Eletricidade e magnetismo

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Eletricidade e magnetismo"

Transcrição

1 Eletricidade e magnetismo Circuitos elétricos Prof. Luís Perna 014/15 Corrente elétrica Qual a condição para que haja corrente elétrica entre dois condutores A e B? Que tipo de corrente elétrica se verifica? Como não existe nenhuma fonte de tensão entre os condutores a corrente elétrica diz-se transitória ou temporária. 1

2 Corrente elétrica Suponha agora que se intercala um gerador no circuito. Que tipo de corrente passamos a ter? Se existir um gerador (fonte de tensão) a corrente será uma corrente permanente. A corrente elétrica é um movimento orientado de cargas elétricas (eletrões de condução ou eletrões livres) através de um condutor e só existe se houver uma diferença de potencial entre os condutores. Quais são os efeitos da corrente elétrica? Vejamos o seguinte circuito: A energia elétrica transforma-se em energia térmica, luminosa e química. Podemos verificar: O efeito térmico; O efeito luminoso; O efeito magnético; O efeito químico.

3 Como classificar a corrente elétrica? Corrente estacionária é a corrente produzida por uma d.d.p. constante em que os seus efeitos não variam no decurso do tempo. As correntes eléctricas podem classificar-se ainda em: Correntes contínuas; Correntes alternadas. Mecanismos da corrente elétrica Nos condutores metálicos Se considerarmos um condutor metálico, isolado, em equilíbrio eletrostático, o número de eletrões, que passam numa secção desse condutor, num certo intervalo de tempo, num sentido é igual ao número de eletrões, que passam, em sentido contrário no mesmo intervalo. Neste movimento aleatório de eletrões não há corrente elétrica. 3

4 Mecanismos da corrente elétrica Nos condutores metálicos Se aplicarmos uma d.d.p. aos extremos do condutor, os eletrões do condutor adquirem um movimento orientado que é contrário ao sentido do campo elétrico, E. Mecanismos da corrente elétrica A força elétrica acelera os eletrões fazendo-os adquirir velocidades muito elevadas, (cerca de 10 6 m/s), mas a sua progressão é somente da ordem dos mm/s Velocidade de arrastamento ou de deriva. Num condutor metálico a corrente elétrica estacionária consiste num arrastamento lento (em ziguezague) de eletrões no sentido contrário ao do campo elétrico. 4

5 Mecanismos da corrente elétrica Nos condutores eletrolíticos Nos condutores eletrolíticos os portadores de carga elétrica são os iões positivos e os iões negativos. Os iões movem-se, respetivamente para o cátodo (pólo negativo) e para o ânodo (pólo positivo). Ao colocarmos uma agulha magnética junto do voltâmetro esta sofrerá também um desvio tal como no caso dos condutores metálicos, isto é, manifesta-se o mesmo efeito. Os iões também são cargas elétricas móveis. Atenção: numa eletrólise o cátodo é o pólo negativo e o ânodo é o pólo positivo, mas numa pilha eletroquímica é ao contrário. Mecanismos da corrente elétrica Os catiões movem-se no sentido do cátodo ou seja no sentido do campo elétrico. Os aniões movem-se no sentido do ânodo ou seja no sentido contrário ao campo elétrico. 5

6 Mecanismos da corrente elétrica Nos condutores gasosos Nos gases ionizados, através de uma descarga elétrica, tal como acontece nas lâmpadas fluorescentes, as cargas móveis são iões positivos, que são resultantes da ionização de átomos e de moléculas, e eletrões, provenientes dessa ionização, bem como da emissão termoelétrica, quando ocorre. Sentido da corrente elétrica O sentido da corrente elétrica é o sentido do movimento das partículas com carga positiva (iões positivos nos eletrólitos), ou seja, é o sentido que estas partículas positivas têm no campo elétrico, E. Este é o chamado sentido convencional. Nos condutores metálicos o sentido convencional é oposto ao sentido do movimento dos eletrões de condução (sentido real). 6

7 ntensidade da corrente elétrica Define-se intensidade média da corrente elétrica, m, pelo cociente: m Q t No caso de uma corrente estacionária, em qualquer instante a d.d.p. é constante, logo a intensidade da corrente será: Q t ntensidade da corrente elétrica A intensidade de uma corrente elétrica estacionária corresponde á carga elétrica que escoa, por qualquer secção transversal (reta ou oblíqua) dum condutor, num certo intervalo de tempo. Q t A unidade S de intensidade de corrente elétrica,, é o Ampère (A). ( ) Francês A equação anterior traduz a equação de definição de carga elétrica: Q t Q 1A 1s 1C Coulomb é a carga transportada em cada segundo por uma corrente estacionária de um ampère. 7

8 Resistência de um condutor. Lei de Ohm Quando se aplica a mesma d.d.p. nas extremidades de vários condutores, as intensidades das correntes resultantes são, em geral, diferentes umas das outras. Daqui se poderá concluir que uns condutores oferecem maior ou menor oposição à passagem da corrente elétrica. Define-se resistência (R) de um condutor como: o cociente entre a d.d.p. entre os terminais do condutor e a intensidade da corrente,, em cada instante. V R A V B ou R Expressão que traduz a lei de Ohm. Simulação Georg Simon Ohm ( ) Alemão Condutor óhmico Num condutor óhmico (condutores que obedecem à lei de Ohm), as tensões aplicadas são diretamente proporcionais às intensidades de corrente ( ). 8

9 nidade de resistência elétrica A unidade do S: Ohm () R 1V 1 1A Definição da unidade Ohm: É a resistência dum condutor percorrido pela corrente de um ampère quando aos seus terminais se aplica a d.d.p. de um volt. 9

10 Fatores de que depende a resistência de um condutor A resistência de um condutor depende dos seguintes fatores: Comprimento, l; Área da secção reta, S; Material de que é feito, ρ; Temperatura,. R l S Simulação Fatores de que depende a resistência de um condutor A resistência de um condutor é diretamente proporcional ao seu comprimento, inversamente proporcional à área da secção e depende diretamente do material de que é feito. ρ - Caracteriza o material de que é feito o condutor e chama-se resistividade do condutor. A unidade de : R l S R S l m m A resistividade é, numericamente, igual à resistência dum condutor com uma unidade de comprimento e uma unidade de secção reta. m 10

11 Resistividade, ρ Os metais têm resistividades baixas, sendo a prata o melhor condutor; As ligas metálicas e o carbono têm resistividades superiores às dos metais; Os maus condutores têm resistividades muito elevadas. Nos eletrólitos, a resistividade varia com a concentração dos mesmos. Tabela 11

12 A resistividade dos materiais e a temperatura Aproximando um bico de Bunsen de um condutor, ligado a um amperímetro verifica-se que a intensidade da corrente diminui, o que mostra que a resistência aumenta. A resistividade dum material varia, portanto, com a temperatura. R R S Resistividade em função da temperatura 1

13 Coeficiente de temperatura, α Verifica-se experimentalmente que a variação relativa da resistividade depende do valor da temperatura inicial, isto é, não apresenta sempre iguais variações para iguais aumentos de temperatura. Chama-se coeficiente de temperatura,, no intervalo de temperaturas, 0 à variação relativa da resistividade, isto é: 0 Coeficiente de temperatura, α Por cada grau de variação da temperatura, será: [ 1 ( 0)] 13

14 Coeficiente de temperatura, α A variação da resistividade com a temperatura conduz também a uma variação semelhante da resistência de um condutor. Substituindo em: 0[ 1 ( 0)] as equações: R S e 0 R 0 S teremos: R R0[ 1 ( 0)] Coeficiente de temperatura, α A experiência mostra que: 1º - Para os metais, > 0, o que significa que a resistividade aumenta quando a temperatura aumenta. 0[ 1 ( 0)] º - Para as ligas metálicas também, > 0, logo há aumento da resistividade com a temperatura embora seja menor que nos metais. 3º - Para o carbono e semicondutores, < 0, podemos verificar que a resistividade diminui quando a temperatura aumenta. 14

