UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CURSO DE ENGENHARIA INDUSTRIAL MECÂNICA RENAN FRANCISCO SOARES

Tamanho: px
Começar a partir da página:

Download "UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CURSO DE ENGENHARIA INDUSTRIAL MECÂNICA RENAN FRANCISCO SOARES"

Transcrição

1 UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CURSO DE ENGENHARIA INDUSTRIAL MECÂNICA RENAN FRANCISCO SOARES ESTUDO FLUIDODINÂMICO COMPUTACIONAL (CFD) APLICADO À AERODINÂMICA DO ESPORTE AUTOMOBILÍSTICO TRABALHO DE CONCLUSÃO DE CURSO CORNÉLIO PROCÓPIO 2013

2 RENAN FRANCISCO SOARES ESTUDO FLUIDODINÂMICO COMPUTACIONAL (CFD) APLICADO À AERODINÂMICA DO ESPORTE AUTOMOBILÍSTICO Trabalho de Conclusão de Curso apresentado ao Curso de Engenharia Industrial Mecânica, da Universidade Tecnológica Federal do Paraná, como requisito parcial para obtenção do grau de Engenheiro Mecânico. Orientador: Prof. Dr. Ricardo de Vasconcelos Salvo. CORNÉLIO PROCÓPIO 2013

3 FOLHA DE APROVAÇÃO (modelo da Coordenação da Engenharia Mecânica)

4 Aos meus pais e irmã; Aos amigos e a todos que fizeram parte dos cinco anos de graduação, desde a chegada à universidade até a entrega deste trabalho.

5 AGRADECIMENTOS Aos meus pais, Osvaldo e Rosinha, e à minha irmã, Renata, pelo amor e apoio de todo o sempre. Ao Prof. Dr. Ricardo de Vasconcelos Salvo, pela disposição de aceitar e, com dedicação, orientar este trabalho; além da gentileza de compartilhar seus conhecimentos. À Universidade Tecnológica Federal do Paraná, por oferecer sua infraestrutura e oportunidades no decorrer dos últimos cinco anos. A todos os professores da rede pública de ensino, desde o nível fundamental ao superior, que inspiraram e contribuíram para minha educação ao longo de 16 anos contados até a realização deste trabalho.

6 É preciso ser alguma coisa para parecer alguma coisa. (Ludwig van Beethoven) Nossas dúvidas são traidoras e nos fazem perder o bem que poderíamos conquistar, pelo medo de tentar. (William Shakespeare) No que diz respeito ao empenho, ao compromisso, ao esforço, à dedicação, não existe meio termo. Ou você faz uma coisa bem feita ou não faz. (Ayrton Senna)

7 RESUMO SOARES, Renan Francisco. ESTUDO FLUIDODINÂMICO COMPUTACIONAL (CFD) APLICADO À AERODINÂMICA DO ESPORTE AUTOMOBILÍSTICO. 146 f. Trabalho de Conclusão de Curso (Bacharelado em Engenharia Mecânica) Universidade Tecnológica Federal do Paraná. Cornélio Procópio, O desenvolvimento da tecnologia aerodinâmica automotiva intensifica-se, principalmente no automobilismo de alta performance, como um dos principais diferenciais competitivos. Assim, este trabalho aborda a fluidodinâmica no âmbito computacional, visando aplicações no esporte automobilístico. Dentre os estudos, o tópico Validação divide-se em dois estudos onde se avalia a metodologia a ser seguida, analisando os resultados dos coeficientes de arrasto e sustentação dos perfis NACA 0012 e NACA , concluindo que o modelo de melhor custo/benefício é o proposto por Spalart-Allmaras. Em sequência, o tópico Aerofólio dividese em três estudos. No primeiro, investiga-se um fenômeno conhecido como Efeito Solo, confirmando o mesmo. No segundo, faz-se proposta e análise de um aerofólio dianteiro de duplo elemento, composto pelos perfis NACA 0012 e NACA No terceiro, avalia-se um estudo de caso aplicado ao automobilismo: aerofólio dianteiro da Formula Mazda. O tópico final, Aplicações no Automobilismo, apresenta-se mais dois estudos. No primeiro, aplica-se o aerofólio de duplo elemento (anteriormente proposto) como aerofólio traseiro para o carro esportivo modelo Ferrari 458 Italia, utilizado no automobilismo brasileiro no ano de 2012 (Campeonato Brasileiro de Grand Turismo). Por fim, analisa-se qualitativamente o aerofólio dianteiro modelo RB7, da equipe Red Bull Racing, utilizado no início da temporada 2011 na Formula 1. Palavras-chave: Fluidodinâmica computacional. CFD. Aerodinâmica. Automobilismo. Aerofólios.

8 ABSTRACT SOARES, Renan Francisco. COMPUTATIONAL FLUID DYNAMICS (CFD) IN MOTORSPORT APPLICATIONS. 146 f. Trabalho de Conclusão de Curso (Bacharelado em Engenharia Mecânica) Universidade Tecnológica Federal do Paraná. Cornélio Procópio, The development of the automotive aerodynamic technology intensifies, especially on high performance motorsport as major competitive advantage. Hence, this project studies the computational fluid dynamics, focusing on motorsport applications. Among its studies, the topic Validation is divided into two studies evaluating the methodology to be followed by the results analysis of drag and lift coefficients of NACA 0012 and airfoils, concluding that the best cost/benefit (ideal) turbulent model is the proposed by Spalart-Allmaras. In sequence, the topic Airfoil is split into three studies. At first, it investigates a phenomenon known as Ground Effect, whose effect is confirmed by this research. As second study, a dual element front wing is proposed and analysed, which is made by NACA 0012 and airfoils. As third study, a case study concerning the front wing of Formula Mazda race car is investigated. The final topic, Applications in motorsport, is presented as two studies. The first study applies the airfoil, previously proposed, as rear wing for Ferrari 458 Italia sport car model. Such model was present on Brazilian motorsport in 2012 (Brazilian Grand Turismo Championship). Finally, the front wing of model RB7 race car (owned to Red Bull Racing Team, used in the 2011 season of Formula 1) is reviewed in a qualitatively point of view. Keywords: Computational Fluid Dynamics. CFD. Aerodynamics. Motorsport. Wing.

9 LISTA DE FIGURAS Figura 1 - Aplicação na aeronáutica: geração de lift Figura 2 - Aplicação no automobilismo: geração de downforce Figura 3 - Exemplo de mudanças aerodinâmicas entre temporadas na Fórmula Figura 4 - Evolução da aerodinâmica na Formula Figura 5 - Modelo da equipe Brawn GP de 2009 e detalhe do seu difusor Figura 6 - Esquema do DDRS, da equipe Mercedes em Figura 7 - Primeiro modelo da Formula 1 gerado exclusivamente por CFD (VR-01, Virgin Racing) Figura 8 - Exemplos de aplicações industriais da técnica CFD Figura 9 - Exemplo de malha estruturada (O-grid), bidimensional de linhas não ortogonais.. 35 Figura 10 - Exemplo de malha de bloco estruturada, bidimensional, com coincidência nas interfaces Figura 11 - Exemplo de malha de bloco estruturada, bidimensional, sem coincidência nas interfaces Figura 12 - Exemplo de malha de bloco estruturada, composta, bidimensional Figura 13 - Exemplo de malha não estruturada Figura 14 - Propriedades da geometria de um perfil aerodinâmico Figura 15 - Exemplo dos bordos e perfil aerodinâmico de uma asa Figura 16 - Pontos do perfil NACA Figura 17 Disposição dos elementos na região próxima ao perfil Figura 18 - Detalhe do refinamento e disposição ao redor do perfil NACA Figura 19 - Estratégia de blocagem usada na geração da malha Figura 20 - Malha gerada ao redor do perfil NACA Figura 21 - Disposição das fronteiras, no formato C Grid Figura 22 - Comparativo de C L (acima) e C D (abaixo), obtidos de simulações do perfil NACA Figura 23 - Disposição dos elementos na região próxima ao perfil NACA Figura 24 - Pontos do perfil (acima) e detalhe da malha (abaixo) para o perfil NACA Figura 25 - Definição do sentido positivo do ângulo de ataque

10 Figura 26 - Comparativo entre as forças resultantes e as publicadas por McBeath (2011) para v = 50m/s Figura 27 - Gráfico de -C L para o perfil NACA operando a Re= Figura 28 - Gráfico de C D para o perfil NACA operando a Re= Figura 29 - Modelo de baixa razão potência/peso: Formula Volkswagen, da África do Sul Figura 30 - Modelo de alta razão potência/peso: Formula Student Áustria Figura 31 - Geometria da malha interna (altura variável entre perfil e solo), em metros Figura 32 - Geometria da malha externa, em metros Figura 33 - Nomenclatura do domínio do fluido Figura 34 - Malha completa do domínio estudado composta pelas regiões interna e externa. 71 Figura 35 - Malhas internas para as alturas de 50 a 200 mm entre o perfil NACA 0012 e o solo Figura 36 - Malha para 100 mm de altura: y+ da malha original (sem adaptações) Figura 37 - Malha para 100 mm de altura: y+ da malha modificada (com adaptações) Figura 38 - Relação de downforce gerado em função da distancia ao solo Figura 39 - Relação de drag gerado em função da distancia ao solo Figura 40 - Geometria da malha interna (ângulo variável do flap), em milímetros Figura 41 - Geometria da malha externa, em milímetros Figura 42 - Detalhes da malha interna, para os sete ângulos de ataque do flap NACA Figura 43 Gráfico comparativo dos resultados de downforce: modelo SA Figura 44 - Gráfico comparativo dos resultados de drag: modelo SA Figura 45 - Gráfico comparativo dos resultados de downforce: modelo SST k-ω Figura 46 - Gráfico comparativo dos resultados de drag: modelo SST k-ω Figura 47 - Gráfico comparativo dos resultados de downforce entre os quatro grupos de soluções Figura 48 - Gráfico comparativo dos resultados de drag entre os quatro grupos de soluções. 83 Figura 49 - Modelo de carro de competição da Formula Mazda Figura 50 - Aerofólio dianteiro - Formula Mazda Figura 51 - Obtenção dos pontos do aerofólio frontal do carro da Formula Mazda Figura 52 - Geometria da malha interna (ângulo variável em torno do ponto p), em c Figura 53 - Geometria da malha externa, em c Figura 54 - Malha interna (dominant quad) para seis ângulos de ataque diferentes Figura 55 - Malha interna (all tri) para seis ângulos de ataque diferentes Figura 56 - Gráfico dos resultados de -C L obtidos pelo modelo Spalart-Allmaras

11 Figura 57 - Gráfico dos resultados de C D obtidos pelo modelo Spalart-Allmaras Figura 58 - Gráfico dos resultados de -CL obtidos pelo modelo SST k-ω Figura 59- Gráfico dos resultados de C D obtidos pelo modelo SST k-ω Figura 60 - Resultados de -C L para o aerofólio dianteiro da Formula Mazda Figura 61 - Resultados de C D para o aerofólio dianteiro da Formula Mazda Figura 62 - Ferrari modelo 458 Italia durante ensaio em túnel de vento Figura 63 - Extração dos pontos do perfil do veículo, posicionado em túnel de vento Figura 64 - Geometria das fronteiras do domínio, da região externa, em milímetros Figura 65 Geometria do domínio da região interna - perfil do veículo original, em milímetros Figura 66 - Geometria do domínio da região interna inclusão do aerofólio traseiro, em milímetros Figura 67 - Malha completa, composta pelas regiões interna e externa Figura 68 - Malhas internas: sem e com o aerofólio de duplo elemento Figura 69 - Representação da Velocidade (magnitude, em m/s), sem aerofólio Figura 70 - Representação da Pressão (manométrica, em Pa), sem aerofólio Figura 71 Representação da pressão e velocidade no domínio completo, sem aerofólio Figura 72 - Representação da Velocidade (magnitude, em m/s), sem aerofólio Figura 73 - Representação da Pressão (manométrica, em Pa), com aerofólio Figura 74 - Representação da pressão e velocidade no domínio completo, com aerofólio Figura 75 - Exemplo de estudo experimental (linhas de óleo) no aerofólio dianteiro Figura 76 - Exemplos de estudos CFD sobre modelos de carros da Formula Figura 77 - Limites do domínio em estudo Figura 78 - Detalhe dos elementos do aerofólio dianteiro, em corte no plano de simetria Figura 79 - Detalhe dos elementos do aerofólio dianteiro, em visão isométrica Figura 80 - Elementos da malha em contato com as superfícies do modelo Figura 81 - Visualização dos elementos da malha em contato com as superfícies front wing, symmetry (plano YZ), ground (plano ZX) e outlet (plano XY) Figura 82 - Visualizações da distribuição de pressão sobre o modelo adaptado de aerofólio dianteiro do modelo RB7, da equipe RedBull Racing Figura 83 - Perfil NACA 0012: Gradientes de velocidade para α = 0, 4 e Figura 84 - Perfil NACA 0012: Gradientes de velocidade para α = 12, 16 e Figura 85 - Perfil NACA 0012: Gradientes de pressão (com linhas de escoamento) para α=0, 4 e

12 Figura 86 - Perfil NACA 0012: Gradientes de pressão (com linhas de escoamento) para α=12, 16 e Figura 87 - Perfil NACA : Gradientes de velocidade para α = -4, 0 e Figura 88 - Perfil NACA : Gradientes de velocidade para α = 8, 12 e Figura 89 - Perfil NACA : Gradientes de velocidade para α = Figura 90 - Perfil NACA : Gradientes de pressão (com linhas de escoamento) α = -4, 0 e Figura 91 - Perfil NACA : Gradientes de pressão (com linhas de escoamento) α = 8, 12 e Figura 92 - Perfil NACA : Gradientes de pressão (com linhas de escoamento) α = Figura 93 - Perfil NACA 0012: Gradientes de velocidade para h = 200, 175 e 150 mm Figura 94 - Perfil NACA 0012: Gradientes de velocidade para h = 125, 100 e 75 mm Figura 95 - Perfil NACA 0012: Gradientes de velocidade para h = 50 mm Figura 96 - Perfil NACA 0012: Gradientes de pressão (e linhas de escoamento) para h=200, 175 e 150 mm Figura 97 - Perfil NACA 0012: Gradientes de pressão (e linhas de escoamento) para h=125, 100 e 75 mm Figura 98 - Perfil NACA 0012: Gradientes de pressão (e linhas de escoamento) para h = 50 mm Figura 99 - Duplo Elemento: Gradientes de velocidade para flap em α = 0, 5 e Figura Duplo Elemento: Gradientes de velocidade para flap em α = 15, 20 e Figura Duplo Elemento: Gradientes de velocidade para flap em α = Figura Duplo Elemento: Gradientes de pressão (e linhas de escoamento) para flap em α = 0, 5 e Figura Duplo Elemento: Gradientes de pressão (e linhas de escoamento) para flap em α = 15, 20 e Figura Duplo Elemento: Gradientes de pressão (e linhas de escoamento) para flap em α = Figura Formula Mazda: Gradientes de velocidade para α = -4, 0 e Figura Formula Mazda: Gradientes de velocidade para α = 8, 12 e Figura Formula Mazda: Gradientes de pressão (e linhas de escoamento) para α = -4, 0 e

13 Figura Formula Mazda: Gradientes de pressão (e linhas de escoamento) para α = 8, 12 e Figura Ferrari 458 Italia: Linhas de escoamentos (acima) sobre os gradientes de pressão (ao centro) e de velocidade (abaixo), para aerofólio proposto para flap em α = Figura Ferrari 458 Italia: Gradientes de pressão (acima) e de velocidade (abaixo), para aerofólio proposto para flap em α = Figura Parte 1: Linhas de fluxo ao redor do aerofólio dianteiro do modelo RB7 (Red Bull Racing, Formula 1), em diferentes níveis de altura Figura Parte 2: Linhas de fluxo ao redor do aerofólio dianteiro do modelo RB7 (Red Bull Racing, Formula 1), em diferentes níveis de altura

