de imagens e visão computacional. Essa detecção visa

Leia mais

Reconhecimento de marcas de carros utilizando Inteligência Artificial. André Bonna Claudio Marcelo Basckeira Felipe Villela Lourenço Richard Keller

Reconhecimento de marcas de carros utilizando Inteligência Artificial. André Bonna Claudio Marcelo Basckeira Felipe Villela Lourenço Richard Keller Reconhecimento de marcas de carros utilizando Inteligência Artificial André Bonna Claudio Marcelo Basckeira Felipe Villela Lourenço Richard Keller Motivação Análise estatística das marcas de carros em

Leia mais

FILTROS ESPACIAIS PASSA-BAIXA

FILTROS ESPACIAIS PASSA-BAIXA UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO CMP65 - INTRODUÇÃO AO PROCESSAMENTO DE IMAGENS PROFESSOR JACOB SCARCHANSKI FILTROS ESPACIAIS PASSA-BAIXA POR DANIEL NEHME

Leia mais

Processamento de Imagem. Convolução Filtragem no Domínio da Frequência (Fourier) Professora Sheila Cáceres

Processamento de Imagem. Convolução Filtragem no Domínio da Frequência (Fourier) Professora Sheila Cáceres Processamento de Imagem Convolução Filtragem no Domínio da Frequência (Fourier) Professora Sheila Cáceres Lembrando Filtragem Correlação A correlação e a convolução sãos dois conceitos relacionados a filtragem.

Leia mais

Filtros espaciais (suavizaçào)

Filtros espaciais (suavizaçào) Processamento de Imagens Médicas Filtros espaciais (suavizaçào) Prof. Luiz Otavio Murta Jr. Informática Biomédica Depto. de Física e Matemática (FFCLRP/USP) 1 Necessidade de pré-processamento 2 Propriedades

Leia mais

Detecção de Faces Humanas em Imagens Coloridas Utilizando Redes Neurais Artificiais

Detecção de Faces Humanas em Imagens Coloridas Utilizando Redes Neurais Artificiais Detecção de Faces Humanas em Imagens Coloridas Utilizando Redes Neurais Artificiais Wellington da Rocha Gouveia Universidade de São Paulo Escola de Engenharia de São Carlos Departamento de Engenharia Elétrica

Leia mais

Filtragem. pixel. perfil de linha. Coluna de pixels. Imagem. Linha. Primeiro pixel na linha

Filtragem. pixel. perfil de linha. Coluna de pixels. Imagem. Linha. Primeiro pixel na linha Filtragem As técnicas de filtragem são transformações da imagem "pixel" a "pixel", que dependem do nível de cinza de um determinado "pixel" e do valor dos níveis de cinza dos "pixels" vizinhos, na imagem

Leia mais

Seguimento online de objectos em sequências de vídeo de UAV

Seguimento online de objectos em sequências de vídeo de UAV UNIVERSIDADE DE TRÁS-OS-MONTES E ALTO DOURO Seguimento online de objectos em sequências de vídeo de UAV DISSERTAÇÃO DE MESTRADO EM ENGENHARIA INFORMÁTICA TELMO RUI DIAS BENTO Orientador: Professor Doutor

Leia mais

O processo de filtragem de sinais pode ser realizado digitalmente, na forma esquematizada pelo diagrama apresentado a seguir:

O processo de filtragem de sinais pode ser realizado digitalmente, na forma esquematizada pelo diagrama apresentado a seguir: Sistemas e Sinais O processo de filtragem de sinais pode ser realizado digitalmente, na forma esquematizada pelo diagrama apresentado a seguir: 1 Sistemas e Sinais O bloco conversor A/D converte o sinal

Leia mais

FILTRAGEM DE IMAGEM NO DOMÍNIO ESPACIAL (Operações aritméticas orientadas à vizinhança)

FILTRAGEM DE IMAGEM NO DOMÍNIO ESPACIAL (Operações aritméticas orientadas à vizinhança) PROCESSAMENTO DE IMAGEM #5 Operações Aritméticas Orientadas à Vizinhanças Filtragem no Domínio Espacial (Máscaras) Máscaras de suavização (média e mediana) e aguçamento (laplaciano) Correlação x Convolução