15 Trocas de energia num circuito elétrico Elementos de circuito são todas as componentes que fazem parte dum circuito, por exemplo: resistências, condensadores, díodos, transístores, interruptor, etc. Estas componentes encontram-se ligadas entre si por fios condutores. Trocas de energia num circuito elétrico Os circuitos podem estar abertos ou fechados são os interruptores que normalmente tem a função de interromper a passagem da corrente num circuito. 15

16 Geradores de corrente elétrica Os geradores são dispositivos que se intercalam nos circuitos com a finalidade de criar ou manter uma diferença de potencial ou tensão nos seus terminais. O gerador não cria cargas ao alimentar um circuito elétrico, mas gera uma tensão que obriga as cargas de um circuito a moverem-se orientadamente. Geradores de corrente elétrica m gerador elétrico é um dispositivo que converte uma dada energia da forma não elétrica em energia elétrica. Exemplos: A- Pilhas ou acumuladores de chumbo transformam energia química em energia elétrica. B- Dínamos transformam energia mecânica em energia elétrica. C- Células fotovoltaicas transformam energia luminosa em energia elétrica. 16

17 Geradores de corrente elétrica Exemplos: D- Termopares são dispositivos que transformam energia térmica em energia elétrica. E- Gerador de Van der Graaff transforma energia mecânica em energia elétrica. Trocas de energia num circuito elétrico Consideremos um condutor no troço de circuito, X, percorrido por uma corrente de intensidade,, durante o intervalo de tempo, t, quando entre os seus extremos existe uma diferença de potencial,. A diferença de potencial,, aos terminais do condutor mede o trabalho, WFe, realizado pelo campo elétrico no transporte da carga elétrica, Q, no troço X: W Fe Q 17

18 Trocas de energia num circuito elétrico O trabalho realizado pelo campo elétrico, no referido troço X, é, então, W Fe Q t W Fe Q Q t Este trabalho do campo elétrico, t, mede toda a energia que se transforma, isto é, passa da forma elétrica para outras formas, no troço X. Trocas de energia num circuito elétrico Em que outras formas de energia se transforma a energia elétrica t, no troço X? sso depende dos aparelhos que existirem no troço X. Assim: Se em X existir um resístor ou resistência pura, a energia t transforma-se simplesmente em energia térmica. Símbolos 18

19 Trocas de energia num circuito elétrico Se em X existir um motor elétrico, a energia t transforma-se, parte em energia mecânica e parte em energia térmica. Símbolo Trocas de energia num circuito elétrico Se em X existir um voltâmetro ou uma bateria em carga, a energia t transforma-se, parte em energia química e outra parte em energia térmica. 19

20 Lei de Joule Se no troço X estiver uma resistência pura. Então, neste caso particular, a energia elétrica será: W Fe t Esta é transformada apenas em energia térmica na resistência R, e será totalmente energia dissipada. E d = t Lei de Joule Por definição de resistência, tem-se: R <=> = R como E d = t E d = (R ) t = R t A potência dissipada na forma térmica será: P d Ed R t R t t nidade S de potência elétrica é watt (W). Esta última expressão traduz a lei de Joule A energia dissipada por unidade de tempo num condutor óhmico é proporcional ao quadrado da intensidade da corrente que o percorre. 0

21 nidade de energia muito utilizada, KWh ma unidade de energia muito utilizada para medir o "consumo" elétrico é o quilowatt-hora (kwh). Se, na equação E = P t substituirmos E por 1 kwh, P por 1 kw e t por 1 h, obtemos: 1 kwh = 1 kw x 1 h Podemos dizer que um kilowatt-hora (1 kwh) é a energia elétrica "consumida" por um dispositivo com a potência de 1 kilowatt (1 kw) que esteja a funcionar durante 1 hora (1 h). 1 kwh = 1000 W x 3600 s = 3,6 x 10 6 J Sistemas que transformam reversivelmente energia geradores O gerador é um dispositivo que transforma energia não elétrica em energia elétrica por unidade de carga móvel que o atravessa. Exemplos de geradores: Pilhas, acumuladores de chumbo transformam energia química em energia elétrica. Dínamos transformam energia mecânica em energia elétrica. 1

22 Força eletromotriz do gerador - Força eletromotriz do gerador -, é a energia transformada de uma forma não elétrica em elétrica pelo gerador por unidade de carga que o atravessa. E transf Q Energia elétrica transformada pelo gerador Das equações de definição de força eletromotriz e intensidade da corrente, resulta que: E transf Q Q t E transf t Esta é a quantidade de energia elétrica transformada pelo gerador num certo intervalo de tempo.

23 Potência elétrica do gerador A potência elétrica do gerador por unidade de tempo será: E P transf t P nidade S de força eletromotriz é joule/coulomb = volt (V) sto significa que um gerador, com a força eletromotriz de 1V, transforma 1J de energia química ou mecânica ou outra forma de energia, em energia elétrica, por cada carga de 1C que o atravessa. nidade S de potência elétrica é watt (W). Como se mede a força eletromotriz de um gerador? Ligam-se diretamente os polos deste a um voltímetro. Resistência interna dum gerador Se um gerador for ligado a um circuito constituído por uma resistência exterior, R e, e se mantiver uma corrente de intensidade nesse circuito, o voltímetro, ligado aos polos do gerador, indicará um valor inferior ao da força eletromotriz. sso significa, que nem toda a energia fornecida pelo gerador é transportada para o circuito exterior. 3

24 Resistência interna dum gerador Que acontece à energia «perdida»? O facto interpreta-se, admitindo que o próprio gerador tem alguma resistência (resistência interna, R i ) e que essa energia é consumida por efeito de joule dentro do gerador. Só um gerador com resistência interna nula seria capaz de manter nos terminais dum circuito exterior uma d.d.p. () igual a força eletromotriz ( ). Balanço energético de um circuito com um gerador Como há conservação da energia num certo intervalo de tempo, podemos escrever o balanço energético para o circuito anterior do seguinte modo. t t Ri t 4

25 Balanço energético de um circuito com um gerador Se dividirmos tudo por t, obtemos o balanço em termos de potência elétrica: t t Ri t R i Podemos escrever ainda: R i Lei de Ohm Generalizada para um circuito com gerador. ntensidade de corrente no circuito e d.d.p. A intensidade de corrente do circuito apenas com uma resistência R e tendo em conta a Lei de Ohm Generalizada será: R i R e R i R e R i A d.d.p. entre os polos do gerador será: R i 5

26 Rendimento dum gerador Define-se rendimento ( ) dum gerador como sendo o cociente entre a potência útil (P u ) e a potência do gerador (P g ). Sendo assim: P P u g % 100 Sistemas que transformam reversivelmente energia recetores O recetor é um dispositivo que transforma energia elétrica em energia não elétrica por unidade de carga móvel que o atravessa. Exemplos de recetores: - Voltâmetros a energia elétrica converte-se em energia química. - Motores transformam a energia elétrica em energia mecânica. 6

27 Força contraelectromotriz do recetor - Força contraelectromotriz do recetor - é, a energia transformada de uma forma elétrica em não elétrica pelo recetor por unidade de carga que o atravessa. ' E ' transf Q E transf é a energia mecânica (ou química) que se obtém no motor (ou no voltâmetro). Energia elétrica transformada pelo recetor Das equações de definição de força contra eletromotriz e intensidade da corrente, resulta que: ' E ' transf Q Q t ' E transf ' t Esta é a quantidade de energia mecânica ou química obtida no recetor num certo intervalo de tempo. 7

28 Potência mecânica ou química obtida no recetor A potência, mecânica ou química (potência útil), obtida no recetor será: P' E ' transf t P ' ' nidade S de força contraelectromotriz é: joule/coulomb = volt (V) Balanço energético de um recetor Tendo em conta que há conservação da energia num certo intervalo de tempo, podemos escrever o balanço energético do seguinte modo. t ' t R' i t Se dividirmos tudo por t, obtemos o balanço em termos de ' R' potência elétrica: i Podemos escrever ainda: 'R' i Lei de Ohm Generalizada para um circuito com um recetor. 8