14 LISTA DE TABELAS Tabela 1 - Equações governantes de um perfil aerodinâmico da classe NACA de 4 dígitos Tabela 2 - Condições de contorno no domínio do fluido Tabela 3 - Resultados de C L, obtidos de simulações do perfil NACA Tabela 4 - Resultados do coeficiente de arrasto (C D ), obtidos de simulação do perfil NACA Tabela 5 - Condições de contorno no domínio do fluido Tabela 6 - Comparação entre forças resultantes e as publicadas por McBeath (2011) para v = 50m/s Tabela 7 - Comparativos de -C L e C D para o perfil NACA operando a Re= Tabela 8 - Condições de contorno no domínio do fluido Tabela 9 - Simulação sem adaptação de y+ durante simução Tabela 10 - Simulação com adaptação de y+ durante simução (y+ < 2) Tabela 11 - Simulação, em modelo SA, sem adaptação de y+ durante simução Tabela 12 - Simulação, em modelo SA, com adaptação de y+ durante simução (y+ < 2) Tabela 13 - Simulação, em modelo SST k-ω, sem adaptação de Y+ durante simução Tabela 14 - Simulação, em modelo SST k-ω, com adaptação de y+ durante simução (y+ < 2) Tabela 15 - Simulação, em modelo SA, de malhas constituidas no formato Dominant Quad. 89 Tabela 16 - Simulação, em modelo SA, de malhas constituidas no formato All tri Tabela 17 - Simulação, em modelo SST k-ω, de malhas constituidas no formato Dominant Quad Tabela 18 - Simulação, em modelo SST k-ω, de malhas constituidas no formato All tri Tabela 19 - Condições de contorno no domínio do fluido Tabela 20 - Resultados de C D e C L para a seção da Ferrari 458 Italia, sem e com aerofólio. 100 Tabela 21 - Condições de contorno no domínio do fluido

15 LISTA DE SIGLAS CFD EWT DRS DDRS FD FE FV NACA NASA RANS RMS RNG SA SAS SIMPLE SST URANS VAWT Computational Fluid Dynamics enhanced wall treatment Drag Reduction System Double Drag Reduction System Finite Difference Finite Element Finite Volume National Advisory Committee for Aeronautics National Aeronautics and Space Administration Reynolds Averaged Navier-Stokes Reynolds Stress Model Renormalization Group Spalart-Allmaras Scale Adaptive Simulation Semi Implicity Method for Pressure-Linked Equations Shear-Stress Transport Unsteady Reynolds Averaged Navier-Stokes Vertical Axis Wind Turbine

16 LISTA DE SÍMBOLOS 2D bidimensional 3D tridimensional c comprimento da corda C D C L C Lmax coeficiente de arrasto coeficiente de sustentação coeficiente de sustentação máximo -C L coeficiente de sustentação negativo k, k T energia cinética turbulenta k L k-ε k-ω Re v t energia cinética laminar modelo de turbulência K-épsilon modelo de turbulência K-ômega número de Reynolds velocidade do escoamento máxima espessura de perfil aerodinâmico y+ distância adimensional em relação à parede α ângulo de ataque ε taxa de dissipação ω taxa de dissipação específica

17 SUMÁRIO 1. INTRODUÇÃO FUNDAMENTOS DA AERODINÂMICA NO ESPORTE AUTOMOBILÍSTICO MOTIVAÇÃO OBJETIVO Visão Geral Visão Específica HISTÓRIA DA AERODINÂMICA NO ESPORTE AUTOMOBILÍSTICO Aerodinâmica na Formula Dos Testes Experimentais aos Virtuais TEMÁTICA REVISÃO BIBLIOGRÁFICA DE PERFIS AERODINÂMICOS DA AERODINÂMICA AUTOMOBILÍSTICA CONCEITOS DA FLUIDODINÂMICA COMPUTACIONAL (CFD) COMPONENTES DE UMA SOLUÇÃO NUMÉRICA Modelo Matemático Discretização do Método Sistemas de Coordenadas e Base Vetorial Malha Numérica Malha estruturada (ou regular): Malha de bloco estruturada: Malha não estruturada: Aproximações Finitas Método de Solução Critério de Convergência BOAS PRÁTICAS SOBRE GEOMETRIA E DESIGN DA MALHA MODELOS DE TURBULÊNCIA PARA ANÁLISE DE ESCOAMENTOS MODELO SPALART-ALLMARAS MODELO TRANSITION SST MODELOS K-ΕPSILON Standard k-ε Modelo RNG k-ε Modelo Realizable k-ε MODELOS K-ÔMEGA Standard k-ω SST k-ω MODELO TRANSITION K-KL-ÔMEGA MODELO TRANSITION SST MODELO REYNOLDS STRESS SCALE-ADAPTIVE SIMULATION MODEL VALIDAÇÃO INTRODUÇÃO À GEOMETRIA DE AEROFÓLIOS PERFIL NACA Série NACA 4 Dígitos Preparação do Perfil NACA Simulação... 56

18 5.2.4 Conclusão PERFIL NACA Série NACA 6 Dígitos Preparação do Perfil NACA Simulação Caso I: McBeath (2011) Re=1, (v=50 m/s) Caso II: Airfoil Tools (2013) Re= (v=36,88 m/s) Conclusão AEROFÓLIOS EFEITO SOLO Preparação de Front Wing - NACA Simulação Conclusão ASA DIANTEIRA DUPLO ELEMENTO Preparação de Conjunto Duplo Elemento Simulação Resultados - modelo Spalart-Allmaras (SA) Resultados - modelo Shear-Stress Transport (SST) k-ω Conclusão ASA DIANTEIRA - FORMULA MAZDA Preparação do Perfil Simulação Resultados - modelo Spalart-Allmaras (SA) Resultados - modelo Shear-Stress Transport (SST) k-ω Conclusão APLICAÇÕES NO AUTOMOBILISMO CAMPEONATO BRASILEIRO DE GRAN TURISMO FERRARI 458 ITALIA Introdução Preparação do Perfil Simulação Conclusão FORMULA 1 RED BULL RACING RB Introdução Preparação do Perfil Simulação Conclusão CONSIDERAÇÕES FINAIS REFERÊNCIAS APÊNDICE...116

19 19 1. INTRODUÇÃO 1.1 FUNDAMENTOS DA AERODINÂMICA NO ESPORTE AUTOMOBILÍSTICO Um carro de competição, assim como qualquer outro veículo, é um equipamento de alta complexidade aerodinâmica. E muito de seus dispositivos podem ser comparados aos aplicados à aeronáutica, contudo, considerando objetivos opostos. Na aeronáutica, as asas principais de uma aeronave atuam com a finalidade de gerar força de sustentação (conhecida pelo termo lift) para manter aeronaves em voo. No automobilismo, o intuito é gerar força em sentido contrário (lift negativo, geralmente denominada como downforce). Em ambos os casos, a geração de lift ou downforce é balanceada com o ônus das forças de arrasto (oposta ao sentido do movimento, denominada drag). Todavia, é necessário destacar que o foco principal da aerodinâmica automobilística é permitir maior velocidade média em um determinado circuito. Ou seja, registrar o menor tempo durante um percurso, o qual pode incluir retas e curvas de diferentes formatos e exigências. Figura 1 - Aplicação na aeronáutica: geração de lift. Fonte: F1Technical.com (2013). Figura 2 - Aplicação no automobilismo: geração de downforce. Fonte: F1Technical.com (2013).

20 20 Eis o ponto chave da aerodinâmica no esporte a motor: Gerar o mínimo de drag sobre a superfície do carro, diminuindo a resistência de passagem perturbando o mínimo de ar; assim, atingindo alta velocidade máxima em linha reta. Gerar o máximo de downforce sobre o carro, buscando gerar maiores forças de atrito dos pneus; consequentemente, altas velocidades em curvas. Porém, elementos que proporcionam maior downforce também causam maior drag. Assim, aerodinamicistas sempre buscam o ponto ótimo entre a geração de drag e downforce para determinadas condições. Na imensa maioria dos casos, ajustando alguns dispositivos aerodinâmicos reguláveis (por exemplo, aerofólios) a cada corrida. E nas categorias em alto nível, desenvolvendo novos pacotes aerodinâmicos durante a própria temporada. Na figura abaixo, temos um exemplo de adaptações aerodinâmicas decorrente das mudanças do dimensionamento nominal no regulamento da Formula 1, para a temporada do ano de Figura 3 - Exemplo de mudanças aerodinâmicas entre temporadas na Fórmula 1. Fonte: Formula1.com (2013).

21 MOTIVAÇÃO Segundo Nico Rosberg, piloto da equipe Mercedes GP Petronas da Formula 1 desde 2010, aerodinâmica é crucial na performance de seus carros. E também das próprias palavras de Ross Brawn (chefe de equipe da mesma), a aerodinâmica é a área-chave para a performance de um carro da Fórmula 1 e que de fato, [aerodinâmica] gera tanto downforce que nós poderíamos inverter de cabeça para baixo a pista e o carro a 175 km/h ainda estaria colado ao teto (ALLIANZ, 2011). Considerando o interesse de aplicação de conhecimentos no automobilismo, será tomado para estudos perfis de aerofólios, os quais possuem potencial para uso em competições. Estes, quando utilizados como asas dianteiras, possuem como função gerar downforce na região frontal em um carro monoposto, como os modelos da Formula Mazda, Formula 3, Formula Indy e Formula 1. Conforme entrevista de Mario Theissen (BMW Motorsport diretor), tal dispositivo é responsável por cerca de 25 a 30 por cento do downforce gerado por um modelo da BMW Willians Formula 1. Assim, a busca pela habilidade em fluidodinâmica computacional indispensável neste ramo é um dos motivos para a realização deste trabalho. Além disso, tais conhecimentos serão utilizados em trabalhos futuros. 1.3 OBJETIVO Visão Geral Alcançar, por meio do desenvolvimento deste trabalho, conhecimento dos princípios da fluidodinâmica computacional (CFD - Computational Fluid Dynamics). Além destes princípios, este trabalho consiste no estudo da aerodinâmica de perfis aerodinâmicos, através de simulação computacional, com potencial uso no esporte automobilístico.

22 Visão Específica Os objetivos específicos do trabalho são: a) Estudar a aplicação da aerodinâmica ao esporte automobilístico, focando dispositivos geradores de cargas aerodinâmicas. b) Adquirir conhecimento sobre a metodologia e softwares destinados às aplicações da técnica CFD. c) Desenvolver habilidade em simulação computacional. 1.4 HISTÓRIA DA AERODINÂMICA NO ESPORTE AUTOMOBILÍSTICO O National Advisor Committee for Aeronautics, conhecido pela abreviação NACA, era uma agência norte-americana que, mais tarde, foi percursora da National Aeronautics and Space Administration (NASA). A NACA desenvolveu um sistema de definição e catalogação de perfis de aerofólios entre os anos de 1920 e E, apesar do seu foco aeronáutico, os perfis NACA posteriormente foram as primeiras aplicações no automobilismo, atuando como aerofólios dianteiros e traseiros Aerodinâmica na Formula 1 Quando vista a história da aerodinâmica automobilística pelo ponto de vista da principal categoria do automobilismo, a Formula 1, destaca-se quatro pontos significantes quanto a sua evolução. Uma vez iniciado a categoria oficialmente em 1950, a primeira inovação surgiu em O modelo Mercedes W196, pilotado por Juan Manuel Fangio, exibia o desenvolvimento da carroceria tipo streamline. O objetivo desta carroceria era a redução de drag, e assim, marcava o início da corrida aerodinâmica na diminuição desta resistência.

23 23 O segundo marco na categoria está no ano de Pela primeira vez, carros apresentam o uso de aerofólios dianteiros e traseiros. A equipe Lotus iniciou equipando um pequeno aerofólio dianteiro e no carro de Graham Hill (Lotus 49B). Outras equipes, como Brabham e Ferrari, equiparam grandes aerofólios montados em suportes acima do piloto. Em pouco tempo, todas as equipes empregavam aerofólios dianteiros e traseiros. A terceira era da aerodinâmica automobilística é conhecida como a era do Efeito Solo (conhecida no meio automobilístico como Ground Effect era ). Dez anos após os primeiros usos de aerofólios, em 1978, os engenheiros da categoria (chamados até então de designers ) atingiram o apogeu da aerodinâmica na Lotus 78/79. Este seu novo princípio fundamenta-se que o carro, como um todo, comportava-se como uma grande asa invertida. O desenvolvimento cuidadoso do princípio por Colin Chapman (designer e fundador da equipe) tornou os carros da Lotus virtualmente imbatíveis durante a temporada, vencendo nove das quinze corridas e, assim, os campeonatos de piloto e construtor de Tempos depois, o regulamento da categoria baniu o Efeito Solo, impondo que o assoalho possua um degrau planar. Tal medida foi por razão de os níveis de downforce gerado permitiam velocidades, em curvas, muito altas para o nível de segurança que os carros poderiam oferecer na época. E, desde então, ao longo das últimas décadas seguiram-se pequenos desenvolvimentos aerodinâmicos, até outros grandes passos em 2009 e Downforce Lift Linha de Escoamento Áreas geradoras de downforce Figura 4 - Evolução da aerodinâmica na Formula 1. Fonte: Adaptado de F1network.net (2003).

24 24 Em 2009, a equipe estreante Brawn GP fez história vencendo o campeonato de construtores e de piloto (Jenson Button) do mesmo ano. O domínio da temporada foi resultado, principalmente, do polêmico duplo difusor que oferecia superioridade aerodinâmica a seus pilotos. Figura 5 - Modelo da equipe Brawn GP de 2009 e detalhe do seu difusor. Fonte: Adaptado de Racecar Engineering.com (2013). Em 2010, a novidade foi o uso de dispositivos aerodinâmicos móveis. Por regulamento, a categoria permitiu o uso de um aerofólio traseiro de duplo elemento cujo elemento superior pudesse diminuir o ângulo de ataque durante determinadas circunstâncias. Assim que ativado pelo piloto, o dispositivo permitia que o fluxo de ar seguisse com menor interferência e, consequentemente, resultando em menor drag. Tal sistema é conhecido com DRS (Drag Reduction System). Contudo, a equipe Mercedes fez uma inovação da inovação em 2012, a qual foi considerada por pilotos um feito tão genial quanto o Efeito Solo de Colin Grapman. Assim que ativado o DRS, o movimento do elemento da asa traseira desobstruía duas tubulações que, pela dinâmica do ar, permitia um fluxo que percorria o interior do veículo até a asa dianteiro, colocando-a em condição de gerar menos downforce e drag. Este sistema ficou conhecido como DDRS (Double Drag Reduction System), que além de gerar menor arrasto em retas, melhorava o equilíbrio (balanço) do carro ao diminuir downforce não somente sobre o eixo traseiro, mas também no eixo frontal. Atualmente, melhorias seguem o princípio do DDRS (abolido pelo regulamento da F1 para a temporada 2013) como outros sistemas de redução de arrasto, os quais são independentes do DRS. E outras continuaram surgindo, sempre visando a excelência da aerodinâmica dentro dos limites que os regulamentos permitem.

25 25 Figura 6 - Esquema do DDRS, da equipe Mercedes em Fonte: Adaptado de Racecar Engineering.com (2013) Dos Testes Experimentais aos Virtuais No ponto de vista da tecnologia empregada no desenvolvimento da aerodinâmica neste âmbito, por longo tempo túneis de vento foram as principais ferramentas utilizadas por engenheiros. De fato, esta metodologia de testes experimentais simula as condições reais as quais os veículos estariam expostos, com considerável qualidade. Contudo, utilizar de tal vantagem tem seu preço; literalmente. Segundo a equipe Honda, em 2006, estimava-se o custo de 30 milhões para a construção de seu novo túnel de vento (Formula1.com, 2013). E as equipes que não dispõem de seu próprio túnel de vento realizam seus testes em tuneis de vento de empresas particulares do ramo. Devido ao alto custo do estudo experimental, os desenvolvedores buscaram novas formas de realizar seus estudos. Assim, o uso de simulações virtuais (CFD) ganhou importância à medida que os recursos computacionais evoluíram, pois a tecnologia propicia grande redução nos custos por diminuir a necessidade de testes experimentais. Contudo, não os abolindo. Por esta razão, a temporada de 2010 da Formula 1 ganhou um marco quanto ao desenvolvimento da aerodinâmica automobilística: o primeiro modelo da categoria a ser gerado somente através de CFD. Ou seja, o modelo nasceu exclusivamente do uso de recursos computacionais; portanto, sem os testes experimentais em túnel de vento. Tal modelo foi o carro VR-01, da equipe Virgin Racing (estreante da temporada 2010).