Leia mais

Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Informática. Fundamentos de Computação Gráfica

Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Informática. Fundamentos de Computação Gráfica 1. Imagens sísmicas Pontifícia Universidade Católica do Rio de Janeiro Departamento de Informática Fundamentos de Computação Gráfica Aluno: Stelmo Magalhães Barros Netto Relatório do trabalho Imagens Sísmicas

Leia mais

Explorando Dicionários Visuais para Recuperação de Imagem por Conteúdo

Explorando Dicionários Visuais para Recuperação de Imagem por Conteúdo Explorando Dicionários Visuais para Recuperação de Imagem por Conteúdo Bruno Miranda Sales¹ e Rodrigo Tripodi Calumby¹ ¹Departamento de Ciências Exatas Universidade Estadual de Feira de Santana (UEFS)

Leia mais

MORFOLOGIA MATEMÁTICA

MORFOLOGIA MATEMÁTICA MORFOLOGIA MATEMÁTICA Morfologia Na Biologia área que trata com a forma e a estrutura de plantas e animais Processamento de Imagens Ferramenta para extração de componentes de imagens que sejam úteis na

Leia mais

AUTOMATED ASSESSMENT OF BREAST TISSUE DENSITY IN DIGITAL MAMMOGRAMS

AUTOMATED ASSESSMENT OF BREAST TISSUE DENSITY IN DIGITAL MAMMOGRAMS AUTOMATED ASSESSMENT OF BREAST TISSUE DENSITY IN DIGITAL MAMMOGRAMS Introdução Câncer de mama É uma das neoplasias mais comuns que afligem as mulheres Globalmente, a cada 3 min uma mulher é diagnosticada

Leia mais

Detecção de Pedestres Utilizando Descritores de Orientação do Gradiente e Auto Similaridade de Cor

Detecção de Pedestres Utilizando Descritores de Orientação do Gradiente e Auto Similaridade de Cor Daniel Luis Cosmo Detecção de Pedestres Utilizando Descritores de Orientação do Gradiente e Auto Similaridade de Cor Brasil 2014 Daniel Luis Cosmo Detecção de Pedestres Utilizando Descritores de Orientação

Leia mais

Extração de objetos de interesse em imagens digitais utilizando a biblioteca de Visão Computacional OpenCV

Extração de objetos de interesse em imagens digitais utilizando a biblioteca de Visão Computacional OpenCV Extração de objetos de interesse em imagens digitais utilizando a biblioteca de Visão Computacional OpenCV Izadora Aparecida RAMOS 1,3,4 ; Servílio Souza de ASSIS 1,3,4 ; Bruno Alberto Soares OLIVEIRA

Leia mais

Detecção Robusta de Movimento de Câmera em Vídeos por Análise de Fluxo Ótico Ponderado

Detecção Robusta de Movimento de Câmera em Vídeos por Análise de Fluxo Ótico Ponderado Detecção Robusta de Movimento de Câmera em Vídeos por Análise de Fluxo Ótico Ponderado Rodrigo Minetto Prof. Dr. Neucimar Jerônimo Leite (Orientador) Prof. Dr. Jorge Stolfi (Co-orientador) Instituto de

Leia mais

AVALIAÇÃO QUALITATIVA DE DETECÇÃO DE BORDAS EM IMAGENS DE RADIOGRAFIA PERIAPICAIS

AVALIAÇÃO QUALITATIVA DE DETECÇÃO DE BORDAS EM IMAGENS DE RADIOGRAFIA PERIAPICAIS AVALIAÇÃO QUALITATIVA DE DETECÇÃO DE BORDAS EM IMAGENS DE RADIOGRAFIA PERIAPICAIS Hedlund Erik Martins Távora 1, John Hebert Da Silva Felix 2, Darleison Rodrigues Barros Filho 3, Fausta Joaquim Faustino