29 Rendimento dum recetor Define-se rendimento ( ) dum recetor como sendo o cociente entre a potência mecânica ou química obtida nesse recetor (P = ) isto é, a sua potência útil, e a potência total recebida (P = ). ' P' P ' ' ' ' ' % ' 100 Lei de Ohm generalizada para um circuito elétrico simples constituído por um gerador e um recetor Como escrever a lei de Ohm generalizada para este circuito? m recetor seja ele um motor ou um voltâmetro, tem sempre uma resistência, onde se dissipa energia por efeito Joule. 9

30 Lei de Ohm generalizada para um circuito elétrico simples constituído por um gerador e um recetor Partindo da lei da conservação da energia, teremos, para o intervalo de tempo t: t ' t R' i t R i t Lei de Ohm generalizada para um circuito elétrico simples constituído por um gerador e um recetor t ' t R' i t R i t Dividindo ambos os membros por t vem: ' R' R ' ( R' i R ) i i i ' R t Lei de Ohm generalizada para este tipo de circuitos. 30

31 Exercício 1 m motor consome uma energia de 1000 J, durante 10 s, quando é percorrido por uma corrente de intensidade,0 A. Calcule: a) A carga elétrica que o atravessa nesse intervalo de tempo. (0 C) b) A diferença de potencial entre os seus terminais. (50 V) c) A energia elétrica que é convertida em energia mecânica, sabendo que, na sua resistência, se dissipam 00 J. (800 J) d) A força contraelectromotriz do motor. (40 V) Exercício m motor, de força contraelectromotriz igual a 10 V, é percorrido por uma corrente de intensidade,0 A, quando se estabelece entre os seus terminais uma diferença de potencial de 15 V. Calcule, para o intervalo de tempo de 1,0 minuto: a) A energia elétrica que o motor consome. (1,8 x 10 3 J) b) A energia mecânica que ele fornece (energia útil). (1, x 10 3 J) c) A energia que nele se dissipa por efeito Joule. (6,0 x 10 J) d) Qual é o valor da resistência do motor? (,5 ) e) Calcule o rendimento do motor, nas condições enunciadas. (66,7%) 31

32 Associação de resistências Num circuito há, normalmente, vários recetores puramente resistivos, as resistências, estas podem associar-se de vários modos: (1) Associação em série () Associação em paralelo (3 e 4) Associação mista Associação de resistências em série Numa associação de resistências em série: - A intensidade da corrente,, que as percorre é a mesma. - A diferença de potencial,, aplicada aos extremos da associação, é igual à soma das diferenças de potencial entre os terminais de cada uma delas

33 Associação de resistências em série Aplicando a Lei de Ohm a cada uma das resistências, tem-se: 1 R1 R R 3 3 R eq Como: 1 3 R eq R 1 R R3 Vem: R eq R 1 R R 3 Associação de resistências em paralelo Numa associação de resistências em paralelo: - A diferença de potencial,, nos terminais das resistências é a mesma. - A intensidade da corrente,, que entra na associação é igual à soma das intensidades de corrente nas várias resistências

34 34 Associação de resistências em paralelo Aplicando a Lei de Ohm a cada uma das resistências, tem-se: 3 1 Como: 3 1 R R R R eq R R R R R R eq eq R R R R R R eq Código de cores das resistências de carvão Cada resistência tem quatro anéis de cores. Ao consultar o código de cores podemos saber o valor da resistência, colocando os algarismos pela mesma ordem. O valor desta resistência é 100, com 5% de tolerância.

35 Exercício 1 Calcule a resistência equivalente nas seguintes associações: (A- 4,5 Ω; B- 1,3 Ω; C- 3,0 Ω; D- 3,0 Ω) Exercício A figura representa três lâmpadas, de resistências 60, 60, 30 submetidas a uma d.d.p. constante de 0 V. a) Determine a resistência equivalente entre A e B. b) Determine a intensidade da corrente que percorre cada uma das lâmpadas quando o interruptor K está fechado. Respostas: a) 80 b) L 1 1 =,75 A; L = 0,9 A; L 3 3 = 1,83 A 35

36 Exercício 3 Observe o circuito representado na figura, em que o gerador é ideal e as lâmpadas têm todas resistência de,0 Ω. Com os interruptores K 1, e K fechados, a intensidade da corrente que percorre L 3 é igual a 3,0 A. a) Calcule a diferença de potencial nos terminais de L 1, e de L 3. (3,0 V; 6,0 V) b) Calcule a intensidade da corrente que percorre o circuito principal. (4,5 A) c) Qual a diferença de potencial nos terminais de L 4? (9,0 V) d) Se K 1, estiver aberto, qual o valor da intensidade da corrente que percorre o circuito? (0 A) e) Abrindo K, calcule a intensidade da corrente que percorre as lâmpadas L 3 e L 4. (3,8 A) 36

Electricidade e magnetismo

Electricidade e magnetismo Electricidade e magnetismo Circuitos eléctricos 3ª Parte Prof. Luís Perna 2010/11 Corrente eléctrica Qual a condição para que haja corrente eléctrica entre dois condutores A e B? Que tipo de corrente eléctrica

Leia mais

ANALOGIA ENTRE INTENSIDADE DE CORRENTE ELÉCRICA E CAUDAL DE UM LÍQUIDO

ANALOGIA ENTRE INTENSIDADE DE CORRENTE ELÉCRICA E CAUDAL DE UM LÍQUIDO ANALOGA ENTRE NTENSDADE DE CORRENTE ELÉCRCA E CADAL DE M LÍQDO Exemplo de revisão do conceito de caudal: Para medir o caudal de uma torneira, podemos encher um balde com água e medir o tempo que o balde

Leia mais

ELETRICIDADE. Eletrodinâmica. Eletrostática. Eletromagnetismo

ELETRICIDADE. Eletrodinâmica. Eletrostática. Eletromagnetismo ELETRICIDADE Eletrodinâmica Eletrostática Eletromagnetismo Átomo Núcleo Prótons carga positiva (+e). Nêutrons carga neutra. Eletrosfera Eletrons carga negativa (-e). Carga Elétrica Elementar e = 1,6 x

Leia mais

AULA 02 PRIMEIRA LEI DE OHM APOSTILA 1 FSC-C

AULA 02 PRIMEIRA LEI DE OHM APOSTILA 1 FSC-C AULA 02 PRIMEIRA LEI DE OHM APOSTILA 1 FSC-C DIFERENÇA DE POTENCIAL (DDP) CRIAR UMA DIFERENÇA ENTRE DOIS PONTOS. NUM DOS PONTOS HÁ EXCESSO E NO OUTRO FALTA DE ELETRONS QUANTO MAIOR A DIFERENÇA, MAIOR VAI

Leia mais

NOME: N O : TURMA: PROFESSOR: Glênon Dutra

NOME: N O : TURMA: PROFESSOR: Glênon Dutra Circuitos Elétricos DISCIPLINA: Física NOME: N O : TURMA: PROFESSOR: Glênon Dutra DATA: NOTA: ASS: - Circuito Simples: Esquema: Bateria: Corrente elétrica i Resistência: i = corrente elétrica V = d.d.p.

Leia mais

RESISTOR É O ELEMENTO DE CIRCUITO CUJA ÚNICA FUNÇÃO É CONVERTER A ENERGIA ELÉTRICA EM CALOR.