26 26 Contudo, os resultados da equipe durante a temporada de 2010 deixou uma lição: no momento, não se deve abdicar totalmente de testes experimentais. Pois a simulação virtual do escoamento em todas as suas escalas e propriedades ainda requer um grande montante de tempo para atingir seus resultados; o que no ramo industrial e desportivo de performance não é disponível. Por outro lado, a equipe Red Bull Racing, em parceria de inovação com a ANSYS (empresa líder no mercado mundial do ramo de códigos CFD), obteve o êxito do título mundial de construtores (e de pilotos) do mesmo ano. O desenvolvimento de seus veículos baseia-se, principalmente, na utilização da técnica CFD, seguida pela ratificação dos resultados experimentalmente. Portanto, a sabedoria do uso de recursos físicos e computacionais pode ser o diferencial competitivo neste ramo, onde se espera ótimos resultados, em curto prazo de tempo e com custos razoáveis. Figura 7 - Primeiro modelo da Formula 1 gerado exclusivamente por CFD (VR-01, Virgin Racing). Fonte: Adaptado de Racecar Engineering.com (2013).

27 TEMÁTICA Uma vez que este trabalho foca o estudo da fluidodinâmica computacional aplicado ao esporte automobilístico, a partir deste ponto, este se divide como exposto nos parágrafos abaixo. No tópico Revisão Bibliográfica, está uma pequena compilação de trabalhos técnicos e científicos quanto à abordagem de perfis aerodinâmicos e da aerodinâmica automobilística. No tópico Conceitos da Fluidodinâmica Computacional (CFD), almeja-se contextualizar o leitor aos fundamentos da fluidodinâmica computacional. No tópico Modelos de Turbulência para Análise de Escoamento, apresenta-se uma descrição sucinta sobre os modelos de turbulência mais comuns: SA, k-épsilon, k-ômega, SST, k-kl-ômega, Reynolds Stress e SAS. No tópico Validação, os dois perfis aerodinâmicos (NACA 0012 e NACA ) são analisados para diferentes ângulos de ataque. Assim, mensura-se os coeficientes de arrasto e sustentação, comparando com dados experimentais a fim de validar os métodos utilizados. No tópico Aerofólios, três estudos são apresentados. O primeiro estudo está no subtópico Efeito Solo, onde se avalia o fenômeno de mesmo nome. O segundo estudo denomina-se Duplo Elemento, cujo subtópico apresenta o estudo de um aerofólio composto por dois perfis aerodinâmicos e seu comportamento próximo ao solo. Por sua vez, o terceiro estudo é o subtópico Formula Mazda, onde se investiga os resultados de aerofólio dianteiro da categoria em um artigo publicado (Kieffer et al, 2005); e este trabalho faz sua própria análise do aerofólio dianteiro. No tópico Aplicações no Automobilismo, mais dois estudos são apresentados. No primeiro subtópico (Campeonato Brasileiro de Gran Turismo Ferrari 458 Italia), propõem-se o emprego do aerofólio do subtópico Duplo Elemento no modelo esportivo Ferrari 458 Italia para a geração de maior carga aerodinâmica. No segundo subtópico (Formula 1 Red Bull Racing RB7), faz-se uma simples análise qualitativa tridimensional de um aerofólio dianteiro da principal categoria do automobilismo mundial.

28 28 2. REVISÃO BIBLIOGRÁFICA Muitos trabalhos técnicos e científicos almejam o desenvolvimento do conhecimento da mecânica dos fluídos, tanto no nível experimental quanto no âmbito virtual (CFD). No início, fazendo o uso de túneis de vento e simples equipamentos. Contemporaneamente, tais estudos atingem a esfera da fluidodinâmica computacional. De uma forma geral, o conhecimento base desta nova modalidade de estudo é utilizado em uma enorme gama de aplicações, nos diversos setores como: aeronáutico, aeroespacial, náutico, aplicações industrial, dentre outros. E a aerodinâmica automobilística não é exceção. 2.1 DE PERFIS AERODINÂMICOS Em relatório pertencente ao Aeronautical Research Council, até então, divisão do Ministério da Defesa britânico (Gregory et al, 1973), é estudado as características aerodinâmicas do perfil NACA 0012, para números de Reynolds de 1, e 2, Destacam-se o estudo da influência da rugosidade na superfície superior e a geometria em caráter tridimensional. Gregory et al (1973) concluem que a separação laminar desaparece intermitentemente por razões, até então, ainda não completamente entendidas. Quanto ao uso da rugosidade, o C Lmax não se reduz expressivamente até que a extensão da rugosidade seja de 0,1c (medido a partir da borda de fuga), onde o aumento de drag consequente da rugosidade rapidamente atinge grandes valores. O trabalho de Sheldahl et al (1981) é de grande contribuição quanto ao estudo experimental de perfis aerodinâmicos simétricos. Mesmo que a finalidade seja fornecer informações para uso dos perfis em turbinas de vento de eixo vertical (VAWT), os resultados do estudo são úteis para várias aplicações. Isto, pois, tornam-se de conhecimento os coeficientes de sustentação (C L ) e de arrasto (C D ) para ângulos de ataque de 0 a 180 graus, através da análise experimental dos perfis NACA: 0009, 0012, 0012H, 0015 e 0018; e projeção dos resultados para os perfis NACA 0018, 0021 e Uma vez que os perfis são simétricos, a gama de ângulos é suficiente para uma volta completa; em outras palavras, fornece o conhecimento de C L e C D para todas as direções de escoamento bidimensional. Portanto, esta enorme gama de ângulo de ataque para estes perfis é exposta ainda para

29 29 diferentes números de Reynolds, os quais variam de a Em resumo, este trabalho é uma fonte clássica e rica em resultados experimentais e usualmente utilizada em outros trabalhos como referência para estudos CFD. Outra fonte rica em parâmetros para simulação de aerofólios é a dissertação de mestrado de Basha (2006) pela Concordia University, Canadá. Em seu trabalho, simulando o perfil NACA 0012 para validação, o autor testa a influência de parâmetros como: Tipo de malha: a) C-grid. b) O-grid. c) Malha híbrida (elementos tri e/ou quad). Modelo de turbulência: a) Spalart-Allmaras. b) k-ε nas suas três versões: Standard, RNG e Realizable. Sensibilidade da resolução ao redor do perfil (influência do y+): a) Espessuras da primeira camada: de a da corda. b) Tratamentos de parede para k-ε: Standard wall treatment (SWT). Enhanced wall treatment (EWT). Non-equilibrium wall treatment (neqwt). Resumindo seus resultados, Basha (2006) sugere o uso do modelo Spalart- Allmaras com malha altamente refinada ao redor do perfil (y+ menor do que 5) e, de preferência, malha híbrida para melhores resultados ou C-grid estruturada para eficiência de processamento. Sobre a separação da camada limite em escoamento turbulento, Ali et al (2011) promove outro estudo sobre o perfil NACA O modelo k-ε é empregado, utilizando o método de solução simples. O escopo do estudo é o descolamento (ou separação) da camada limite, avaliando também a distribuição de pressão e os coeficientes de sustentação e arrasto (C L e C D ). Ao final, Ali et al (2011) conclui que o modelo k-ε obteve bom resultado quanto ao ponto de separação sobre o aerofólio. O máximo coeficiente de sustentação (C Lmax 1,45) é

30 30 alcançado em número de Reynolds igual 2, e ângulo de ataque igual a 13. A condição de stall ocorre na configuração de 14,5. Além disso, o coeficiente de sustentação aumenta à medida que o número de Reynolds também aumenta, e seus resultados são melhores refinando a malha (do tipo C-grid). Outro relevante trabalho é o publicado por Eleni et al (2012). Também fazendo o estudo sobre o perfil NACA 0012, este estuda dois pontos de influência dos resultados: a diferença entre regime de transição laminar-turbulento em relação ao totalmente turbulento, e os modelos de turbulência (Spalart-Allmaras, Realizable k-ε e SST k-ω), comparando com três fontes de dados experimentais. O cenário em estudo é o ar padronizado, em regime permanente, escoando de tal forma que o número de Reynolds é de , apresentando correlação para outros valores. Os ângulos de ataque em estudo variam de -12 a 20. Por fim, Eleni et al (2012) concluem o trabalho apontando o modelo SST k-ω como melhor opção, e que o arrasto sobrestimado em seus resultados deve-se ao fato de que o escoamento real é laminar em cerca da metade da corda (onde as simulações consideraram regime totalmente turbulento). Os autores relatam ser possível melhorar os resultados da seguinte forma: determinar o ponto de transição laminar-turbulento, refazer a malha dividindo em duas regiões (uma para cada fenômeno) e simular novamente para a nova malha. De tal forma, segundo eles, os resultados são muito parecidos com os correspondentes valores experimentais. 2.2 DA AERODINÂMICA AUTOMOBILÍSTICA Infelizmente, quando se trata do setor automobilístico, a disponibilidade de trabalhos publicados torna-se escassa, pois os objetivos de seus estudos habitualmente estão entrelaçados com questões de interesse comercial. Ainda, tais estudos podem ser o diferencial competitivo quando na esfera do esporte em alto nível. Sendo um dos poucos artigos disponíveis sobre o assunto, a base e motivação deste trabalho é um artigo publicado, em nível internacional, com o título CFD study of section characteristics of Formula Mazda race car wings (Kieffer, 2005). Em tal artigo, a abordagem é o estudo computacional dos aerofólios dos carros da Fórmula Mazda em diferentes ângulos de ataque. Utiliza-se o modelo k-ε, em malha retangular estruturada, nas

31 31 soluções através do software Star-CD CFD. O intuito foi prover às equipes informações sobre drag e downforce nas diferentes configurações disponíveis para os aerofólios. Por último, mas não menos importante, o livro publicado com o título Competion Car Aerodynamics (McBeath, 2011) é uma formidável leitura para iniciantes em aerodinâmica automobilística. Além dos conceitos da aerodinâmica, durante as abordagens são apresentados estudos CFD, os quais exemplificam e quantificam os efeitos de tais componentes aerodinâmicos. Logo, os fundamentos da aerodinâmica automobilística e suas análises como o perfil NACA são apreciadas na realização este trabalho.

32 32 3. CONCEITOS DA FLUIDODINÂMICA COMPUTACIONAL (CFD) A fluido dinâmica computacional citada comumente por CFD (Computational Fluid Dynamics) é um ramo da Mecânica dos Fluidos que baseia-se na análise, através de simulações computacionais, de sistemas consistentes em escoamento de fluido, transferência de calor e demais fenômenos associados. A técnica é utilizada numa vasta gama de aplicações industriais e científicas como: aerodinâmica veicular e aeroespacial, hidrodinâmica de navios, turbinas, bombas hidráulicas, trocadores de calor, processos químicos, meteorologia, biomedicina, dentre outras (Versteeg, 1995). A partir da década de 1960, a indústria aeroespacial integrou a técnica CFD no design, pesquisa & desenvolvimento e na fabricação de aeronaves e turbinas. Com o advento de recursos computacionais mais poderosos, o método aplicou-se no design de motores de combustão interna, câmaras de combustão de turbinas a gás e caldeiras. Além disso, fabricantes de veículos utilizam da análise CFD para prever forças aerodinâmicas geradas pelo escoamento de ar nas superfícies exteriores, além da aeroacústica e da refrigeração pelo ar para o conforto no interior do veículo. Figura 8 - Exemplos de aplicações industriais da técnica CFD. Fonte: Autodesk, Inc. (2013).

33 COMPONENTES DE UMA SOLUÇÃO NUMÉRICA No livro Computational Methods for Fluid Dynamics (Ferziger et al, 2002) são descritos importantes pontos sobre soluções numéricas através da técnica CFD. Logo, uma adaptação de sete tópicos segue abaixo, iniciando pelo modelo matemático Modelo Matemático O ponto inicial de um método numérico é o uso de um modelo matemático (como, por exemplo, equações governantes na forma de diferenciais parciais ou integrodiferenciais e suas condições de contorno). Vale ressaltar que o modelo pode incluir simplificações das equações exatas da Lei de Conservação. Um método de solução geralmente é desenvolvido para um caso particular de equações governantes, pois a aplicação de um método para todos os tipos de escoamento é impraticável, se não impossível. Assim, um determinado modelo não é o ideal para todas e quaisquer aplicações Discretização do Método Sucedendo a escolha do modelo matemático, é necessária a escolha de um método de discretização adequado. Por exemplo, um método de aproximação das equações diferenciais através de um sistema de equações algébricas para as variáveis. Existem várias aproximações, entretanto, as mais importantes delas são os métodos de: diferenças finitas (FD finite difference), volumes finitos (FV finite volume) e elementos finitos (FE finite element). Existem vários outros métodos, como os métodos espectrais e pseudoespectrais, Lattice Boltzmann, dentre vários outros, no entanto estes não são tão utilizados como FD, FV e FE. Todos estes métodos tendem a mesma solução à medida que a malha é refinada. Entretanto, alguns métodos são mais adequados para algum grupo de problemas do que outros. A preferência por um ou outro método, em algumas situações, é determinada pela familiaridade do desenvolvedor por um método em especial.

34 Sistemas de Coordenadas e Base Vetorial As equações de conservação podem ser escritas em diversas formas, dependendo do sistema de coordenadas e da base vetorial em questão. Assim, essas formas podem ser sistemas de coordenadas do tipo cartesiana, cilíndrica, esférica, curvilínea ortogonal ou não ortogonal; as quais podem ainda ser fixas ou móveis. A escolha depende do tipo de escoamento em estudo, e pode influenciar na escolha do método de discretização e o tipo de malha a ser utilizado Malha Numérica A posição onde as variáveis são calculadas depende da definição através de uma malha numérica que, em termos gerais, representa o domínio geométrico no qual o problema é resolvido. Esta malha divide o domínio da solução em um número finito de subdomínios chamados também de elementos ou volumes de controle e é classificada em estruturada, bloco estruturada e não estruturada Malha estruturada (ou regular): Fundamenta-se no conjunto de linhas com propriedade cujos membros de uma família de linha paralelas entre si, e o cruzamento com outra família ocorre uma única vez. Em termos mais simples, o fundamento é análogo com coordenadas cartesianas, onde cada linha possui um único ponto de cruzamento com outra linha. Isto permite que as linhas sejam numeradas de forma sucessiva. A posição de qualquer ponto da malha (ou volume de controle) dentro do domínio é unicamente identificada por dois ou três índices (para domínios bidimensionais ou tridimensionais). As malhas estruturadas podem ser do tipo H-grid, O-grid ou C-grid, sendo esta nomenclatura extraída da forma geométrica do conjunto de linhas que formam a malha.

35 35 Figura 9 - Exemplo de malha estruturada (O-grid), bidimensional de linhas não ortogonais. Fonte: Ferziger et al (2002) Malha de bloco estruturada: Nesta classe de malhas, existem duas ou mais subdivisões do domínio. Geralmente, nos níveis mais grosseiros, a blocagem detém de elementos relativamente grandes; nos níveis refinados, uma blocagem estruturada é definida. Assim, um tratamento especial é necessário nas interfaces dos blocos. Ainda, existe a opção com blocos sobrepostos, a qual é chamada de malha composta ou Chimera. Na região sobreposta, as condições de fronteiras de um bloco são obtidas pela interpolação da solução do outro bloco. A desvantagem deste tipo de malha é que a condição de conservação não é facilmente atingida nas fronteiras dos blocos. Por outro lado, a vantagem deste método é que domínios complexos são tratados com mais facilidade e, por exemplo, pode ser usado para corpos em movimento; onde um bloco está posicionado junto ao corpo (movendo-se com ele), enquanto outra malha estacionária envolve as demais regiões afastadas. Figura 10 - Exemplo de malha de bloco estruturada, bidimensional, com coincidência nas interfaces. Fonte: Ferziger et al (2002).