Leia mais

INTRODUÇÃO AO PROCESSAMENTO DIGITAL DE IMAGENS SENSORIAMENTO REMOTO

INTRODUÇÃO AO PROCESSAMENTO DIGITAL DE IMAGENS SENSORIAMENTO REMOTO INTRODUÇÃO AO PROCESSAMENTO DIGITAL DE IMAGENS SENSORIAMENTO REMOTO PROCESSAMENTO DE IMAGENS Introdução Conceitos básicos Pré-processamento Realce Classificação PROCESSAMENTO DE IMAGENS Extração de Informações

Leia mais

1 1 1 *1/ *1/ *1/49

1 1 1 *1/ *1/ *1/49 O que é filtragem? As técnicas de filtragem são transformações da imagem pixel a pixel, que não dependem apenas do nível de cinza de um determinado pixel, mas também do valor dos níveis de cinza dos pixels

Leia mais

Mosaico Automático de Imagens Agrícolas através da Transformada SIFT

Mosaico Automático de Imagens Agrícolas através da Transformada SIFT Mosaico Automático de Imagens Agrícolas através da Transformada SIFT André de Souza Tarallo 1 ; Roberta Vendramini Gonçalves 2 ; Maria Stela Veludo de Paiva 1 ; Lúcio André de Castro Jorge 3 1- Escola

Leia mais

PMR2560 ELEMENTOS DE ROBÓTICA 2016 TRABALHO DE VISÃO COMPUTACIONAL CALIBRAÇÃO DE CÂMERAS E VISÃO ESTÉREO

PMR2560 ELEMENTOS DE ROBÓTICA 2016 TRABALHO DE VISÃO COMPUTACIONAL CALIBRAÇÃO DE CÂMERAS E VISÃO ESTÉREO PMR2560 ELEMENTOS DE ROBÓTICA 2016 TRABALHO DE VISÃO COMPUTACIONAL CALIBRAÇÃO DE CÂMERAS E VISÃO ESTÉREO Esse trabalho consiste de três partes. Na primeira parte do trabalho você vai calibrar duas câmeras

Leia mais

ACCURATE IRIS LOCALIZATION USING CONTOUR SEGMENTS

ACCURATE IRIS LOCALIZATION USING CONTOUR SEGMENTS ACCURATE IRIS LOCALIZATION USING CONTOUR SEGMENTS Fernanda Maria Sirlene Pio INFORMAÇÕES SOBRE O ARTIGO Pattern Recognition (ICPR): A1 Publicação: 2012 Citações: 1 2 SUMÁRIO 1. Introdução 2. Detalhes técnicos

Leia mais

Atributos de Pontos de Interesse e Casamento de Modelos para Inspeção de Folhas de Soja em Imagens Coloridas. Diogo Soares da Silva

Atributos de Pontos de Interesse e Casamento de Modelos para Inspeção de Folhas de Soja em Imagens Coloridas. Diogo Soares da Silva Atributos de Pontos de Interesse e Casamento de Modelos para Inspeção de Folhas de Soja em Imagens Coloridas Diogo Soares da Silva ii Sumário Sumário..................................... iii 1 Antecedentes

Leia mais

Universidade Federal de Sergipe Departamento de Matemática. Imagem* Profª. Maria Andrade. *Parte desta apresentação foi do Prof. Thales Vieira.

Universidade Federal de Sergipe Departamento de Matemática. Imagem* Profª. Maria Andrade. *Parte desta apresentação foi do Prof. Thales Vieira. Universidade Federal de Sergipe Departamento de Matemática Imagem* Profª. Maria Andrade *Parte desta apresentação foi do Prof. Thales Vieira. 2016 O que é uma imagem digital? Imagem no universo físico

Leia mais

VISÃO COMPUTACIONAL PARA RECONHECIMENTO DE FACES APLICADO NA IDENTIFICAÇÃO E AUTENTICAÇÃO DE USUÁRIOS NA WEB. Márcio Koch

VISÃO COMPUTACIONAL PARA RECONHECIMENTO DE FACES APLICADO NA IDENTIFICAÇÃO E AUTENTICAÇÃO DE USUÁRIOS NA WEB. Márcio Koch VISÃO COMPUTACIONAL PARA RECONHECIMENTO DE FACES APLICADO NA IDENTIFICAÇÃO E AUTENTICAÇÃO DE USUÁRIOS NA WEB Márcio Koch Orientador: Jacques Robert Heckmann ROTEIRO Introdução Objetivos do trabalho Fundamentação