RESISTOR É O ELEMENTO DE CIRCUITO CUJA ÚNICA FUNÇÃO É CONVERTER A ENERGIA ELÉTRICA EM CALOR. Resistores A existência de uma estrutura cristalina nos condutores que a corrente elétrica percorre faz com que pelo menos uma parte da energia elétrica se transforme em energia na forma de calor, as partículas

Leia mais

Corrente elétrica, potência, resistores e leis de Ohm

Corrente elétrica, potência, resistores e leis de Ohm Corrente elétrica, potência, resistores e leis de Ohm Corrente elétrica Num condutor metálico em equilíbrio eletrostático, o movimento dos elétrons livres é desordenado. Em destaque, a representação de

Leia mais

Corrente elétrica, potência, resistores e leis de Ohm

Corrente elétrica, potência, resistores e leis de Ohm Corrente elétrica, potência, resistores e leis de Ohm Corrente elétrica Num condutor metálico em equilíbrio eletrostático, o movimento dos elétrons livres é desordenado. Em destaque, a representação de

Leia mais

GERADORES E RECEPTORES:

GERADORES E RECEPTORES: COLÉGIO ESTADUAL JOSUÉ BRANDÃO 3º Ano de Formação Geral Física IV Unidade_2009. Professor Alfredo Coelho Resumo Teórico/Exercícios GERADORES E RECEPTORES: Anteriormente estudamos os circuitos sem considerar

Leia mais

FÍSICA (ELETROMAGNETISMO) CORRENTE ELÉTRICA E RESISTÊNCIA

FÍSICA (ELETROMAGNETISMO) CORRENTE ELÉTRICA E RESISTÊNCIA FÍSICA (ELETROMAGNETISMO) CORRENTE ELÉTRICA E RESISTÊNCIA FÍSICA (Eletromagnetismo) Nos capítulos anteriores estudamos as propriedades de cargas em repouso, assunto da eletrostática. A partir deste capítulo

Leia mais

LISTA DE EXERCÍCIOS 01 3º ANO PROF. FELIPE KELLER ELETROSTÁTICA

LISTA DE EXERCÍCIOS 01 3º ANO PROF. FELIPE KELLER ELETROSTÁTICA LISTA DE EXERCÍCIOS 01 3º ANO PROF. FELIPE KELLER ELETROSTÁTICA 1 (UNIFESP) Um condutor é percorrido por uma corrente elétrica de intensidade i = 800 ma. Conhecida a carga 19 elétrica elementar, e = 1,6

Leia mais

Apostila de Física 25 Corrente Elétrica

Apostila de Física 25 Corrente Elétrica Apostila de Física 25 Corrente Elétrica 1.0 Definições Gerador elétrico: Mantém entre seus terminais (pólos) uma diferença de potencial elétrico. Pólo positivo Maior potencial. Pólo negativo Menor potencial.

Leia mais

O que é um circuito eléctrico?

O que é um circuito eléctrico? SISTEMAS ELÉCTRICOS E ELECTRÓNICOS A produção em larga escala é recente e revolucionou por completo o nosso dia-a-dia A electricidade é tão antiga como o Universo! O que é um circuito eléctrico? Éum conjunto

Leia mais

Resumo de Eletrodinâmica

Resumo de Eletrodinâmica Resumo de Eletrodinâmica i = Corrente Elétrica (A) Δq = quantidade de carga elétrica no fio em movimento (C = coulomb) milicoulomb: microcoulomb: nanocoulomb: n = número de elétrons e = carga elementar

Leia mais

Exercícios 6 1. real 2. Resp: 3. o sentido convencional Resp: 4. Resp: 5. (a) (b) (c) Resp: (b) (c) Resp:

Exercícios 6 1. real 2. Resp: 3. o sentido convencional Resp: 4. Resp: 5. (a) (b) (c) Resp: (b) (c) Resp: Exercícios 6 1. A corrente elétrica real através de um fio metálico é constituída pelo movimento de: a) Cargas positivas do maior para o menor potencial. b) Cargas positivas. c) Elétrons livres no sentido

Leia mais

MÓDULO 1 Noções Básicas de Eletricidade

MÓDULO 1 Noções Básicas de Eletricidade Técnico de Gestão de Equipamentos Informáticos ESCOLA SECUNDÁRIA DE TOMAZ PELAYO SANTO TIRSO 402916 MÓDULO 1 Noções Básicas de Eletricidade Eletrónica Fundamental Prof.: Erika Costa Estrutura da Matéria

Leia mais

Potência e Energia Elétrica

Potência e Energia Elétrica Potência e Energia Elétrica Para qualquer máquina, em particular, para os aparelhos elétricos, definimos potência como a taxa de transformação ou conversão de energia na forma de calor outra forma de energia,

Leia mais

Aula 8.2 Conteúdo: Associação de resistores em paralelo, potência elétrica de uma associação em paralelo de resistores. INTERATIVIDADE FINAL

Aula 8.2 Conteúdo: Associação de resistores em paralelo, potência elétrica de uma associação em paralelo de resistores. INTERATIVIDADE FINAL Aula 8.2 Conteúdo: Associação de resistores em paralelo, potência elétrica de uma associação em paralelo de resistores. Habilidades: Diferenciar as formas de associação de resistores, bem como determinar

Leia mais

2º Experimento 1ª Parte: Lei de Ohm

2º Experimento 1ª Parte: Lei de Ohm 2º Experimento 1ª Parte: Lei de Ohm 1. Objetivos: Verificar a lei de Ohm. Determinar a resistência elétrica através dos valores de tensão e corrente. 2. Teoria: No século passado, George Ohm enunciou:

Leia mais

Agrupamento de Escolas da Senhora da Hora

Agrupamento de Escolas da Senhora da Hora Agrupamento de Escolas da Senhora da Hora Curso Profissional de Técnico de Gestão de Equipamentos Informáticos Informação Prova da Disciplina de Física e Química - Módulo: 4 Circuitos elétricos. Modalidade

Leia mais

Eletrodinânica - Exercícios

Eletrodinânica - Exercícios Eletrodinânica - Exercícios Professor Walescko 13 de outubro de 2005 Sumário 1 Exercícios 1 2 Vestibulares UFRGS 7 3. O gráfico representa a corrente elétrica i em função da diferença de potencial V aplicada

Leia mais

INSTITUTO SÃO JOSÉ - RSE LISTA PREPARATÓRIA PARA PROVA DO TERCEIRO TRIMESTRE

INSTITUTO SÃO JOSÉ - RSE LISTA PREPARATÓRIA PARA PROVA DO TERCEIRO TRIMESTRE 1. (Unesp) Mediante estímulo, 2 10 íons de K atravessam a membrana de uma célula nervosa em 1,0 milisegundo. Calcule a intensidade dessa corrente elétrica, sabendo-se que a carga elementar é 1,6 10 ª C.

Leia mais

TAREFA DE FÍSICA Prof. Álvaro 3ª Série

TAREFA DE FÍSICA Prof. Álvaro 3ª Série TAREFA DE FÍSICA Prof. Álvaro 3ª Série Site 02 01 - (Mackenzie SP) No circuito desenhado abaixo, a intensidade de corrente elétrica contínua que passa pelo resistor de 50 é de 80 ma. A força eletromotriz

Leia mais

t RESOLUÇÃO COMECE DO BÁSICO

t RESOLUÇÃO COMECE DO BÁSICO t RESOLÇÃO COMECE DO BÁSICO SOLÇÃO CB. 01 Para ser resistor ôhmico o gráfico deve ser linear. Neste caso, a linearidade se observa no trecho BC. SOLÇÃO CB. 0 ' r '. i ( Equação 10 7 r'.4 4r 48 do receptor)

Leia mais

1. Arthur monta um circuito com duas lâmpadas idênticas e conectadas à mesma bateria, como mostrado nesta figura:

1. Arthur monta um circuito com duas lâmpadas idênticas e conectadas à mesma bateria, como mostrado nesta figura: 1. Arthur monta um circuito com duas lâmpadas idênticas e conectadas à mesma bateria, como mostrado nesta figura: Considere nula a resistência elétrica dos fios que fazem a ligação entre a bateria e as

Leia mais

INTRODUÇÃO AOS CIRCUITOS ELÉTRICOS

INTRODUÇÃO AOS CIRCUITOS ELÉTRICOS INTRODUÇÃO AOS CIRCUITOS ELÉTRICOS Circuito Elétrico Está associado à: Presença de corrente elétrica: agente que transfere energia da fonte (pilha) para o aparelho (lâmpada). O que é necessário para se