36 36 Figura 11 - Exemplo de malha de bloco estruturada, bidimensional, sem coincidência nas interfaces. Fonte: Ferziger et al (2002). Figura 12 - Exemplo de malha de bloco estruturada, composta, bidimensional. Fonte: Ferziger et al (2002) Malha não estruturada: Para geometrias muito complexas, a forma mais flexível de malha é aquela que possua a propriedade de preencher arbitrariamente todo o domínio. Preliminarmente, tal tipo de malha pode ser usado para qualquer esquema de discretização; contudo, este é melhor adaptável para aproximações de elementos finitos (FE) e volumes finitos (FV). Os elementos ou volumes de controle podem ter qualquer formato, pois não existe restrição quanto ao número dos nós ou elementos vizinhos. Na prática, as malhas mais utilizadas são compostas de elementos triangulares ou quadriláteros em aplicações 2D, e tetragonais e prismáticos (hexagonais) em casos 3D.

37 37 Porém, existem desvantagens do uso de malhas não estruturadas por sua irregularidade. Por exemplo, a localização dos nós e conexões com os vizinhos explicitamente devem ser especificadas. Ainda, A matriz de equações algébricas deixa de ser regular e diagonalmente estruturada. Assim, a solução para o sistema de equações algébricas é, geralmente, mais lenta do que aquelas das malhas estruturadas. Figura 13 - Exemplo de malha não estruturada. Fonte: Ferziger et al (2002) Aproximações Finitas Assim que definido o tipo de malha, deve ser escolhida a aproximação a ser usada no processo de discretização. No método de diferenças finitas, as aproximações são derivadas nos pontos da malha a ser selecionados. Para o método de volumes finitos, seleciona-se o método de aproximação de integrais de superfície e de volume. Por sua vez, o método de elementos finitos, escolhe-se as funções de forma (elementos) e funções de ponderação. A escolha afeta diretamente a precisão da aproximação. Isto também influencia a dificuldade de desenvolver o método de solução. Aproximações mais precisas envolvem mais nós. E o aumento de memória requisitará provavelmente o uso de malha mais grosseira; consequentemente, diminuindo a vantagem da maior precisão. Portanto, deve ser feito uma otimização entre simplicidade, facilidade de implementação, precisão e eficiência computacional.

38 Método de Solução Um grande sistema de equações não lineares é alcançado pela discretização, e o referente método de solução depende do problema. Para escoamentos instáveis, são usados métodos baseados naqueles utilizados para problemas de valores iniciais para equações diferenciais ordinárias, avançando no tempo. Em cada passo de tempo um problema tem que ser resolvido. Por outro lado, problemas de escoamentos em regime permanente são usualmente resolvidos por um pseudoavanço no tempo, equivalente ao esquema de iterações. Uma vez que as equações são não lineares, o esquema de iterações é usado para resolvê-lo. Estes métodos usam de sucessivas linearizações para as equações e os sistemas lineares resultantes são quase sempre resolvidos por técnicas iterativas Critério de Convergência Por fim, é necessário configurar o critério de convergência para o método iterativo. Geralmente, existem dois métodos de iterações: iterações internas, na qual as equações lineares são resolvidas, e iterações externas, as quais tratam com a não linearidade e união das equações. É importante decidir quando interromper o processo de iteração, tanto do ponto de vista de precisão quanto de eficiência. 3.2 BOAS PRÁTICAS SOBRE GEOMETRIA E DESIGN DA MALHA Andersson et al (2012) sugerem algumas práticas para a confecção da geometria e geração da malha numérica. Dentre estas, destacam-se: Conferir se a geometria CAD está completa para a simulação. Devem ser removidos, na maioria dos casos, todos os detalhes menores que as células do domínio computacional; exceto casos onde os pequenos detalhes nas superfícies sejam importantes para o escoamento.

39 39 Devem ser posicionadas as entradas e saídas do fluido longe da região de interesse, quando elas não forem de total conhecimento. Considerando o uso da condição de contorno na saída como do tipo constant-pressure outflow, especificar a direção da saída do fluido para minimizar a diferença de pressão que atravessa a superfície. Usar a condição de saída do tipo pressure outflow para múltiplas saídas de fluido. Evitar células não ortogonais nas fronteiras do domínio computacional. Assim, busca-se o ângulo ideal de 90 graus entre a superfície de fronteira e as linhas da malha. Evitar o uso de células altamente distorcidas. Os ângulos devem ser mantidos entre 40 e 140 graus. A distorção máxima deve ser menor do que 0,95 e a média menor do que 0,33. A razão de aspecto deve ser menor do que 5. Checar a malha numérica para evitar problemas de conectividade.

40 40 4. MODELOS DE TURBULÊNCIA PARA ANÁLISE DE ESCOAMENTOS Neste tópico, os conceitos de alguns modelos turbulentos são apresentados. As informações foram adaptadas do manual de um código CFD: ANSYS Fluent. Este é o código mais conceituado industrialmente e parceiro de inovação da equipe Red Bull Racing, da categoria principal do automobilismo mundial. 4.1 MODELO SPALART-ALLMARAS O modelo de turbulência de Spalart-Allmaras foi desenvolvido, principalmente, para aplicações da fluidodinâmica computacional na área aeroespacial, onde o escoamento sobre superfícies sólidas é importante. Este tem gerado bons resultados para gradientes adversos de pressão. Além disso, o modelo ganha popularidade em estudos de turbinas. Considerando seu formato original, este modelo é efetivo para aplicações sob baixo número de Reynolds, necessitando assim que a camada limite seja realmente calculada. O refinamento da malha nesta região pode ser mensurado através do parâmetro adimensional y+, sendo este uma distância adimensional em relação a parede, em sua direção normal. Assim, para aplicações do modelo Spalart-Allmaras, y+ deve ser, preferencialmente, menor do que um, ou ao menos aproximadamente igual ao valor unitário (y+ 1). No que diz respeito aos softwares CFD, o ANSYS Fluent foi implementado para o uso das funções de parede para casos onde a resolução da malha não for suficiente. De tal modo, o software pode ser usado fornecendo a este uma malha tão refinada que permita calcular a subcamada viscosa (y+ aproximadamente igual a 1), ou uma malha ligeiramente grosseira resolvida pelas funções de parede, mensuradas com y+ maior do que 30. Portanto, deve-se evitar a utilização de refinamento em regiões parietais que cause valores de y+ na faixa de 3 < y+ < 30, ao se utilizar o modelo viscoso Spalart-Allmaras, devido à impossibilidade de calcular a subcamada viscosa ou aproximá-la pelas funções de parede. Em outras palavras, não deve utilizar o modelo na faixa de y+ entre 3 e 30 pela ausência de um tratamento adequado na região da camada limite. Apreciando o âmbito das aplicações industriais, Spalart-Allmaras foi desenvolvido para escoamentos aerodinâmicos. Por consequência, ele não é aplicável para

41 41 escoamentos industriais em geral, estando sujeito a erros relativamente grandes para alguns escoamentos cisalhantes livres, especialmente para escoamentos em jatos circulares ou planos. Em forma sucinta, podemos definir o modelo proposto por Spalart e Allmaras como modelo de única equação que resolve as equações de transporte para uma quantidade que é uma configuração modificada da viscosidade cinemática turbulenta. 4.2 MODELO TRANSITION SST O modelo Transition SST é baseado nas equações de transporte do modelo SST k-ω com mais duas equações: uma para intermitência e outra para o critério de início da transição. 4.3 MODELOS K-ΕPSILON Este é o modelo de turbulência mais utilizado, sendo considerado o modelo padrão industrial. Este tem se mostrado estável e numericamente robusto. Para simulações de propósitos gerais, o modelo k-ε oferece um bom compromisso em termos de precisão e robustez. O modelo k-ε é baseado em equações de transporte para a energia cinética de turbulência (representada por k) e pela sua taxa de dissipação (chamada de ε). Sendo o modelo padrão k-ε composto por estas duas equações, existem casos para os quais o uso pode não ser adequado. Estes são: Escoamentos com desprendimento da camada-limite. Escoamentos com mudanças repentinas na taxa de cisalhamento médio. Escoamentos de fluidos em rotação. Escoamentos sobre superfícies curvadas.

42 42 Devido a estas limitações, o modelo Reynolds Stress pode ser mais adequado para escoamentos com repentinas mudanças na proporção de cisalhamento ou em rotação, enquanto o modelo SST pode ser mais apropriado para escoamento com separação da camada-limite. Além do modelo k-ε padrão, ainda existem duas variações deste. Portanto, o modelo k-ε é apresentável nas formas: Standard k-ε, RNG k-ε e Realizable k-ε. Suas três formas são muito similares, uma vez que as equações de transporte baseiam-se em k e ε. As principais diferenças são: O método de calcular a viscosidade turbulenta Os números de Prandtl que governam a difusão turbulenta de k e ε. Os termos de geração e destruição na equação ε Standard k-ε O modelo Standard k-ε torna-se um dos mais utilizados na modelagem de escoamentos práticos de engenharia. Sua popularidade fora do âmbito acadêmico pode ser explicada por qualidades como robustez, economia e precisão aceitável para o nível industrial de escoamentos e transferência de calor. Deve-se ressaltar que na derivação dos modelos k-ε, é imposta a condição que o escoamento é totalmente turbulento e o os efeitos da viscosidade molecular são desprezados. Consequentemente, o modelo Standard k-ε é válido somente para escoamentos completamente turbulentos, além de ter sido desenvolvido para aplicações em alto número de Reynolds Modelo RNG k-ε Sendo de conhecimento as vantagens e desvantagens do modelo k-ε original, o Standard k-ε desdobra-se duas variações. O modelo RNG k-ε uma dessas variações foi desenvolvido através de uma técnica estatística, conhecida como Renormalization Group

43 43 Theory (teoria do grupo de renormalização). Em resumo, o modelo RNG k-ε é uma alternativa aprimorada do k-ε padrão. Apesar de ambos possuírem as mesmas equações de transporte para geração e dissipação de turbulência, a principal diferença consiste em uma das constantes presentes nas aproximações das equações de Navier-Stokes. Assim, a constante Cε 1 do k-ε padrão é substituída por uma função, chamada Cε 1RNG, para o modelo RNG k-ε. Como resultado, este novo modelo contém algumas melhorias em relação ao modelo original: Aumento da precisão para escoamentos rápidos retilíneos, através de um termo adicional na equação ε. Efeito de redemoinho na turbulência, aumentando a precisão para escoamentos centrífugos. Fornecer uma forma analítica para os números de Pradtl turbulentos, diferentemente do modelo original, o qual faz uso de valores constantes. Fórmula diferencial derivada analiticamente para efeito de viscosidade, a qual se faz importante para efeitos a baixo número de Reynolds. Assim, o modelo RNG k-ε torna-se mais preciso e aplicável em uma gama maior de escoamentos quando comparado com a versão Standard k-ε Modelo Realizable k-ε Apresentando-se como a segunda variação do modelo Standard k-ε, esta versão é chamada pela expressão realizable, cujo significado vem expressar que o modelo satisfaz certas restrições matemáticas, coerente com a física dos escoamentos turbulentos. Nem os modelos Standard e RNG k-ε possuem estas considerações. Portanto, o modelo RNG k-ε proposto por Shih et at (1994), citado por ANSYS (2010) almeja corrigir as deficiências do modelo original através de duas mudanças. Primeiramente, adotando um novo equacionamento para a viscosidade de nas paredes, considerando a variável Cµ originalmente proposta por Reynolds. E, por fim,

44 44 assumindo uma nova equação para dissipação (ε) baseada na equação da dinâmica da flutuação quadrática média da vorticidade. Contudo, ainda há limitações para o modelo. Uma limitação é que este produz viscosidades turbulentas não físicas em situações onde a domínio computacional possui áreas de fluido tanto em rotação quanto estacionárias. Isto é consequência do modelo em questão compreender os efeitos da rotação média na definição da viscosidade turbulenta. Este efeito do incremento de rotação tem sido testado em sistemas de referência unitária em movimento, mostrando comportamento superior do que o modelo Standard k-ε. Entretanto, sua aplicação para sistemas de referências múltiplas devem ser feitas com adicional precaução, devido à natureza das suas modificações. Em resumo, a versão Realizable k-ε difere-se em dois importantes pontos da versão original: Possuir uma formulação alternativa para a viscosidade turbulenta. Conter uma versão modificada da equação de transporte para taxa de dissipação (ε), cuja derivação provém da equação exata para o transporte da flutuação quadrática média da vorticidade. 4.4 MODELOS K-ÔMEGA O modelo k-ω baseia-se na configuração das equações de transporte em função da energia cinética turbulenta (k) e da taxa de dissipação específica (ω), sendo este último termo interpretado como a proporção de ε em k. Visto que o modelo k-ω tem sido modificado ao longo do tempo, novos termos foram adicionados às equações k e ω, melhorando a precisão do modelo para escoamentos cisalhantes livres. Em termos gerais, assim como k-ε, o modelo k-ω possui variações: Standard k-ω e SST k-ω Standard k-ω Partindo dos detalhes supracitados, o modelo Standard k-ω disponível no software ANSYS Fluent ainda possui a opção de correção, a ser ativada quando desejada,

45 45 para aplicação a baixo número de Reynolds. Isto se deve ao fato que a formulação do modelo k-ω para baixo número de Reynolds, proposta por Wilcox, pode produzir um atraso do início da camada-limite turbulenta na parede e, portanto, incide um modelo muito simples para transição laminar-turbulento. Apesar das melhorias ao longo do tempo para escoamentos fora da camada cisalhante, a mesma proposta pode ter efeitos negativos principalmente para escoamento livre. Portanto, o uso de baixo número de Reynolds para o modelo k-ω, quando para transição laminar-turbulento e escoamento cisalhante livre, não é recomendados. Nestes casos, é aconselhado o uso de outros modelos, mais sofisticados e calibrados em uma gama maior de casos SST k-ω O modelo Shear-Stress Transport (SST) k-ω foi desenvolvido por Menter para combinar efetivamente a formulação precisa e robusta do modelo k-ω na região próxima da parede com independência do escoamento livre do modelo k-ε na região mais distante, conhecida como farfield. Para isto, uma transição ocorre do modelo k-ω, próximo da parede, para o modelo k-ε, em certa distância. Ambas as variações possuem formas similares, contudo, a versão SST difere-se da Standard nos seguintes quesitos: Mudança gradual a partir do modelo Standard k-ω (na região interna da camada-limite) para a versão de k-ε em alto número de Reynolds (na região externa da camada-limite). Formulação modificada da viscosidade turbulenta para considerar o transporte das tensões de cisalhamento turbulentas. Incorporação de termo As constantes na modelagem são diferentes. O aperfeiçoamento para SST k-ω, quando comparado com o modelo Standard k-ω, resultou em um modelo mais preciso e confiável para uma vasta classe de escoamentos.

46 46 São exemplos destes escoamentos: gradientes de pressão abruptos, aerofólios e ondas de choque transônicas. 4.5 MODELO TRANSITION K-KL-ÔMEGA O modelo é usado para analisar o desenvolvimento da camada limite e calcular o início da transição. Além isso, o modelo pode ser usado para efetivamente identificar a posição da transição do regime laminar para turbulento na camada limite. Este modelo baseia-se em três equações, o qual inclui equações de transporte para energia cinética turbulenta (k T ), energia cinética laminar (k L ) e escala de tempo inversa de turbulência (ω). Na escolha deste modelo para uso no software ANSYS Fluent, não é necessário a mudança de nenhum valor das constantes do mesmo. 4.6 MODELO TRANSITION SST Este é embasado nas equações de transporte do modelo SST k-ω e em mais duas outras: um para intermitência e outras para o critério de início de transição. Estas duas últimas estão em função do número de Reynolds baseado na quantidade de movimento da camada limite (momemtum-thickness Reynolds number). Quando este modelo é usado com paredes rugosas, uma correlação de rugosidade pode ser usada. Tal correlação necessita da inserção de um parâmetro: altura geométrica da rugosidade (K). 4.7 MODELO REYNOLDS STRESS Considerando as opções de modelos RANS (Reynolds-average Navier-Stokes) disponíveis no software ANSYS Fluent, este, que também é conhecido por RSM (Reynolds Stress Model), é o modelo de turbulência mais elaborado.