Leia mais

Exemplos. Propagação (Reconstrução)

Exemplos. Propagação (Reconstrução) Processamento de Imagens Médicas Morfologia Matemática em Imagens Prof. Luiz Otavio Murta Jr. Informática Biomédica Depto. de Física e Matemática (FFCLRP/USP) Propagação (Reconstrução) lgoritmos Baseados

Leia mais

RECONHECIMENTO DE GESTOS COM SEGMENTAÇÃO DE IMAGENS DINÂMICAS APLICADAS A LIBRAS

RECONHECIMENTO DE GESTOS COM SEGMENTAÇÃO DE IMAGENS DINÂMICAS APLICADAS A LIBRAS RECONHECIMENTO DE GESTOS COM SEGMENTAÇÃO DE IMAGENS DINÂMICAS APLICADAS A LIBRAS ANUÁRIO DA PRODUÇÃO DE INICIAÇÃO CIENTÍFICA DISCENTE Vol. 13, N. 20, Ano 2010 Adilson Roberto Pavan Prof. Jaime Cazhurriro

Leia mais

Histograma de Palavras Visuais para Caracterização de Texturas e Cenas Dinâmicas. Wesley Eiji Sanches Kanashiro Orientador: Wesley Nunes Gonçalves

Histograma de Palavras Visuais para Caracterização de Texturas e Cenas Dinâmicas. Wesley Eiji Sanches Kanashiro Orientador: Wesley Nunes Gonçalves Histograma de Palavras Visuais para Caracterização de Texturas e Cenas Dinâmicas Wesley Eiji Sanches Kanashiro Orientador: Wesley Nunes Gonçalves FACOM - Universidade Federal de Mato Grosso do Sul Agosto/2016

Leia mais

Uma Introdução a SVM Support Vector Machines. Obs: Baseada nos slides de Martin Law

Uma Introdução a SVM Support Vector Machines. Obs: Baseada nos slides de Martin Law Uma Introdução a SVM Support Vector Machines Obs: Baseada nos slides de Martin Law Sumário Historia das SVMs Duas classes, linearmente separáveis O que é um bom limite para a decisão? Duas classes, não

Leia mais

4 as Jornadas Politécnicas de Engenharia

4 as Jornadas Politécnicas de Engenharia 4 as Jornadas Politécnicas de Engenharia Imagens de Faces: Exemplos de Metodologias e Aplicações Fernando Carvalho, João Manuel R. S. Tavares Aplicação Metodologias Modelos Conclusões Trabalho Futuro Introdução:

Leia mais

3 Estimação e Compensação de movimento na codificação de vídeo

3 Estimação e Compensação de movimento na codificação de vídeo Estimação e Compensação de movimento na codificação de vídeo 36 3 Estimação e Compensação de movimento na codificação de vídeo O objetivo do modelo temporal (que engloba as fases de estimação e compensação

Leia mais

IDENTIFICAÇÃO DE OBJETOS DO FUTEBOL DE ROBÔS UTILIZANDO ALGORITMO DE DESCRIÇÃO DE PONTOS CHAVE

IDENTIFICAÇÃO DE OBJETOS DO FUTEBOL DE ROBÔS UTILIZANDO ALGORITMO DE DESCRIÇÃO DE PONTOS CHAVE 102 IDENTIFICAÇÃO DE OBJETOS DO FUTEBOL DE ROBÔS UTILIZANDO ALGORITMO DE DESCRIÇÃO DE PONTOS CHAVE IDENTIFYING OBJECTS USING ROBOT SOCCER ALGORITHM DESCRIPTION OF KEY POINTS Ricardo da Silva Barros 1,

Leia mais

Mosaico Automático de Imagens Agrícolas Aéreas

Mosaico Automático de Imagens Agrícolas Aéreas Mosaico Automático de Imagens Agrícolas Aéreas André de Souza Tarallo 1 ; Maria Stela Veludo de Paiva 1 ; Lúcio André de Castro Jorge 2 1 Escola de Engenharia de São Carlos - Universidade de São Paulo

Leia mais