Leia mais

I = corrente elétrica medida em Ampères (A) t = tempo em segundos

I = corrente elétrica medida em Ampères (A) t = tempo em segundos Eletrodinâmica ELETRODINÂMICA: Carga Elétrica: Q = n.e Corrente Elétrica: I = Q / t Q = carga elétrica medida em Coulombs (C) n = número de elétrons ou prótons e = carga de um elétron = 1,6 10-19 Coulombs

Leia mais

O símbolo usado em diagramas de circuito para fontes de tensão é:

O símbolo usado em diagramas de circuito para fontes de tensão é: Circuitos Elétricos Para fazer passar cargas elétricas por um resistor, precisamos estabelecer uma diferença de potencial entre as extremidades do dispositivo. Para produzir uma corrente estável é preciso

Leia mais

Princípios de Eletricidade Magnetismo

Princípios de Eletricidade Magnetismo Princípios de Eletricidade Magnetismo Corrente Elétrica e Circuitos de Corrente Contínua Professor: Cristiano Faria Corrente e Movimento de Cargas Elétricas Embora uma corrente seja um movimento de partícula

Leia mais

NOME: N CADERNO DE RECUPERAÇÃO DE FÍSICA I 3º ANO EM TURMA 232 PROFº FABIANO 1º BIMESTRE

NOME: N CADERNO DE RECUPERAÇÃO DE FÍSICA I 3º ANO EM TURMA 232 PROFº FABIANO 1º BIMESTRE 1925 *** COLÉGIO MALLET SOARES *** 2016 91 ANOS DE TRADIÇÃO, RENOVAÇÃO E QUALIDADE DEPARTAMENTO DE ENSINO DATA: / / NOTA: NOME: N CADERNO DE RECUPERAÇÃO DE FÍSICA I 3º ANO EM TURMA 232 PROFº FABIANO 1º

Leia mais

Componentes eletrónicos. Maria do Anjo Albuquerque

Componentes eletrónicos. Maria do Anjo Albuquerque Componentes eletrónicos Motherboard de um computador e respetivos componentes eletrónicos Alguns componentes eletrónicos Características dos díodos de silício São o tipo mais simples de componente eletrónico

Leia mais

R R R. 7. corrente contínua e circuitos os circuitos são constituídos por um gerador e cargas ligadas em: Série. resistências & lei de Ohm R A

R R R. 7. corrente contínua e circuitos os circuitos são constituídos por um gerador e cargas ligadas em: Série. resistências & lei de Ohm R A resistências & lei de Ohm R A V R 7. corrente contínua e circuitos os circuitos são constituídos por um gerador e cargas ligadas em: Série Paralelo corrente Rsérie R R Rparalelo R R2 2 SÉREigual corrente

Leia mais

Capítulo 7: Associação de Resistores

Capítulo 7: Associação de Resistores Capítulo 7: Associação de Resistores Os resistores podem ser associados basicamente de dois modos distintos: em série e em paralelo. Ambos os modos de associação podem estar presentes: temos um associação

Leia mais

O que é um circuito eléctrico?

O que é um circuito eléctrico? SISTEMAS ELÉCTRICOS E ELECTRÓNICOS A produção em larga escala é recente e revolucionou por completo o nosso dia-a-dia A electricidade é tão antiga como o Universo! O que é um circuito eléctrico? Éum conjunto

Leia mais

INTRODUÇÃO A ELETRICIADE BÁSICA

INTRODUÇÃO A ELETRICIADE BÁSICA 1 INTRODUÇÃO A ELETRICIADE BÁSICA Na eletricidade básica existem três grandezas fundamentais que são a tensão elétrica, a corrente elétrica, a resistência elétrica. Para estuda-las utilizaremos o conceito

Leia mais

Capítulo 27: Circuitos

Capítulo 27: Circuitos Capítulo 7: Circuitos Índice Força letromotriz Trabalho, nergia e Força letromotriz Calculo da Corrente de um Circuito de uma Malha Diferença de Potencial entre dois Pontos Circuitos com mais de uma Malha

Leia mais

Cap. 3 Resistência Elétrica e Lei de Ohm

Cap. 3 Resistência Elétrica e Lei de Ohm Cap. 3 Resistência Elétrica e Lei de Ohm Instituto Federal Sul-rio-grandense Curso Técnico em Eletromecânica Disciplina de Eletricidade Básica Prof. Rodrigo Souza 3.1 Resistência Elétrica Resistência Elétrica

Leia mais

Médio. Física. Exercícios de Revisão I

Médio. Física. Exercícios de Revisão I Nome: n o : Médio E nsino: S érie: T urma: Data: 3 a Prof(a): Ivo Física Exercícios de Revisão I Exercícios referentes aos capítulos 5 e 6 (livro 3). As resoluções dos exercícios (1 a 7) devem ser fundamentadas

Leia mais

Sala de Estudos FÍSICA Lucas 3 trimestre Ensino Médio 2º ano classe: Prof.LUCAS Nome: nº Sala de Estudos Geradores, Receptores e Potência Elétrica

Sala de Estudos FÍSICA Lucas 3 trimestre Ensino Médio 2º ano classe: Prof.LUCAS Nome: nº Sala de Estudos Geradores, Receptores e Potência Elétrica Sala de Estudos FÍSICA Lucas 3 trimestre Ensino Médio 2º ano classe: Prof.LUCAS Nome: nº Sala de Estudos Geradores, Receptores e Potência Elétrica 1. (Espcex (Aman) 2013) A pilha de uma lanterna possui

Leia mais

1 - Eletricidade Estática

1 - Eletricidade Estática 5 1 - Eletricidade Estática 1.1 O Átomo Tudo que ocupa lugar no espaço é matéria. A matéria é constituída por partículas muito pequenas chamada de átomos. Os átomos por sua vez são constituídos por partículas

Leia mais

CIRCUITOS ELETRICOS I: RESISTORES, GERADOR E 1ª LEI DE OHM CIÊNCIAS DA NATUREZA: FÍSICA PROFESSOR: DONIZETE MELO Página 1

CIRCUITOS ELETRICOS I: RESISTORES, GERADOR E 1ª LEI DE OHM CIÊNCIAS DA NATUREZA: FÍSICA PROFESSOR: DONIZETE MELO Página 1 Diretoria Regional de Ensino de Araguaína Colégio Estadual Campos Brasil Tocantins - Brasil Um circuito elétrico pode ser definido como uma interligação de componentes básicos formando pelo menos um caminho

Leia mais

Diferença de potencial e intensidade de corrente elétrica. Maria do Anjo Albuquerque

Diferença de potencial e intensidade de corrente elétrica. Maria do Anjo Albuquerque Diferença de potencial e intensidade de corrente elétrica Nas fontes de energia vem escrito o valor da sua diferença de potencial. A diferença de potencial de uma fonte de energia relaciona-se com a energia

Leia mais

LABORATÓRIO ATIVIDADES 2013/1

LABORATÓRIO ATIVIDADES 2013/1 LABORATÓRIO ATIVIDADES 2013/1 RELATÓRIO DAS ATIVIDADES DESENVOLVIDAS NO LABORATÓRIO MÓDULO I ELETRICIDADE BÁSICA TURNO NOITE CURSO TÉCNICO EM AUTOMAÇÃO INDUSTRIAL CARGA HORÁRIA EIXO TECNOLÓGICO CONTROLE

Leia mais

Conceitos Básicos de Teoria dos Circuitos

Conceitos Básicos de Teoria dos Circuitos Teoria dos Circuitos e Fundamentos de Electrónica Conceitos Básicos de Teoria dos Circuitos T.M.lmeida ST-DEEC- CElectrónica Teresa Mendes de lmeida TeresaMlmeida@ist.utl.pt DEEC Área Científica de Electrónica

Leia mais

H1- Compreender as grandezas relacionadas com o campo de conhecimento em eletricidade. Aula 1

H1- Compreender as grandezas relacionadas com o campo de conhecimento em eletricidade. Aula 1 H1- Compreender as grandezas relacionadas com o campo de conhecimento em eletricidade. Aula 1 Técnico em Eletromecânica - Agosto o de 2009 Prof. Dr. Emerson S. Serafim 1 Eletrostática: CONTEÚDO Átomo-Lei

Leia mais

Corrente elétricas. i= Δ Q Δ t [ A ]

Corrente elétricas. i= Δ Q Δ t [ A ] Corrente elétricas A partir do modelo atômico de Bohr, que o define pela junção de prótons, nêutrons e elétrons, é possível explicar a alta condutividade dos metais, devida à presença dos elétrons livres.