47 47 O modelo Reynolds Stress aproxima-se das Equações Médias de Reynolds (RANS) através da solução das equações de transporte pelas tensões de Reynolds, contando com uma adicional para a taxa de dissipação. De tal modo, faz-se uso de cinco equações de transporte para solução de escoamentos bidimensionais. E para escoamentos tridimensionais, somam-se duas ao caso bidimensional, resultando em sete equações de transporte a serem calculadas. A grande vantagem deste modelo é seu grande potencial para estimar precisamente escoamentos complexos, pois este leva em consideração os efeitos de escoamento curvo, redemoinho, rotação e mudanças bruscas na taxa de cisalhamentos, de maneira mais clínica do que os modelos de uma ou duas equações (como k-ε e k-ω). Este modelo é ideal para casos de escoamentos como: ciclones, passagem de escoamentos rotativos, tensão induzida por escoamentos secundários em dutos, e redemoinhos em combustores. A forma exata das equações de transporte para as tensões de Reynolds pode ser alcançada extraindo valores de momento da equação exata da quantidade de movimento. Assim, a média de Reynolds é resultado da multiplicação das equações exatas de momento para flutuações pelas velocidades flutuantes, seguido de operação para obter sua média. Contudo, como vários termos das equações exatas são desconhecidos, algumas hipóteses são necessárias. Como desvantagem, a fidelidade dos resultados ainda é limitada por envolver hipóteses aplicadas na modelagem a partir das equações exatas de transporte para as tensões de Reynolds. Além disso, nem sempre serão alcançados resultados que sejam expressivamente melhores quando comparados aos dos modelos mais simples, de modo em geral. Consequentemente, seu uso pode resultar apenas em adicional desnecessário custo computacional. Voltando ao caso do software ANSYS Fluent, este modelo está disponível em três versões: Linear Pressure-Strain, Quadratic Pressure-Strain e Stress-Omega, e cada possui algumas opções para enriquecer a solução. Dentre as versões, vale o destaque para a versão Quadratic Pressure-Strain que, segundo o fabricante, tem demonstrado obter melhor performance dentre os escoamentos cisalhantes, como deformação plana, cisalhamento plano rotacionado, e expansão ou contração axial. A melhora na precisão deve ser beneficial para uma ampla variedade de escoamentos de interesse para engenharia, principalmente naqueles que envolvem fluxos curvos. Outro fato é que, nesta versão, não é necessário o uso de correlação para o efeito

48 48 refletivo de parede para alcançar resultados satisfatórios na camada limite turbulenta. Todavia, esta versão não é disponível quando se deseja tratamento de parede aprimorado (EWT enhanced wall treatment), restando, para isto, a versão Linear Pressure-Strain. O destaque para a versão Stress-Ômega baseia-se na opção chamada de modelo Low-Re Stress-Omega, a qual é um modelo ideal para escoamentos centrífugos e escoamentos sobre superfícies curvas. A versão lembra o modelo k-ω por sua excelente capacidade de solução para uma grande gama de escoamentos turbulentos. Ainda, a correlação para baixo número de Reynolds e as condições de contorno para superfícies rugosas são também semelhantes para o modelo k-ω. 4.8 SCALE-ADAPTIVE SIMULATION MODEL Também conhecido como modelo SAS, este é uma modelagem URANS aperfeiçoada, permitindo a resolução em condições instáveis de escoamento do espectro de turbulência. Os modelos URANS (Unsteady Reynolds Averaged Navier-Stokes) são os que buscam a solução para escoamentos em situação instável, como quando aplicados para regime transiente. A simulação através do modelo URANS resulta somente em instabilidades de larga escala, no entanto, o modelo SAS-SST permite o desenvolvimento do espectro de turbulência nas regiões de desprendimento. Portanto, o modelo SAS-SST possui a capacidade de adaptar a escala de comprimento para resolver estruturas turbulentas. Como resultado dessa análise numa resolução mais fina, um caso comum de aplicação é em escoamento com instabilidade generalizada, como evidenciada em escoamentos com grandes áreas de desprendimento, ou com interações de vórtices. Entretanto, existem tipos de escoamentos onde o modelo SAS resulta na solução em regime permanente. Exemplos deste efeito são em escoamentos sem desprendimento ou com desprendimento parcia da camada limite, e canais ou tubulações sem perturbações. Consequentemente, estes escoamentos são resolvidos através da formulação RANS.

49 49 5. VALIDAÇÃO Para validação do software utilizando neste trabalho, optou-se pela simulação numérica de dois perfis aerodinâmicos, sendo estes: NACA 0012 e NACA Neste escopo, as simulações são de caráter bidimensional (2D), objetivando a análise dos resultados quanto aos valores dos coeficientes de sustentação e arrasto (C L e C D ) dos dois perfis. Para familiarizar o leitor com a nomenclatura e a teoria básica acerca de perfis aerodinâmicos, uma breve introdução ao assunto é apresentada no próximo subitem. 5.1 INTRODUÇÃO À GEOMETRIA DE AEROFÓLIOS Em seu livro, McBeath (2011) aborda as definições da geometria de aerofólios. Estas definições são, genericamente, as mesmas utilizadas no campo aeronáutico para asas. O conceito compreendido pela palavra aerofólio é similar ao termo asa e, até mesmo, perfil aerodinâmico. Já no idioma inglês, o conceito divide-se em dois termos. Aerofoil é um termo sinônimo para asa (wing), o qual é um corpo com tal formato que seu movimento através do ar gera lift, sem causar drag excessivo. Um airfoil é o perfil bidimensional o qual define o formato da asa, ou seja, a seção planar do aerofólio. Uma vez que os formatos da asa podem ser um tanto quanto complexos, isto sugere que a asa pode assumir diversos perfis aerodinâmicos ao longo de seu comprimento. Borda de ataque (leading edge) é a parte frontal da asa, de formato arredondado e de certa espessura. Por sua vez, borda de fuga (trailing edge) é a parte traseira do perfil, geralmente de formato fino e pontiagudo. As figuras abaixo buscam exemplificar os conceitos supracitados. No que diz respeito ao perfil aerodinâmico (airfoil) a linha imaginária que liga a borda de ataque com a borda de fuga é conhecida como linha da corda (chord line). Sua respectiva dimensão é chamada de corda (chord), comumente denotada por c.

50 50 Figura 14 - Propriedades da geometria de um perfil aerodinâmico. Fonte: Adaptado de Cañada (2012). Figura 15 - Exemplo dos bordos e perfil aerodinâmico de uma asa. Fonte: Adaptado de AeroSpaceWeb.com (2013). Espessura máxima (thickness) de uma asa normalmente é denotada pela letra t, e também é representada como uma fração decimal da corda, medida a partir da borda de ataque sobre a linha da corda. A seção da asa pode ser assimétrica ou simétrica, ou seja, possuir ou não arqueamento em relação à linha da corda. O perfil aerodinâmico da figura anterior representa um aerofólio com arqueamento positivo. Quando no contexto do automobilismo, o

51 51 arqueamento proporciona uma superfície inferior mais curvada do que sua superfície superior. Enquanto antigamente os aerofólios de carros de competição eram basicamente simétricos, na atualidade a grande maioria possui certo arqueamento. A linha desenhada ao longo dos pontos médios da asa, desde a borda de ataque à borda de fuga, é conhecida como linha mediana ou linha de arqueamento (mean line ou camber line). O mensuramento do arqueamento presente é algumas vezes definido como a distância máxima entre a linha de arqueamento e a linha da corda, representada na forma de percentagem ou fração decimal da dimensão da corda (c). Por sua vez, a posição do arqueamento máximo é definida na mesma forma do que a máxima espessura, também como fração do comprimento da corda. O comprimento de uma asa, ou envergadura, é conhecido a nível internacional como span. A proporção entre a envergadura e a corda é denominada alongamento (aspect ratio). No automobilismo, especialmente em carro monoposto, o alongamento é muito pequeno, contrariando os grandes valores comumente presentes nas aplicações aeronáuticas. O ângulo de ataque (attack angle) de uma asa é o ângulo entre a direção do fluxo livre do fluido e da linha da corda. O centro aerodinâmico (aerodynamics centre) é o ponto, ou até mesmo a linha, na qual as forças aparentam atuar sobre uma asa, ou corpo em questão. 5.2 PERFIL NACA Série NACA 4 Dígitos Este faz parte do grupo de perfis de aerofólios padronizados pela NACA, da classe de quatro dígitos. Por sua vez, estes quatro dígitos traduzem três especificações do perfil. Segundo o Airfoil Tools (2013), considerando um perfil chamado NACA MPXX, de comprimento de corda c, podemos entender que: centésimos de c. M é o arqueamento máximo em relação à linha da corda, na unidade de

52 52 P é a distância da borda de ataque da posição de arqueamento máximo, na unidade de décimos de c. XX é a espessura máxima do aerofólio, na unidade de centésimos de c. Assim, este perfil NACA 0012 não possui arqueamento (0% de arqueamento máximo, e consequentemente, nenhuma distância entre a borda de ataque e arqueamento máximo), e espessura máxima de 12% do comprimento da corda do perfil. Um ponto a destacar é que todos os perfis NACA que possuem seus dois primeiros dígitos como 00 serão simétricos, justamente pela ausência do arqueamento. Com relação às curvas desta classe de perfis, estas são obtidas plotando a linha de arqueamento, seguido da distribuição das espessuras. A distribuição é feita ao longo da linha de arqueamento, e as linhas de espessura posicionadas perpendicularmente a mesma. A equação para a linha de arqueamento divide-se em duas parte, uma para cada região do ponto de máximo arqueamento (P). Ou seja, uma para a parte frontal e outra para a parte traseira do perfil. Assim, para concluir a seção do aerofólio, faz-se necessário o gradiente da linha de arqueamento. Na tabela abaixo estão as equações para o arqueamento e seu gradiente, proporcional ao comprimento da corda c. Tabela 1 - Equações governantes de um perfil aerodinâmico da classe NACA de 4 dígitos. Região Arqueamento Gradiente Parte Frontal (0 x P) Parte Traseira (P x 1) Fonte: Adaptado de Moran (2003). Por sua vez, a distribuição da espessura é dada por (Moran, 2003): ( ) * ( ) ( ) ( ) ( ) ( ) + (Eq. 5)

53 53 Na equação acima, c corresponde ao comprimento da corda, t a espessura máxima do perfil (supra representada genericamente por XX% de c) e x a distância ao longo da linha da corda a partir da borda de ataque Preparação do Perfil NACA 0012 Como primeiro passo, faz-se necessário o conhecimento dos pontos do perfil a ser estudado, com a finalidade de preparar a geometria e domínio computacional ao redor do aerofólio em questão. Neste trabalho, os pontos são obtidos por pelo site Airfoil Tools (2013), e importados para o software comercial ICEM CFD para criação da malha numérica. Neste último, é criado uma linha do tipo spline que liga todos os pontos em uma única curva. Figura 16 - Pontos do perfil NACA Durante o processo de gereção da malha, opta-se por utilizar uma malha composta exclusivamente por elementos quadrilateros. Toma-se a dimensão da corda do perfil (c) como sendo unitária.o domínio computacional possui 15 vezes o comprimento da corda a montante da borda de ataque 29 vezes o comprimento da corda à jusante da borda de fuga. os limites inferior e superior distam 15 vezes o comprimento da cordaem relação à linha da corda. A primeira camada ao redor do perfil possui espessura de c, expandindo exponencialmente em 80 camadas de espessura total de 0,1c. Na segunda camada da

54 54 blocagem, o restante do espaço também expande exponencialmente em 100 camadas até os limites do domínio. Em relação a disposição dos elementos tangencialmente ao perfil, a blocagem disposta a frente da borda de ataque possui 50 divisões, em distribuição uniforme. Os dois blocos de cada laterias do perfil também possuem 50 divisões cada, numa distribuição bigeométrica. Para a região posterior, que parte da borda de fuga, uma distribuição exponencial 300 divisões expande até o final do dominio, com a primeira camada proxima a borda de fuga de tamanho 2, c. Como resultado final da geração da malha, foram criados elementos, com qualidade mínima de 94%, sendo todas as camadas com proporcionalidade de 1,1. Figura 17 Disposição dos elementos na região próxima ao perfil. Figura 18 - Detalhe do refinamento e disposição ao redor do perfil NACA 0012.

55 55 Figura 19 - Estratégia de blocagem usada na geração da malha. Figura 20 - Malha gerada ao redor do perfil NACA 0012.

56 Simulação ' Nesta etapa, utiliza-se o software ANSYS Fluent para realizar a simulação do escomaento sobre o perfil. Após a importação da malha computacional, adota-se a unidade da corda como um metro de comprimento. As regiões de contorno são divididas como expostas e descritas na figura e tabela a seguir. Figura 21 - Disposição das fronteiras, no formato C Grid. Tabela 2 - Condições de contorno no domínio do fluido. Fronteira Inlet Outlet Top Bottom NACA0012 Condição velocity-inlet (v = 31,78 m/s) (constante, com direção determinada em cada caso) pressure-outlet pressure-outlet velocity-inlet (v = 31,78 m/s) (constante, com direção determinada em cada caso) wall (sem rugosidade, sem escorregamento)

57 57 Além das condições de contorno descritas acima, o fluido simulado possui as propriedades físicas do ar. Este é idealizado como incompressível, e na temperatura de 300 K (27 ºC), a densidade é de 1,1614 kg/m³ e viscosidade equivalente a 1, kg/m.s. Nestas condições, o número de Reynolds é de é imposto. A velocidade de entrada é determinada justamente para obter esta faixa de número de Reynolds, pois assim é possível a comparação com os resultados experimentais de Sheldahl et al (1981). Em relação ao método de solução, é utilizado esquema SIMPLE (Semi Implicity Method for Pressure-Linked Equations), em aproximações de segunda ordem e com gradiente do tipo Green-Gauss Cell Based. O critério de convergência adotado para os resíduos é , ou iterações. Estes mesmos parâmetros são utilizados para diferentes ângulos de ataque 4º, 8º, 12º, 16º e 20º ajustando a direção (em 1º quadrante) da entrado no fluido nas fronteiras Inlet e Bottom. Para a condição de ângulo de ataque de 0º, as fronteiras Top e Bottom são categorizadas como condições de simetria (symmetry). Visto que o intuito, até então, é determinar os melhores modelos de turbulência para futuras aplicações, realiza-se simulações fluidodinâmicas utilizando os seguintes modelos: Spalart-Allmaras. Transiton SST. k-kl-omega. k-epsilon: a) Realizable; b) Enhanced wall treatment; c) Pressure gradient effect. Ângulo de ataque Tabela 3 - Resultados de C L, obtidos de simulações do perfil NACA Experimental CFD Shedahl et al SA SST k-kl k-ε (Real. EWT) 0º 0,0010 0,0000 0,0000 0,0000 0,0000 4º 0,4400 0,4217 0,4062 0,4306 0,4196 8º 0,8800 0,8282 0,7983 0,8512 0, º 1,2072 1,1792 1,1582 1,2510 1, º 0,9221 1,3472 1,2035 1,5828 0, º 0,7269 0,7199 1,4454 1,6315 1,3646

58 58 Tabela 4 - Resultados do coeficiente de arrasto (C D ), obtidos de simulação do perfil NACA Ângulo de Experimental CFD ataque Shedahl et al SA SST k-kl k-ε (Real. EWT) 0º 0,0064 0,0105 0,0011 0,0087 0,0119 4º 0,0073 0,0119 0,0120 0,0101 0,0137 8º 0,0105 0,0158 0,0158 0,0149 0, º 0,0155 0,0246 0,0245 0,0214 0, º 0,0237 0,0527 0,0569 0,0352 0, º 0,2970 0,2518 0,5011 0,0771 0,1093 Figura 22 - Comparativo de C L (acima) e C D (abaixo), obtidos de simulações do perfil NACA 0012.