Leia mais

Me. Leandro B. Holanda,

Me. Leandro B. Holanda, 27-1 O que é física? Estamos cercados de circuitos elétricos. Todos os esses aparelhos e também a rede de distribuição de energia elétrica que os faz funcionar, dependem da engenharia elétrica moderna.

Leia mais

em série e aplica à associação uma ddp de 220V. O que é 0,5A. Calcule a resistência elétrica R L da lâmpa- acontece com as lâmpadas? da.

em série e aplica à associação uma ddp de 220V. O que é 0,5A. Calcule a resistência elétrica R L da lâmpa- acontece com as lâmpadas? da. FÍSIC - ELETICIDDE - SSOCIÇÃO DE ESISTOES S ESPOSTS ESTÃO NO FINL DOS EXECÍCIOS.. Um resistor de e um resistor de são associados 9. Um resistor de resistência elétrica tem dissipação em série e à associação

Leia mais

Transformações da energia elétrica. Maria do Anjo Albuquerque

Transformações da energia elétrica. Maria do Anjo Albuquerque Transformações da energia elétrica A passagem da corrente elétrica nos condutores produz efeitos cuja aplicabilidade prática É IMPORTANTÍSSIMA. Identifica os efeitos magnéticos, químicos e térmico que

Leia mais

Lista de exercícios 6 Circuitos

Lista de exercícios 6 Circuitos Lista de exercícios 6 Circuitos 1. Um fio com uma resistência de 5,0 Ω é ligado a uma bateria cuja força eletromotriz é 2,0 V e cuja resistência interna é 1,0 Ω. Em 2 minutos, qual é: a) a energia química

Leia mais

Física C Extensivo V. 5

Física C Extensivo V. 5 GABAITO Física C Extensivo V. 5 Exercícios 0) a) = 4 + = 6 Ω 06) = Ω b) V = 48 = 6 i = A c) = = 4. = V V = V =. = 6 V d) P = P = 4. = 6 w P = P =. = 08 w e) P total = P + P = 44 w f) gerador ideal P fornecida

Leia mais

CARGA ELÉTRICA E CORRENTE ELÉTRICA

CARGA ELÉTRICA E CORRENTE ELÉTRICA CARGA ELÉTRICA E CORRENTE ELÉTRICA 1- CARGA ELÉTRICA AULA 20 Como sabemos, os átomos são constituídos por várias partículas elementares e, para o nosso estudo, interessa o elétron o próton e o nêutron.

Leia mais

Notas de Aula ELETRICIDADE BÁSICA

Notas de Aula ELETRICIDADE BÁSICA Notas de ula ELETICIDDE ÁSIC Salvador, gosto de 2005. . Conceitos ásicos Fundamentais Estrutura tômica figura.0 é a representação esquemática de um átomo de ohr. Elétron () Núcleo( ou 0) Este átomo é composto

Leia mais

Recuperação de Física Giovanni

Recuperação de Física Giovanni Nome: nº Ano: LISTA DE EXERCÍCIOS DE FÍSICA Recuperação de Física Giovanni 1 - Uma corrente elétrica com intensidade de 8,0 A percorre um condutor metálico. A carga elementar é e = 1,6.10-19 C. Determine

Leia mais

wlad 2. O gráfico abaixo apresenta a medida da variação de potencial em função da corrente que passa em um circuito elétrico.

wlad 2. O gráfico abaixo apresenta a medida da variação de potencial em função da corrente que passa em um circuito elétrico. 1. Suponha um fio cilíndrico de comprimento L, resistividade ρ 1 e raio da seção transversal circular R. Um engenheiro eletricista, na tentativa de criar um fio cilíndrico menor em dimensões físicas, mas

Leia mais

LISTA DE RECUPERAÇÃO DE FÍSICA 1º SEMESTRE 3º ANO

LISTA DE RECUPERAÇÃO DE FÍSICA 1º SEMESTRE 3º ANO Maceió - Alagoas FÍSICA TIO BUBA LISTA DE RECUPERAÇÃO DE FÍSICA 1º SEMESTRE 3º ANO Professor(a): JOÃO CARLO ( BUBA) 01) O campo elétrico gerado em P, por uma carga puntiforme positiva de valor +Q a uma

Leia mais

Um circuito DC é aquele cuja alimentação parte de uma fonte DC (do inglês Direct Current), ou em português, CC (corrente contínua).

Um circuito DC é aquele cuja alimentação parte de uma fonte DC (do inglês Direct Current), ou em português, CC (corrente contínua). Um circuito DC é aquele cuja alimentação parte de uma fonte DC (do inglês Direct Current), ou em português, CC (corrente contínua). Como vimo anteriormente, para que haja fluxo de corrente pelo circuito,

Leia mais

Circuitos com Amperímetro e Voltímetro

Circuitos com Amperímetro e Voltímetro Circuitos com Amperímetro e Voltímetro 1. (Pucrs 2014) Considere o texto e a figura para analisar as afirmativas apresentadas na sequência. No circuito elétrico mostrado na figura a seguir, um resistor

Leia mais

EXERCÍCIOS DE TREINAMENTO

EXERCÍCIOS DE TREINAMENTO 1. (G1) O que é um farad (F)? EXERCÍCIOS DE TREINAMENTO RSE 2. (Unesp) São dados um capacitor de capacitância (ou capacidade) C, uma bateria de f.e.m. e dois resistores cujas resistências são, respectivamente,

Leia mais

Resistores e Associação de Resistores

Resistores e Associação de Resistores Resistores e Associação de Resistores Gabarito Parte I: O esquema a seguir ilustra a situação: Como mostrado, a resistência equivalente é Ω. Aplicando a lei de Ohm-Pouillet: = R eq i 60 = i i = 15 A. a)

Leia mais

Etapa 1: Questões relativas aos resultados Lei de Ohm. 1.1 A partir dos dados tabelados, calcule o valor médio da resistência do resistor.

Etapa 1: Questões relativas aos resultados Lei de Ohm. 1.1 A partir dos dados tabelados, calcule o valor médio da resistência do resistor. Respostas Questões relativas ao resultado Etapa 1: Questões relativas aos resultados Lei de Ohm 1.1 A partir dos dados tabelados, calcule o valor médio da resistência do resistor. Resposta: O valor encontrado

Leia mais

Física C Extensivo V. 4

Física C Extensivo V. 4 GBITO Física C Extensivo V. Exercícios 0) F. lei de Ohm se refere a um tipo de resistor com resistência constante cuja resistência não depende nem da tensão aplicada nem da corrente elétrica. F. penas

Leia mais

Calendarização da Componente Letiva 9º Ano Físico Química

Calendarização da Componente Letiva 9º Ano Físico Química AGRUPAMENTO DE ESCOLAS ANDRÉ SOARES (150952) Calendarização da Componente Letiva 9º Ano Físico Química 1º 2º 3º Períodos Período Período Período Número de aulas previstas (45 minutos) 39 36 21 Apresentação

Leia mais

3º Ensino Médio Trabalho de Física Data /08/09 Professor Marcelo

3º Ensino Médio Trabalho de Física Data /08/09 Professor Marcelo Nome 3º Ensino Médio Trabalho de Física Data /08/09 Professor Marcelo Em física, corrente elétrica é o movimento ordenado de partículas portadoras de cargas elétricas. Microscopicamente as cargas livres

Leia mais

CIRCUITOS COM CAPACITORES

CIRCUITOS COM CAPACITORES CIRCUITOS COM CAPACITORES 1. (Ufpr 13) Considerando que todos os capacitores da associação mostrada na figura abaixo têm uma capacitância igual a C, determine a capacitância do capacitor equivalente entre