59 Conclusão Analisando os resultados finais, todos os modelos apresentaram resultados aceitáveis até o ângulo de ataque de 12. Nota-se que todos os modelos mostraram sofrer com algum fenômeno entre 12 e 16. E estando este trabalho munido das informações do estudo de Ali (2011) sobre a ocorrência do desprendimento em 14,5, pode-se afirmar que as variações a partir deste ponto pode ser explicada pelo despendimento do fluido (descolamento da camada limite). Isto pois cada modelo pode atuar de forma diferente para este fenômeno, consequência da modelagem matemática. Apesar de este trabalho não abordar o custo computacional de forma detalhada, a relação custo/benefício do modelo Spalart-Allmaras ganha posição de destaque nestes resultados.

60 PERFIL NACA Série NACA 6 Dígitos Considerando este perfil, o qual pertence à série 6 da padronização feita pela NACA, este grupo foi desenvolvido para manter o escoamento laminar ao longo de boa parte da corda através do atraso do gradiente de pressão adverso. A espessura da curva que envolve o arqueamento é alcançada usando a teoria exata de aerofólios, e consequentemente, não existem fórmulas simples para descrever os formatos. A linha de arqueamento é desenvolvida usando a teoria de aerofólios simples e fórmulas também simples estão disponíveis para reger seus formatos. Segundo publicação de Abbott & von Doenhoff (1959): As seções de asas NACA série 6 geralmente são designadas por um número de 6 dígitos com o intuito de demonstrar o tipo de linha mediana usada. Por exemplo, na designação NACA 65,3-218, a = 0,5; o [algarismo] 6 representa a designação da série. O número 5 denota a posição de mínima pressão ao longo da corda, em décimos da corda atrás da borda de ataque para a seção simétrica básica em lift nulo. O [algarismo] 3 seguindo a vírgula (algumas vezes este é subscrito ou em parênteses) fornece a amplitude do coeficiente de sustentação (em décimos) acima e abaixo do projetado, na qual existe um gradiente de pressão favorável em ambos os lados. O [algarismo] 2 seguindo o traço (-) fornece o coeficiente de sustentação projetado, em décimos. Os últimos dois dígitos indicam a espessura da seção da asa in percentagem da corda. A designação a = 0,5 mostra o tipo de linha mediana usada. Quando a linha mediana não é apresentada, é subentendido que foi usada linha mediana de carregamento uniforme (a = 1,0). Quando a = 1, ou seja, para carga uniforme ao longo de toda a corda, as equações para a linha de arqueamento são: *( ) ( ) ( )+ (Eq. 6) [ ( ) ( )] (Eq. 7)

61 61 ataque nulo. onde C li é o coeficiente de sustentação projetado, o qual ocorre para ângulo de Preparação do Perfil NACA A formulação da malha para este perfil NACA segue a metodologia usada na geração da malha do perfil NACA 0012, também utilizando o formato conhecido como C-grid e suas dimensões consideram a dimensão da corda do perfil (c) como unidade. A primeira camada ao redor do perfil possui espessura de c, desta vez expandindo exponencialmente em 60 camadas de espessura total de 0,07c. Na segunda camada da blocagem, o restante do espaço expande exponencialmente em 100 camadas até os limites do domínio. Em relação a disposição dos elementos tangencialmente ao perfil, a blocagem a que está disposta à frente da borda de ataque possui 40 divisões, em distribuição uniforme. Os dois blocos de cada laterais do perfil também possuem 50 divisões cada, em distribuição bigeométrica. Para a região posterior, que parte da borda de fuga, uma distribuição exponencial 300 divisões expande até o final do dominio, com a primeira camada proxima a borda de fuga de tamanho 2, c. De tal modo, foram criados elementos, com qualidade mínima de 93% e proporcionalidade máxima de 1,1 entre todas suas camadas. Figura 23 - Disposição dos elementos na região próxima ao perfil NACA

62 62 Figura 24 - Pontos do perfil (acima) e detalhe da malha (abaixo) para o perfil NACA Simulação Novamente, segue a metodologia do primeiro caso. Desta vez, a malha importada sofre redução em escala, a fim de resultar em uma corda mensurando 0,4 m. As posições e nomenclaturas foram as mesmas do NACA Aproveitando a oportunidade, realiza-se duas baterias de simulações a fim de comparar os resultados com duas fontes distintas. O modelo de turbulência adotado é o modelo Spalart-Allmaras, e a mesma malha é aplicada em ambos os casos, visto que a única diferença entre as duas baterias é a velocidade do escoamento; onde tal diferença é diretamente proporcional à variação do número de Reynolds. Na tabela 5 estão identificadas as fronteiras do domínio estudado.

63 63 Tabela 5 - Condições de contorno no domínio do fluido. Fronteira INLET OUTLET TOP BOTTOM NACA Condição velocity-inlet (valor especificado) (constante, com direção determinada em cada caso) pressure-outlet pressure-outlet velocity-inlet (valor especificado) (constante, com direção determinada em cada caso) wall (sem rugosidade, sem escorregamento) O fluido (ar) é idealizado incompressível, com densidade de 1,225 kg/m³ e viscosidade equivalente a 1, kg/m.s para ambos as duas baterias de solução. Figura 25 - Definição do sentido positivo do ângulo de ataque. A respeito do método de solução, é utilizado esquema SIMPLE, em aproximações de segunda ordem e com gradiente do tipo Green-Gauss Cell Based. O critério de convergência adotado para os resíduos é , ou iterações. Tais parâmetros foram utilizados para uma faixa de ângulos de -4º até 20º, em intervalos de 4 graus, no sentido apresentado na figura acima, ajustando a direção da entrada do fluido nas fronteiras Inlet e Bottom. Para a condição de ângulo de ataque igual a 0º, as fronteiras Top e Bottom foram categorizadas como condições de simetria (symmetry).

64 Caso I: McBeath (2011) Re=1, (v=50 m/s). Neste foram aplicadas as condições supracitadas, para velocidade de escoamento livre no valor de 50 m/s. A forma de comparação dos resultados está em função das forças geradas: downforce e drag. Tabela 6 - Comparação entre forças resultantes e as publicadas por McBeath (2011) para v = 50m/s. Ângulo Downforce Drag de ataque SA CFD McBeath (2011) CFD SA CFD McBeath (2011) CFD -4 16,8 N/m ,71 N/m ,0 N/m 321 N/m 7,80 N/m ,5 N/m 580 N/m 10,02 N/m 11 N/m 8 803,8 N/m 820 N/m 14,25 N/m 17 N/m ,0 N/m 954 N/m 22,32 N/m 30 N/m ,6 N/m 871 N/m 44,48 N/m 109 N/m ,9 N/m ,20 N/m Figura 26 - Comparativo entre as forças resultantes e as publicadas por McBeath (2011) para v = 50m/s.

65 Caso II: Airfoil Tools (2013) Re= (v=36,88 m/s). Relembrando que este caso possui as mesmas características do Caso I, exceto pela mudança da velocidade do escoamente para o valor de 36,88 m/s (aproximadamente 130 km/h). Nestas condições, o número de Reynolds é de O modo de comparação neste é através da comparação dos coeficientes de sustenção negativo (-C L ) e de arrasto (C D ). Tabela 7 - Comparativos de -C L e C D para o perfil NACA operando a Re= Ângulo de ataque SA CFD -C L C D Airfoill Tools (2013) SA CFD Airfoill Tools (2013) -4 0,0247 0,0515 0,0134 0, ,4769 0,5215 0,0135 0, ,9066 0,9783 0,0173 0, ,3079 1,3218 0,0248 0, ,6041 1,4915 0,0387 0, ,6439 1,5769 0,0769 0, ,4996 1,5268 0,1637 0,1330 Figura 27 - Gráfico de -C L para o perfil NACA operando a Re=

66 66 Figura 28 - Gráfico de C D para o perfil NACA operando a Re= Conclusão Para o caso I, a comparação dos resultados deste trabalho com as simulações de McBeath (2011) apresenta-se muito satisfatória entre os ângulos de ataque de -4 a 12. Para o ângulo seguinte (16 graus) existe significante diferença entre resultados. Isto pode ser decorrente do descolamento da camada limite entre os ângulos de 12 a 16, sendo sua modelagem mais delicada e, dependendo do modelo utilizado (e não informado na publicação), pode apresentar resultados discrepantes. Esta propriedade está supraexposta neste trabalho (tópico 5.2.3, na figura 22). Quando analisado o caso II, este apresenta, para os ângulos de ataque entre -4 a 20 graus, bons resultados para downforce e um leve superestimado drag no perfil NACA

67 67 6. AEROFÓLIOS Aerofólios de carros de competição podem ser de constituídos de único elemento (um perfil), de duplo elemento (sequência de dois perfis) ou de multi elementos (resultado do uso de vários perfis). Isto depende das configurações permitidas pelas regras, nas diferentes categorias existentes; além da necessidade encontrada em um circuito específico e da tolerância do carro em relação ao downforce e drag. Como exemplo, carros com alta relação potência/peso utilizam de aerofólios que propiciam altos valores de downforce, apesar do também grande ônus de drag gerado. Nestes casos, a potência disponível nos pneus está além da capacidade de sua utilização, justamente pela falta de tolerância de maiores forças de atrito (maior limite até o deslizamento) nos mesmos. Esta capacidade de atrito sem deslizamento é conhecido como grip. Assim, a perda de potência pelo arrasto aerodinâmico não é tão dramática para a velocidade máxima alcançada e o prejuízo do aumento do tempo percorrido em trechos de retas são recompensados pela economia do tempo em trechos de curvas. Por outro lado, carros com baixa relação potência/peso empregam aerofólios que geram quantidades medianas de downforce, pois existe o cuidado em causar o mínimo de drag sobre o carro. Caso contrário, a perda de velocidade nas retas poderia não ser recompensada pelo ganho nos trechos sinuosos. Figura 29 - Modelo de baixa razão potência/peso: Formula Volkswagen, da África do Sul.

68 68 Em uma análise técnica, a carga aerodinâmica é a razão do aumento do peso aparente do carro, que por sua vez aumenta a tolerância de forças máximas de atrito suportadas pelos pneus, sempre visando à ausência de deslizamento. Tais forças sofridas pelos pneus são decorrentes: do ganho de velocidade através de tração, da frenagem e da aceleração centrípeta ocorrentes nas mudanças de direções do veículo. Uma vez que a aceleração centrípeta é função da velocidade desempenhada, o aumento na tolerância para as forças de atrito se traduzem no aumento da tolerância em velocidades, no caso dos trajetos em curva. Em resumo, mais downforce geralmente produz mais drag. Apesar do maior gasto de tempo para percorrer as retas, o aumento da velocidade média nas curvas de proporcionar uma economia de tempo. O objetivo final é, no uso de aerofólios, proporcionar o menor tempo total (ou máxima velocidade média) de um percurso através do balanço destes gastos e economias de tempo durante diferentes partes do circuito. Figura 30 - Modelo de alta razão potência/peso: Formula Student Áustria. Fonte: Kansas University (2013).

69 EFEITO SOLO O efeito solo tem sido aplicado há algumas décadas no automobilismo. Seu marco de sucesso foi na equipe Lotus-Ford, que aplicou seu conceito no assoalho do modelo Lotus 78, na Formula 1. Tal feito foi graças aos engenheiros pioneiros Colin Chapman, Tony Rudd e Peter Wright, desenvolvedores do então novo formato denominado carro asa. Os títulos mundiais de piloto e de construtor do ano de 1978 foram conquistados. E uma considerável parcela do mérito é da inovação aerodinâmica. Neste estudo, o objetivo é identificar o comportamento do efeito solo, simulando um mesmo perfil para diferentes distâncias do mesmo ao solo. Para um cenário prático, é considerado um perfil NACA 0012 atuando como aerofólio dianteiro. Este é de comprimento (corda) de 0,5 m, em velocidade aproximada de 115 km/h Preparação de Front Wing - NACA 0012 Desta vez, o domíno para o estudo do perfil é preparado em duas partes: região interna e região externa. A primeira consiste na região próxima ao perfil NACA 0012 utilizado; enquanto a segunda região envolve o restante do domínio do fluido. Esta metodologia é emprega para permitir melhor controle do refinamento da malha na região de interesse, ou seja, ao redor do perfil e porção do solo mais próxima. Os elementos que compoem a malha são do tipo Dominant Quad. Os parâmetros de controle são os tamanhos máximos dos elementos em cada fronteira, e sua expansão na mesma. O formato geral da malha completa é a retangular, sendo a aresta inferior a modelagem do solo. Considerando as medidas em unidades de corda, as medidas máximas dos elementos sobre as fronteiras são: 0,001c para WING. 0,01c para INTERFACE_IN, INTERFACE_OUT e GROUND_CLOSE 0,1c para GROUND. 0,25c para INLET, OUTLET e TOP.

70 70 Figura 31 - Geometria da malha interna (altura variável entre perfil e solo), em metros. Figura 32 - Geometria da malha externa, em metros. Figura 33 - Nomenclatura do domínio do fluido.

71 71 Figura 34 - Malha completa do domínio estudado composta pelas regiões interna e externa. Figura 35 - Malhas internas para as alturas de 50 a 200 mm entre o perfil NACA 0012 e o solo. de células entre elas. Assim, sete diferentes malhas são criadas, com pequena diferença no número Simulação Seguindo da importação da malha pelo software ANSYS Fluent, aplica-se redução em escala na razão de 2. Como resultado, tem-se uma corda mensurando 0,5 m, cujo tamanho condiz com aplicações no automobilismo. O modelo de turbulência adotado foi o modelo Spalart-Allmaras para todas as simulações, visando encontrar a influência da distância do perfil no downforce e drag gerado.

72 72 Na tabela 8 estão identificadas as fronteiras do domínio estudado. Tabela 8 - Condições de contorno no domínio do fluido. Fronteira INLET OUTLET TOP GROUND GROUND_CLOSE INTERFACE_IN INTERFACE_OUT WING Condição velocity-inlet (v = 31,78 m/s) (normal à face) pressure-outlet symmetry wall (v = 31,78 m/s) (sem rugosidade, sem escorregamento) wall (v = 31,78 m/s) (sem rugosidade, sem escorregamento) interface interface wall (sem rugosidade, sem escorregamento) Além das condições de fronteira, o fluido é idealizado como ar incompressível, e na temperatura de 300 K (27 ºC), sua densidade é de 1,1614 kg/m³ e viscosidade equivalente a 1, kg/m.s. O método de solução basea-se no esquema SIMPLE, com equações em aproximações de segunda ordem e com gradiente do tipo Green-Gauss Cell Based. Ainda, O critério de convergência adotado para os resíduos é , ou o limite máximo de iterações. Tabela 9 - Simulação sem adaptação de y+ durante simução. Altura Downforce Drag -C L C D [mm] [N/m] [N/m] Células Iterações 50 0, ,2 0,0163 4, ,230 67,5 0,0146 4, ,150 44,0 0,0137 4, ,108 31,5 0,0133 3, ,078 22,9 0,0130 3, ,058 17,1 0,0128 3, ,044 12,8 0,0126 3,

73 73 Como visto no tópico 4.1, o modelo Spalart-Allmaras pode fornecer resultados imprecisos dependendo do y+ que envolve as paredes de interesse. Isto ocorre principalmente na faixa entre 3 a 30, pois a camada limite não pode ser resolvida e nem mesmo ser tratada pelas funções de parede. De tal modo, são realizadas as sete simulações baseadas nas simulações anteriores. Contudo, durante o processo de solução ocorre o controle do refinamento da malha para alcançar melhores resultados de refinamento nas paredes, ou seja, menores valores de y+. A diferença pode ser evidenciada pela análise das figuras 36 e 37, no caso do perfil distando 100 mm do solo. Figura 36 - Malha para 100 mm de altura: y+ da malha original (sem adaptações). Figura 37 - Malha para 100 mm de altura: y+ da malha modificada (com adaptações).

74 74 das sete malhas estudadas. Na tabela 10, encontram-se os resultados para as simulações com o controle Tabela 10 - Simulação com adaptação de y+ durante simução (y+ < 2). Altura Downforce Drag -C L C D [mm] [N/m] [N/m] Células Iterações 50 0,265 77,8 0,0245 7, ,180 52,6 0,0219 6, ,122 35,8 0,0207 6, ,086 25,2 0,0200 5, ,062 18,2 0,0196 5, ,046 13,4 0,0193 5, ,034 10,0 0,0191 5, Figura 38 - Relação de downforce gerado em função da distancia ao solo. Figura 39 - Relação de drag gerado em função da distancia ao solo.

75 Conclusão Evidencia-se verdadeiro o chamado Efeito Solo, observando o comportamento de aumento de downforce (acompanhado de pequeno aumento de drag) à medida que se aproxima o perfil aerodinâmico ao solo. Projetando a tendência deste caso, este efeito deve ocorrer a partir de distâncias menores de 0,3c, aproximadamente. Como objetivo secundário, comprova-se que é verdadeira a suspeita da influência do refinamento da malha junto às paredes nos resultados; devido, principalmente, aos pontos onde os y+ resultados enquadram-se entre valores de 3 a 30, no modelo Spalart- Allmaras.

76 ASA DIANTEIRA DUPLO ELEMENTO O objetivo nesta etapa é analisar o comportamento de um aerofólio dianteiro inédito, composto por dois perfis. Um atuando como perfil base, e outro na função de flap. Este flap permite mudar o ângulo de ataque do perfil equivalente ao conjunto, de forma mais prática e simples do que um aerofólio de elemento simples. Aproveitando o conhecimento adquirido no estudo anterior (Efeito Solo), este conjunto deve estar o mais próximo possível do chão para melhores resultados de downforce, pelo quase mesmo custo de drag. Muitas categorias do automobilismo estabelecem alturas mínimas para os componentes dos carros, como assoalho e aerofólio dianteiro. Este caso em estudo, é tomado como altura mínima 100 mm do aerofólio dianteiro, num comprimento do conjunto de 400 mm, a fim de reproduzir um cenário real de uso. Ainda, faz-se como objetivo secundário nesta abodagem a verificação do uso de dois modelos de turbulência identificados como ideias para estes casos. Assim, realiza-se duas baterias de simulações, uma utilizando o modelo Spalart-Allmaras e outra utilizando o modelo Shear-Stress Transport (SST k-ω), proporcionando a comparação do comportamento de ambos Preparação de Conjunto Duplo Elemento Para melhor controle da distribuição e tamanho das células na malha, empregase a mesma metodologia utilizada no estudo anterior: Efeito Solo. Isto incluindo as nomenclaturas das fronteiras e método de divisão do domínio em duas regiões. Existem apenas alguns pontos que diferem nesta aplicação. O conjunto é formado por dois perfis, supra estudados no tópico Validação: NACA : componente principal (fixo). NACA 0012: flap (móvel).

77 77 Considerando que a corda equivalente do conjunto possua 1000 unidades (analogia a milimetros), as medidas máximas dos elementos sobre as fronteiras foram: 0,5 para NACA e NACA 0012; 2,5 para FARFIELD_IN, FARFIELD_OUT e GROUND_CLOSE; 20 para GROUND; 100 para INLET, OUTLET e TOP. Tais medidas possuem a finalidade de proporcionar um refinamento maior do que o alcançado no estudo Efeito Solo. Consequentemente, certo custo computacional extra é inevitavél. Nas figuras abaixo estão apresentadas as geometrias e detalhes da malhas. Figura 40 - Geometria da malha interna (ângulo variável do flap), em milímetros. Figura 41 - Geometria da malha externa, em milímetros.

78 78 Figura 42 - Detalhes da malha interna, para os sete ângulos de ataque do flap NACA de células entre elas. Assim, sete diferentes malhas são criadas, com pequena diferença no número Simulação Uma vez importata a malha para o ANSYS Fluent, esta não sofre nenhum efeito de escala, pois o conjunto automaticamente possui a mensura de 0,4 m da corda equivalente.

79 79 A mesma malha é aplicada para os dois modelos, visto que a única diferença entre as duas baterias é justamente o modelo: Spalart-Allmaras (SA) e Shear-Stress Transport (SST k-ω). O número de Reynols é na grandeza de , onde a velocidade do fluido (ar) e do solo são de 31,78 m/s; considetando o comprimento da corda de 0,4 m, densidade de 1,1614 kg/m³ e viscosidade equivalente a 1, kg/ms. O método de solução basea-se no esquema SIMPLE, com equações em aproximações de segunda ordem e com gradiente do tipo Green-Gauss Cell Based. O critério de convergência adotado para os resíduos é , ou o limite máximo de iterações. Entretando, para as configurações de maior dificuldade de convergência, utiliza-se ainda o esquema simples, mas em equações aproximadas no formato Power Law Resultados - modelo Spalart-Allmaras (SA) Na tabela 11 e 12, estão expostos os resultados alcançados. Os valores destacados (sublinhados) significam que ocorreu uma periodicidade ondulatória com amplitude maior do que 20% do valor médio do parâmetro; assim, estes em destaque representam o valor médio da região periódica. Para o ângulo de 30 graus, com adaptações, não foram alcançados resultados satisfatórios. Tabela 11 - Simulação, em modelo SA, sem adaptação de y+ durante simução. Ângulo Downforce Drag -C L C D de ataque [N/m] [N/m] Células Iterações 0 0,330 77,3 0,0173 4, , ,5 0,0205 4, , ,2 0,0257 6, , ,2 0,0348 8, , ,0 0, , , ,8 0, , , ,5 0, ,

80 80 Tabela 12 - Simulação, em modelo SA, com adaptação de y+ durante simução (y+ < 2). Ângulo Downforce Drag -C L C D de ataque [N/m] [N/m] Células Iterações 0 0,269 63,1 0,0254 6, , ,0 0,0298 7, , ,0 0,0360 8, , ,2 0, , , ,2 0, , , ,8 0, , Figura 43 Gráfico comparativo dos resultados de downforce: modelo SA. Figura 44 - Gráfico comparativo dos resultados de drag: modelo SA.

81 Resultados - modelo Shear-Stress Transport (SST) k-ω Nas tabelas 13 e 14, estão expostos os resultados alcançados para este modelo. Vale ressaltar que para este modelo houve maior uso das equações no formato Power Law. Tabela 13 - Simulação, em modelo SST k-ω, sem adaptação de Y+ durante simução. Ângulo Downforce Drag -C L C D de ataque [N/m] [N/m] Células Iterações 0 0,322 75,5 0,0186 4, , ,7 0,0219 5, , ,3 0,0268 6, , ,9 0,0367 8, , ,2 0, , , ,7 0, , , ,1 0, , Tabela 14 - Simulação, em modelo SST k-ω, com adaptação de y+ durante simução (y+ < 2). Ângulo Downforce Drag -C L C D de ataque [N/m] [N/m] Células Iterações 0 0,332 75,8 0,0157 3, , ,7 0,0184 4, , ,8 0,0282 6, , ,6 0,0295 6, , ,4 0,0402 9, , ,4 0, , , ,8 0, ,

82 82 Figura 45 - Gráfico comparativo dos resultados de downforce: modelo SST k-ω. Figura 46 - Gráfico comparativo dos resultados de drag: modelo SST k-ω. Figura 47 - Gráfico comparativo dos resultados de downforce entre os quatro grupos de soluções.

83 83 Figura 48 - Gráfico comparativo dos resultados de drag entre os quatro grupos de soluções Conclusão Na análise do primeiro objetivo (análise de comportamento), o comportamento de ambos os modelos (com ou sem controle do y+) possuem valores crescentes de downforce e drag com o incremento do ângulo de ataque do flap até alcançar a condição de stall. A diferença está na posição onde ocorre este fenômeno. Sendo parte do objetivo secundário (análise de modelos), nos modelos Spalart- Allmaras e SST k-ω, o stall é atingido em 15 nas condições iniciais da malha. No entanto, o fenômeno é evidenciado em 20 para os mesmos modelos, quando ajustado o refinamento da malha nas superfícies de parede durante o processo de solução.

84 ASA DIANTEIRA - FORMULA MAZDA O objetivo principal neste estudo é aplicar a técnica CFD para um caso real no automobilismo. Para tal, o artigo publicado em âmbito internacional intitulado CFD study of section characteristics of Formula Mazda race car wings (Kieffer et al, 2005) torna-se uma interessante referência para isto. Aproveitando o ensejo, um segundo objetivo é analisado durante o mesmo estudo: a diferença de resultados obtidos entre malhas formadas por elementos quadráticos e triangulares. Portanto, este estudo baseia-se em uma investigação e tentativa de reprodução do trabalho, apreciando o aerofólio dianteiro o modelo de carro da Formula Mazda. Figura 49 - Modelo de carro de competição da Formula Mazda. Fonte: Adaptado de FormulaMazda.com (2013).

85 85 Figura 50 - Aerofólio dianteiro - Formula Mazda. Fonte: Adaptado de FormulaMazda.com Preparação do Perfil O primeiro desafio é a obtenção do perfil, pois este não segue uma padronização de alguma instituição, como a NACA. Com auxilio do software PlotDigitizer (versão 2.6.3), são extraídos os pontos da curva do aerofólio dianteiro a partir da figura presente no artigo de Kieffer et al (2005), como mostrado na figura abaixo: Figura 51 - Obtenção dos pontos do aerofólio frontal do carro da Formula Mazda. Fonte: Adaptado de Kieffer et al (2005). Uma vez obtido o perfil, segue o procedimento de elaboração da malha. A metodologia de geração da malha e a nomenclatura utilizada seguem as mesmas do estudo Efeito Solo.

86 86 Sendo considerando do tamanho de 1000 unidades, e a meta é obter as mesmas dimensões do perfil publicado: comprimento de 15,01 (381,3 mm) e altura do ponto p de 5,5 (139,7 mm). Assim, quando imposta a corda do perifl (c) como unidade de comprimento, a altura torna-se aproximadamente 0,367c. Figura 52 - Geometria da malha interna (ângulo variável em torno do ponto p), em c. Figura 53 - Geometria da malha externa, em c. Dois grupos de malhas são criadas em função do tipo de elementos que as compoem: do tipo Dominant Quad e to tipo All Tri. Os parâmetros de controle são os tamanhos máximos dos elementos em cada fronteira, e sua expansão na mesma. O formato geral da malha completa é a retangular, sendo a aresta inferior a modelagem do solo.

87 87 Figura 54 - Malha interna (dominant quad) para seis ângulos de ataque diferentes. Figura 55 - Malha interna (all tri) para seis ângulos de ataque diferentes.

88 88 Considerando as medidas em unidades de corda, as medidas máximas dos elementos sobre as fronteiras foram: 0,001c para WING; 0,01c para INTERFACE_IN, INTERFACE_OUT e GROUND_CLOSE 0,1c para GROUND; 0,25c para INLET, OUTLET e TOP. malhas são analisadas. Assim, os dois grupos de seis diferentes malhas são criadas. Portanto, Simulação Sendo a malha importada por ANSYS Fluent, aplica-se efeito de escala na proporção de 0,381. Isto é devido a conversão da unidade da corda (c), de até então no valor de 1 m, para 15,01 (0,381 m). Consequentemente, a altura de 0,367c torna-se 5,5 (138,7 mm). Os dois grupos de malhas (dominant quad e all tri) são aplicadas para os dois modelos cada: Spalart-Allmaras (SA) e Shear-Stress Transport (SST k-ω). Infelizmente, o artigo em questão não especifíca a velocidado de escoamento e nem mesmo se o solo está em condição de movimento em relação ao perfil. O único indício de informação sobre a velocidade está quando mensionado dois números de Reynolds, no tópico 3 do artigo, para o perfil dianteiro em velocidades de 80 mph (Re=0, ) e 130 mph (Re=1, ). Devido a isto, é suposto que seja usado a velocidade de 80 mph, ou seja, 128 km/h ou 35,56 m/s. Enfatizando as definições escolhidas, o número de Reynols neste caso é na grandeza de 0, , onde a velocidade do fluido (ar) e do solo são de 35,56 m/s; comprimento da corda de 0,381 m, densidade do ar de 1,225 kg/m³ e sua viscosidade equivalente a 1, kg/ms. O método de solução basea-se no esquema SIMPLE, com equações em aproximações de segunda ordem e com gradiente do tipo Green-Gauss Cell Based. O critério de convergência adotado para os resíduos é , ou o limite máximo de iterações.

89 Resultados - modelo Spalart-Allmaras (SA) Na tabela 15 e 16, estão expostos os resultados alcançados. Os valores destacados (sublinhados) significam que ocorreu uma periodicidade ondulatória com amplitude maior do que 20% do valor do parâmetro; assim, estes em destaque representam o valor médio. Tabela 15 - Simulação, em modelo SA, de malhas constituidas no formato Dominant Quad. Ângulo Downforce Drag -C L C D de ataque [N/m] [N/m] Células Iterações -4 0, ,7 0,028 8, , ,5 0,042 12, , ,4 0,071 21, , ,2 0,113 33, , ,2 0,145 42, , ,1 0,312 92, Tabela 16 - Simulação, em modelo SA, de malhas constituidas no formato All tri. Ângulo Downforce Drag -C L C D de ataque [N/m] [N/m] Células Iterações -4 0, ,6 0,027 7, , ,3 0,041 12, , ,4 0,022 6, , ,3 0,087 25, , ,9 0,132 38, , ,6 0,263 77,

90 90 Figura 56 - Gráfico dos resultados de -C L obtidos pelo modelo Spalart-Allmaras. Figura 57 - Gráfico dos resultados de C D obtidos pelo modelo Spalart-Allmaras.

91 Resultados - modelo Shear-Stress Transport (SST) k-ω Desta vez, nas tabelas 17 e 18, estão expostos os resultados alcançados para o modelo SST k-ω. Vale ressaltar que para este modelo houve maior uso das equações no formato Power Law. Para o ângulo de ataque de 8 não são obtido resultados apreciáveis. Tabela 17 - Simulação, em modelo SST k-ω, de malhas constituidas no formato Dominant Quad. Ângulo Downforce Drag -C L C D de ataque [N/m] [N/m] Células Iterações -4 0, ,3 0,033 9, , ,9 0,050 14, , ,4 0,078 23, , ,5 0,205 60, , ,9 0,289 85, Tabela 18 - Simulação, em modelo SST k-ω, de malhas constituidas no formato All tri. Ângulo Downforce Drag -C L C D de ataque [N/m] [N/m] Células Iterações -4 0, ,1 0,032 9, , ,6 0,050 14, , ,5 0,072 21, , ,3 0,200 59, , ,5 0,298 87,

92 92 Figura 58 - Gráfico dos resultados de -CL obtidos pelo modelo SST k-ω. Figura 59- Gráfico dos resultados de C D obtidos pelo modelo SST k-ω. Para melhor análise, segue abaixo dois gráficos (-C L e C D ) comparando os resultados da simulação do aerofólio da Formula Mazda obtidos pelos métodos SA e SST k- ω, nas duas configurações de elementos da malha.

93 93 Figura 60 - Resultados de -C L para o aerofólio dianteiro da Formula Mazda. Figura 61 - Resultados de C D para o aerofólio dianteiro da Formula Mazda.