Leia mais

Física C Extensivo V. 4

Física C Extensivo V. 4 GBITO Física C Extensivo V. Exercícios 0) F. lei de Ohm se refere a um tipo de resistor com resistência constante cuja resistência não depende nem da tensão aplicada nem da corrente elétrica. F. penas

Leia mais

Células eletrolíticas são mecanismos que provocam uma reação não espontânea de oxi-redução pelo fornecimento de energia elétrica ELETRÓLISE ÍGNEA

Células eletrolíticas são mecanismos que provocam uma reação não espontânea de oxi-redução pelo fornecimento de energia elétrica ELETRÓLISE ÍGNEA ELETRÓLISE Células eletrolíticas são mecanismos que provocam uma reação não espontânea de oxi-redução pelo fornecimento de energia elétrica ELETRÓLISE ÍGNEA É o processo de decomposição de uma substância

Leia mais

Electromagnetismo. Campo Magnético:

Electromagnetismo. Campo Magnético: Campo Magnético: http://www.cartoonstock.com/lowres/hkh0154l.jpg Campo Magnético: Existência de ímans Corrente eléctrica A bússola é desviada http://bugman123.com/physics/oppositepoles large.jpg Observação

Leia mais

Unidade 8. Eletricidade e Magnetismo

Unidade 8. Eletricidade e Magnetismo Unidade 8 Eletricidade e Magnetismo Eletrostática e Eletrodinâmica Os fenômenos elétricos estão associados aos elétrons. Cargas Elétricas As cargas elétricas podem ser positivas ou negativas Cargas opostas

Leia mais

Conteúdo GERADORES ELÉTRICOS E QUÍMICOS E FORÇA ELETROMOTRIZ.

Conteúdo GERADORES ELÉTRICOS E QUÍMICOS E FORÇA ELETROMOTRIZ. Aula 10.1 Física Conteúdo GERADORES ELÉTRICOS E QUÍMICOS E FORÇA ELETROMOTRIZ. Habilidades Compreender os conceitos da Eletrodinâmica. Compreender elementos do circuito elétrico e seu funcionamento. Frente

Leia mais

Sala de Estudos FÍSICA Lucas 3 trimestre Ensino Médio 2º ano classe: Prof.LUCAS Nome: nº Sala de Estudos Leis de Ôhm e Resistores

Sala de Estudos FÍSICA Lucas 3 trimestre Ensino Médio 2º ano classe: Prof.LUCAS Nome: nº Sala de Estudos Leis de Ôhm e Resistores Sala de Estudos FÍSICA Lucas 3 trimestre Ensino Médio 2º ano classe: Prof.LUCAS Nome: nº Sala de Estudos Leis de Ôhm e Resistores 1. (Unicamp 2013) O carro elétrico é uma alternativa aos veículos com motor

Leia mais

Módulo I Corrente Elétrica

Módulo I Corrente Elétrica Módulo Corrente Elétrica Corrente Elétrica: Todos os dispositivos elétricos (lâmpadas, liuidificadores, chuveiros, TVs, etc.) só funcionam se percorridos por corrente elétrica, ue uer dizer movimento de

Leia mais

Circuitos eléctricos Profª Helena Lança Ciências Físico-Química 9ºano

Circuitos eléctricos Profª Helena Lança Ciências Físico-Química 9ºano Profª Helena Lança Ciências Físico-Química 9ºano Um circuito eléctrico é um caminho por onde passa a corrente eléctrica. É constituído obrigatoriamente por um gerador e um receptor, podendo-se também intercalar

Leia mais

Medida da resistência elétrica

Medida da resistência elétrica Medida da resistência elétrica 1 Fig.31.1 31.1. No circuito da Fig. 31.1 o amperímetro e o voltímetro são reais (isto é, R A 0 e R V ). Eles fornecem, respectivamente, as leituras i e U. Podemos afirmar

Leia mais

SIMULADO DE CORRENTE ELÉTRICA

SIMULADO DE CORRENTE ELÉTRICA SIMULADO DE CORRENTE ELÉTRICA 1 T.1 (MACK) Dois fios, A e B, constituídos por massas iguais do mesmo cobre, são submetidos à mesma diferença de potencial e mantidos à mesma temperatura. O fio A tem o dobro

Leia mais

COMPANHIA DE ENGENHARIA DE TRÁFEGO Certificação de Competências

COMPANHIA DE ENGENHARIA DE TRÁFEGO Certificação de Competências COMPANHIA DE ENGENHARIA DE TRÁFEGO Certificação de Competências CARGO AGENTE DE MANUTENÇÃO DE VEÍCULOS Área de Concentração: Elétrica de Autos 1. O movimento ordenado de elétrons livres em um condutor

Leia mais

EFEITOS DA CORRENTE ELÉTRICA FQ- 9ºANO

EFEITOS DA CORRENTE ELÉTRICA FQ- 9ºANO EFEITOS DA CORRENTE ELÉTRICA FQ- 9ºANO EFEITOS DA CORRENTE ELÉTRICA EFEITOS DA CORRENTE ELÉTRICA A passagem da corrente através de um circuito elétrico afeta o funcionamento de todos os seus constituintes,

Leia mais

Eletrodinâmica. CORRENTE ELÉTRICA é o movimento ordenado dos portadores de cargas elétricas, ou seja, um fluxo de cargas elétricas.

Eletrodinâmica. CORRENTE ELÉTRICA é o movimento ordenado dos portadores de cargas elétricas, ou seja, um fluxo de cargas elétricas. Corrente Elétrica Eletrodinâmica Nos condutores metálicos, existe, movimentando-se desordenadamente uma verdadeira nuvem de elétrons, os elétrons livres. Em certas condições, esses elétrons podem ser colocados

Leia mais

Corrente elétrica pode ser entendida como sendo a quantidade de elétrons que atravessa a secção de um condutor em um segundo.

Corrente elétrica pode ser entendida como sendo a quantidade de elétrons que atravessa a secção de um condutor em um segundo. Corrente, Tensão, Resistência, Potência e Freqüência. Conceitos Básicos Mesmo pensando somente em Informática, temos que conhecer algumas grandezas elétricas básicas. Essas grandezas são: Corrente, tensão,

Leia mais

5.º Teste de Física e Química A 10.º A Abril minutos /

5.º Teste de Física e Química A 10.º A Abril minutos / 5.º Teste de Física e Química A 10.º A Abril 2013 90 minutos / Nome: n.º Classificação Professor.. GRUPO I As seis questões deste grupo são todas de escolha múltipla. Para cada uma delas são indicadas

Leia mais

Aluno: Disciplina: FÍSICA. Data: ELETROSTÁTICA

Aluno: Disciplina: FÍSICA. Data: ELETROSTÁTICA LISTA DE EXERCÍCIOS ELETRICIDADE ENSINO MÉDIO Aluno: Série: 3 a Professor: EDUARDO Disciplina: FÍSICA Data: ELETROSTÁTICA 1) (Unicamp-SP) Duas cargas elétricas Q 1 e Q 2 atraem-se quando colocadas próximas

Leia mais

Prof. Sergio Abrahão 38

Prof. Sergio Abrahão 38 Principais ligações num circuito Os diferentes modos que podemos utilizar para interligar os elementos elétricos, formando um circuito elétrico, são chamados de associações. Podemos ter associação em série,

Leia mais

3º ANO Data: / / Professor: Clóvis Bianchini Júnior Trimestre: 2º Aluno (a): Assinatura do responsável: AVALIAÇÃO DE RECUPERAÇÃO EM FÍSICA

3º ANO Data: / / Professor: Clóvis Bianchini Júnior Trimestre: 2º Aluno (a): Assinatura do responsável: AVALIAÇÃO DE RECUPERAÇÃO EM FÍSICA 3º ANO Data: / / 2016. Professor: Clóvis Bianchini Júnior Trimestre: 2º Aluno (a): Assinatura do responsável: Valor: 35,0 AVALIAÇÃO DE RECUPERAÇÃO EM FÍSICA Antes de iniciar a avaliação, leia atentamente

Leia mais

SIMULADO Radioeletricidade

SIMULADO Radioeletricidade 73 questões PY1IB SIMULADO Radioeletricidade 1ª Pergunta: Dois corpos carregados eletricamente com cargas, respectivamente, positiva e negativa exercem entre si uma força que tende a: A Aproximá los. B

Leia mais

Aula 6.1 Conteúdo: Eletrodinâmica corrente elétrica e seus efeitos, corrente contínua e alternada, relacionados a com a cultura indígena.

Aula 6.1 Conteúdo: Eletrodinâmica corrente elétrica e seus efeitos, corrente contínua e alternada, relacionados a com a cultura indígena. Aula 6.1 Conteúdo: Eletrodinâmica corrente elétrica e seus efeitos, corrente contínua e alternada, relacionados a com a cultura indígena. Habilidades: Entender a corrente elétrica como fluxo de elétrons

Leia mais

FACULDADE PITÁGORAS DISCIPLINA: ELETRICIDADE. Prof. Ms. Carlos José Giudice dos Santos

FACULDADE PITÁGORAS DISCIPLINA: ELETRICIDADE. Prof. Ms. Carlos José Giudice dos Santos FACULDADE PITÁGORAS DISCIPLINA: ELETRICIDADE Prof. Ms. Carlos José Giudice dos Santos carlos@oficinadapesquisa.com.br www.oficinadapesquisa.com.br UNIDADE II Cargas elétricas em movimento Resistividade

Leia mais

Professora Bruna CADERNO 3. Capítulo 11 Intensidade da Corrente Elétrica. Página - 228

Professora Bruna CADERNO 3. Capítulo 11 Intensidade da Corrente Elétrica. Página - 228 CADERNO 3 Capítulo 11 Intensidade da Corrente Elétrica Página - 228 INTENSIDADE DA CORRENTE ELÉTRICA Agora que aprendemos o que é uma corrente elétrica, aprenderemos como determinar a sua intensidade,

Leia mais

Observação 2: Após os primeiros 15 segundos, a temperatura da água que sai do chuveiro começa a aumentar gradativamente.

Observação 2: Após os primeiros 15 segundos, a temperatura da água que sai do chuveiro começa a aumentar gradativamente. FÍSICA Questão 01 Dado: se precisar, utilize, para a aceleração da gravidade g = 10 m/s 2 A figura ao lado mostra a instalação de água quente no banheiro do Senhor Pedro. A água fria entra num pequeno

Leia mais

U = R.I. Prof.: Geraldo Barbosa Filho AULA 06 CORRENTE ELÉTRICA E RESISTORES 1- CORRENTE ELÉTRICA

U = R.I. Prof.: Geraldo Barbosa Filho AULA 06 CORRENTE ELÉTRICA E RESISTORES 1- CORRENTE ELÉTRICA AULA 06 CORRENTE ELÉTRICA E RESISTORES 1- CORRENTE ELÉTRICA Movimento ordenado dos portadores de carga elétrica. 2- INTENSIDADE DE CORRENTE É a razão entre a quantidade de carga elétrica que atravessa

Leia mais

Circuitos Elétricos Simples

Circuitos Elétricos Simples Circuitos Elétricos Simples Circuitos elétricos que contém apenas resistores e fontes. A corrente elétrica se move sempre no mesmo sentido, ou seja, são circuitos de corrente contínua. Circuitos com mais

Leia mais

Apostila de Física 26 Resistores

Apostila de Física 26 Resistores Apostila de Física 26 Resistores 1.0 Definições Efeito térmico ou efeito joule: Transformação de energia elétrica em energia térmica. Choque dos elétrons livres contra os átomos dos condutores. Causa elevação

Leia mais

1-Eletricidade básica

1-Eletricidade básica SENAI 1 1-Eletricidade básica 1.1 - Grandezas Elétricas: 1.1 - Carga Elétrica, Tensão Elétrica, Corrente Elétrica, Resistência Elétrica; 1.2 - Leis de Ohm: 1.2.1-1 a Lei de Ohm 1.2.2 múltiplos e submúltiplos

Leia mais

QUESTÕES DE FÍSICA A RESUMO BIMESTRAL AULA 25 A 32

QUESTÕES DE FÍSICA A RESUMO BIMESTRAL AULA 25 A 32 Processo Avaliativo AVP - 3º Bimestre/2016 Disciplina: Física 2ª série EM A Data: Nome do aluno Nº Turma Atividade Avaliativa: entregar a resolução de todas as questões. ATENÇÃO: Esta lista é o trabalho

Leia mais

FÍSICA 12 Marília Peres. A corrente eléctrica é um movimento orientado. só ocorre se houver diferença de potencial.

FÍSICA 12 Marília Peres. A corrente eléctrica é um movimento orientado. só ocorre se houver diferença de potencial. CIRCUITOS ELÉCTRICOS FÍSICA 12 1 CORRENTE ELÉCTRICA A corrente eléctrica é um movimento orientado de cargas eléctricas através de um condutor e só ocorre se houver diferença de potencial. O sentido convencional

Leia mais

0.1 Introdução Conceitos básicos

0.1 Introdução Conceitos básicos Laboratório de Eletricidade S.J.Troise Exp. 0 - Laboratório de eletricidade 0.1 Introdução Conceitos básicos O modelo aceito modernamente para o átomo apresenta o aspecto de uma esfera central chamada

Leia mais

CET ENERGIAS RENOVÁVEIS ELECTROTECNIA

CET ENERGIAS RENOVÁVEIS ELECTROTECNIA CET ENERGIAS RENOVÁVEIS ELECTROTECNIA CADERNO DE EXERCÍCIOS 1. Duas cargas pontuais q1 = 30µ C e q2 = 100µ C encontram-se localizadas em P1 (2, 0) m e P2 (0, 2) m. Calcule a força eléctrica que age sobre

Leia mais

Aula 4 Análise Circuitos Elétricos Prof. Marcio Kimpara

Aula 4 Análise Circuitos Elétricos Prof. Marcio Kimpara ELETICIDADE Aula 4 Análise Circuitos Elétricos Prof. Marcio Kimpara Universidade Federal de Mato Grosso do Sul 2 Circuito Elétrico Chamamos de circuito elétrico a um caminho fechado, constituído de condutores,

Leia mais

Questão 04- A diferença de potencial entre as placas de um capacitor de placas paralelas de 40μF carregado é de 40V.

Questão 04- A diferença de potencial entre as placas de um capacitor de placas paralelas de 40μF carregado é de 40V. COLÉGIO SHALOM Trabalho de recuperação Ensino Médio 3º Ano Profº: Wesley da Silva Mota Física Entrega na data da prova Aluno (a) :. No. 01-(Ufrrj-RJ) A figura a seguir mostra um atleta de ginástica olímpica

Leia mais

COLÉGIO PEDRO II CAMPUS CENTRO FÍSICA 3ª SÉRIE TESTE TURMAS 1301 e 1303

COLÉGIO PEDRO II CAMPUS CENTRO FÍSICA 3ª SÉRIE TESTE TURMAS 1301 e 1303 COLÉGIO PEDRO II CAMPUS CENTRO FÍSICA 3ª SÉRIE TESTE TURMAS 1301 e 1303 Professor: Pedro Terra Coordenador: Sérgio Lima TURMA: NOTA NOME: NÚMERO: Responda às questões objetivas no quadro abaixo, a caneta

Leia mais

4. Variando-se a ddp aplicada a um condutor e medindo-se as intensidades de corrente, obtêm-se os resultados da tabela abaixo:

4. Variando-se a ddp aplicada a um condutor e medindo-se as intensidades de corrente, obtêm-se os resultados da tabela abaixo: AS RESPOSTAS ESTÃO NO FINAL DOS EXERCÍCIOS. 1. Um resistor tem resistência igual a 50Ω, sob ddp U = 60V. Calcule a intensidade de corrente que o atravessa. 2. Um resistor ôhmico, quando submetido a uma

Leia mais