94 Conclusão A iniciativa de comparar os resultados desenvolvidos neste trabalho com os obtidos por Kieffer et al (2005) torna-se sem êxito. Pois, no artigo, não está disponível explicitamente parâmetros importantes, como velocidade do fluido e condições adotadas nas fronteiras (principalmente na fronteira adotada como solo). Assim, resta somente uma análise dos resultados de autoria própria, providos pelos dois grupos de 12 simulações cada. Dos resultados do modelo Spalart-Allmaras, estes possuem perceptível diferença no coeficiente de sustentação (-C L ) para as duas malhas Dominant Quad e All Tri. Por outro lado, a mesma comparação para o coeficiente de arrasto (C D ) apresenta-se mais aceitável. Dos resultados do modelo SST k-ω, maior dificuldade de convergência foram enfrentadas, ao ponto de as simulações das malhas para ângulo de ataque de 8º não obtiveram resultados coerentes. Dentre os demais ângulos de ataque, os resultados não diferiram entre as malhas tanto, quando comparado ao modelo Spalart-Allmaras. Inclusive, o modelo SST k-ω apresentou praticamente os mesmos resultados de C D nas malhas Dominant Quad e All Tri.

95 95 7. APLICAÇÕES NO AUTOMOBILISMO 7.1 CAMPEONATO BRASILEIRO DE GRAN TURISMO FERRARI 458 ITALIA Introdução Alguns outros modelos de carros esportivos são utilizados em diversas categorias do automobilismo, praticamente na sua originalidade. As exceções são componentes de maior durabilidade ou desempenho, e itens que propiciem maior segurança na chamada célula de sobrevivência. A Ferrari 458 Italia é um desses casos. O modelo sofreu um pequeno pacote de melhoramento, dando origem ao modelo Ferrari 458 Italia GT, o qual é empregado internacionalmente em categorias do esporte. No Brasil, o modelo esteve presente durante o Campeonato Brasileiro de Gran Turismo de 2012, pilotado por Claudio Ricci da equipe CRT. Em entrevista de Ricci (Autoracing, 2012) após ter pilotado a versão de rua, ele relata sobre o modelo Ferrari 458 Italia: [A Ferrari 458 Italia] É sensacional. Nosso carro é um modelo de pista, então você espera que ele seja bom. O modelo de rua é tão bom quanto o de corrida. A troca de marchas é rápida, e se não fosse pelos equipamentos tradicionais como computador de bordo e ar condicionado, me sentiria em um carro de corrida. Assim, esta parte do trabalho aspira criar um exemplo de adaptação aerodinâmica de um modelo esportivo de alta performance para uso em competições: incluir um aerofólio traseiro para o modelo Ferrari 458 GT. A meta é adquirir maior grip nos pneus, principalmente no eixo de tração: eixo traseiro. Ou seja, o objetivo é maior carga aerodinâmica, a qual poderá permitir maior poder de tração e estabilidade, principalmente em piso molhado. Portanto, neste estudo é proposto o uso do aerofólio Duplo Elemento (presente neste trabalho na seção 6.2) no papel de aerofólio traseiro. Um domínio bidimensional é utilizado devido às limitações de recursos computacionais para um estudo tridimensional.

96 96 Figura 62 - Ferrari modelo 458 Italia durante ensaio em túnel de vento. Fonte: Adaptado de Conceptcarz.com Preparação do Perfil É iniciando o escopo do estudo pela investigação do perfil a ser simulado. Utilizando de uma imagem do veículo em estudo em túnel de vento, são obtidos os pontos do perfil do veículo através do software PlotDigitizer (versão 2.6.3). Figura 63 - Extração dos pontos do perfil do veículo, posicionado em túnel de vento. Fonte: Adaptado de Conceptcarz.com.

97 97 Em sequência da obtenção dos pontos do perfil de interesse, este é modelado em dimensões de escala real do carro: 4250 mm de comprimento. Visto que até o momento este estudo já havia um conhecimento sobre práticas de geração de malhas proveniente dos estudos anteriores neste trabalho, a metodologia de duas regiões aplicada primeiramente no estudo Efeito Solo é usada também neste pelo custo/benefício entre nível de controle da malha e tempo total de geração. Entretanto, as dimensões dos limites do domínio estão em um tamanho menor do que o ideal. Este sacrifício da região de estudo deve-se ao limitante de recursos computacionais memória RAM que não suportam maior número de células, uma vez mantido o refinamento e expansão ao redor do veículo. Figura 64 - Geometria das fronteiras do domínio, da região externa, em milímetros. Figura 65 Geometria do domínio da região interna - perfil do veículo original, em milímetros.

98 98 Figura 66 - Geometria do domínio da região interna inclusão do aerofólio traseiro, em milímetros. Os elementos que compoem a malha são do tipo Dominant Quad. Os parâmetros de controle foram os tamanhos máximos dos elementos em cada fronteira, e sua expansão na mesma. O formato geral da malha completa é a retangular, sendo a aresta inferior a modelagem do solo. A respeito das condições de fronteiras, o domínio segue a mesma disposição de Efeito Solo. Considerando as medidas em analogia a milímetros, as medidas máximas dos elementos sobre as fronteiras foram: 0,5 para AIRFOIL; 1 para FERRARI_F para GROUND_CLOSE; 25 para INTERFACE_IN, INTERFACE_OUT e GROUND; 250 para INLET, OUTLET e TOP. Figura 67 - Malha completa, composta pelas regiões interna e externa.

99 99 Figura 68 - Malhas internas: sem e com o aerofólio de duplo elemento Simulação Seguindo da importação das malhas por um segundo software, suas unidades ratificam a equivalência à milímetros e, consequentemente, mantendo o perfil do veículo em tamanho real. Na tabela 19 estão identificadas as fronteiras do domínio estudado. Tabela 19 - Condições de contorno no domínio do fluido. Fronteira INLET OUTLET TOP GROUND GROUND_CLOSE INTERFACE_IN INTERFACE_OUT FERRARI_F458 AIRFOIL Condição velocity-inlet (v = 30 m/s) (normal à face) pressure-outlet symmetry wall (v = 30 m/s) (sem rugosidade, sem escorregamento) wall (v = 30 m/s) (sem rugosidade, sem escorregamento) interface interface wall (sem rugosidade, sem escorregamento) wall (sem rugosidade, sem escorregamento)

100 100 Além das condições de fronteira, o fluido é idealizado como ar incompressível, e na temperatura de 300 K (27 ºC), sua densidade é de 1,1614 kg/m³ e viscosidade equivalente a 1, kg/m.s. O modelo de turbulência escolhido neste estudo é o modelo SST k-ω. O método de solução basea-se no esquema coupled, com equações em aproximações no formato Power Law e com gradiente do tipo Least Squares Cell Based. O critério de convergência adotado para os resíduos é , ou o limite máximo de iterações. Adaptações da malha foram realizadas duranteo o processo de solução, a fim de manter o y+ ao redor das paredes de interesse (veículo e aerofólio) próximos de valores unitários, como aconselhavél para o modelo SST k-ω. O número de células para a malha com o aerofólio é maior do que a malha sem o aerofólio (cerca de 2,2 vezes) devido aos elementos massivamente refinados na região redor do aerofólio, como observado na figura 65. Além disso, a região entre o carro e o aerofólio manteve um fino refinamento entre eles, o que aumenta consideravelmente a quantidade de células na região onde, na malha original, mantém uma expansão até as fronteiras da interface Interface_In / Interface_Out. Na tabela 20, podemos observar os resultados dos coeficientes de sustentação (negativo) e arrasto para o perfil da Ferrari 458 Italia, sem o aerofólio (original) e com o aerofólio proposto. Tabela 20 - Resultados de C D e C L para a seção da Ferrari 458 Italia, sem e com aerofólio. Ferrari 458 Italia -C L Downforce [N/m] C D Drag [N/m] Células Iterações Original -0, ,7 0, , Aerofólio adicional Duplo Elemento Flap: 15 1, ,0 0, ,

101 101 Figura 69 - Representação da Velocidade (magnitude, em m/s), sem aerofólio. Figura 70 - Representação da Pressão (manométrica, em Pa), sem aerofólio. Figura 71 Representação da pressão e velocidade no domínio completo, sem aerofólio.

102 102 Figura 72 - Representação da Velocidade (magnitude, em m/s), sem aerofólio. Figura 73 - Representação da Pressão (manométrica, em Pa), com aerofólio. Figura 74 - Representação da pressão e velocidade no domínio completo, com aerofólio.

103 Conclusão O objetivo do aumento de grip dos pneus, o qual será consequência da geração de downforce, mostra-se muito satisfatório quando vistos os resultados entre o perfil original do veículo e a adição do aerofólio proposto. Uma conclusão importante pode ser extraída da simulação da malha original: a força no sentido vertical demonstra que é gerado lift (downforce negativo) ao ponto que o veículo incrementa sua velocidade. Isto significa que o carro possui um peso resultante menor do que o seu peso original aumentando sua velocidade, pois a carga aerodinâmica está em sentido contrário da ação gravitacional. Em outras palavras, aparenta-se mais leve que o normal ao atingir altas velocidades, perdendo grip (atrito nos pneus) e prejudicando, principalmente, contornar curvas em altas velocidades. Tal efeito não é desejado para um veículo de alta performance, contudo, torna-se plausível quando considerado demais restrições na sua geometria, como design e posicionamento de seus componentes internos. Por outro lado, a presença do aerofólio muda qualitativamente o fenômeno. Com este, downforce é propriamente gerado. Isto significa que haverá um aumento de carga aerodinâmica à medida que se aumenta a velocidade do veículo, aumentando o grip disponível. Ou seja, o carro aparentará possuir um peso maior do que o seu próprio quando em repouso, pois ocorre a soma da carga aerodinâmica na ação gravitacional na mesma direção. Ainda, existe um ponto que os resultados demonstram-se surpreendente: a melhora do Efeito Solo. O esperado é que o aerofólio influencia-se praticamente a região superior do veículo. Surpreendentemente, o escoamento por baixo do carro aparenta ser alterado, e o aerofólio na posição que se encontra também exerce uma função indireta como a de um difusor. Essa mudança da forma que o ar sai com maior velocidade sob o carro, gera maior gradiente de pressão negativo, intensificando o downforce gerado na região do assoalho. Entretanto, uma ressalva com relação aos resultados numéricos deve ser feita. A credibilidade quantitativa dos resultados pode ser posta em dúvida. Visto que o domínio de estudo não foi adotado nas dimensões da metodologia emprega nos estudos dos tópicos anteriores, o gradiente de pressão atinge a fronteira superior, em condição de simetria. Assim, a única forma de saber o quanto isto pode estar influenciando os resultados é incrementando

104 104 as dimensões do domínio. Claro que isto requer um custo computacional ainda maior do que o utilizado, e não realizado neste estudo justamente por este motivo.

105 FORMULA 1 RED BULL RACING RB Introdução Visto que o conhecimento sobre aerofólio obtido pelos estudos ao longo deste trabalho são de modo bidimensional (2D), neste estudo é desejado análise de uma geometria mais complexa, caráter tridimensional (3D). Tais geometrias podem incluir novos detalhes sobre o uso de aerofólios em categorias de monopostos de alto nível, principalmente o dianteiro. Os carros da categoria de Formula 1 fazem parte destes casos. O aerofólio dianteiro ganha ainda mais funções na sua complexidade. Buscando o resultado máximo permitido pelo regulamento vigente, agora além de gerar downforce para o eixo dianteiro do veículo, agora este também possui o papel de gerenciar a direção do escoamento para demais funções. Dentre elas estão: minimizar a turbulência gerada pelos pneus; refrigerar os freios dianteiros; melhorar o direcionamento de parte do fluxo para os radiadores e tomada de ar para o motor e, é claro, melhorar o escoamento sobre o veículo como um todo para resultar menor drag. Figura 75 - Exemplo de estudo experimental (linhas de óleo) no aerofólio dianteiro. Fonte: Racecar Engineering.com (2013).

106 106 Figura 76 - Exemplos de estudos CFD sobre modelos de carros da Formula 1. Fonte: Adaptado de Racecar Engineering.com (2013). De tal modo, o domínio de todas as variáveis que envolvem a concepção de um aerofólio dianteiro ideal nestas categorias é praticamente intangível, ainda mais quando a modelagem entra no ramo CFD. O modo em que cada aerodinamicista aborda o problema e seus consequentes resultados são, quase na totalidade dos casos, diferentes. A intuição do modo que o fenômeno ocorre e a visão de como abordar os conceitos fazem-se de um valor extraordinário. Por esta razão, problemas como obter a melhor solução para a geometria de aerofólio dianteiro alcançam resultados com variáveis que extrapolam a pura e exclusiva análise de números. Assim, por muitos, esta é a prova de que o estudo fluidodinâmico alcança o estado da arte. Em resumo, o objetivo é o estudo qualitativo em caráter tridimensional de um aerofólio dianteiro do carro modelo RB7, da equipe Red Bull Racing. O modelo disputou e permitiu a obtenção dos títulos de piloto (Sebastian Vettel) e construtor (Red Bull Racing) da Formula 1 em 2011.

107 Preparação do Perfil Por razão de o estudo ser de caráter qualitativo e pelo curto prazo disponível para desenvolvê-lo, a geometria base propriamente dita não é de autoria própria. Algumas adaptações são realizadas no modelo disponível na internet, pelo site GrabCad. E assim que incluído as geometrias do domínio, segue-se para a próxima etapa: geração da malha. Figura 77 - Limites do domínio em estudo. Figura 78 - Detalhe dos elementos do aerofólio dianteiro, em corte no plano de simetria.

108 108 Figura 79 - Detalhe dos elementos do aerofólio dianteiro, em visão isométrica. Os elementos que compoem a malha são do tipo All Tri. Os parâmetros de controle foram os tamanhos máximos dos elementos em cada fronteira, e sua expansão na mesma. O formato genérico da malha completa é semelhante a um paralelogramo, sendo a face inferior a modelagem do solo. As fronteiras do domínio são: conjunto de superfícies que formam o aerofólio (RBR_FRONT_WING) face frontal ao aerofólio (INLET) e a face posterior ao mesmo (OUTLET); face de simetria do aerofólio (SYMMETRY), seguido da paralela desta (EDGE); face inferior (GROUND) e superior (TOP). Ainda, o volume envolvido pelas fronteiras citadas é denominado FLUID. As medidas máximas (análogas à milímetros) dos elementos sobre as fronteiras foram no valor de: 10 para RBR_FRONT_WING; 100 para INLET, OUTLET, TOP, EDGE, SYMMETRY e FLUID.

109 Figura 80 - Elementos da malha em contato com as superfícies do modelo. 109

110 110 Figura 81 - Visualização dos elementos da malha em contato com as superfícies front wing, symmetry (plano YZ), ground (plano ZX) e outlet (plano XY) Simulação Seguindo da importação das malhas por um segundo software, suas unidades ratificam a equivalência à milímetros e, consequentemente, permitindo a geometria ter tamanho próximo ao real. Na tabela 21 estão identificadas as fronteiras do domínio estudado. Tabela 21 - Condições de contorno no domínio do fluido. Fronteira INLET OUTLET TOP GROUND SYMMETRY EDGE RBR_FRONT_WING (conjunto de superfícies) Condição velocity-inlet (v = 50 m/s) (normal à face) pressure-outlet symmetry wall (v = 50 m/s) (sem rugosidade, sem escorregamento) symmetry symmetry wall (sem rugosidade, sem escorregamento)

111 111 Além das condições de fronteira, o fluido é idealizado como ar incompressível, e na temperatura de 300 K (27 ºC), sua densidade é de 1,225 kg/m³ e viscosidade equivalente a 1, kg/m.s. O modelo de turbulência escolhido neste estudo é o modelo SST k-ω. O método de solução basea-se no esquema SIMPLE, com equações em aproximações de segunda ordem e com gradiente do tipo Green-Gauss Cell Based. Ainda, o critério de convergência adotado para os resíduos é , ou o limite máximo de 100 iterações. Ao final, o processo de solução é executado até o limite máximo de 100 iterações e a distribuição de pressão é extraída dos resultados para análise Conclusão Seguindo o escopo deste estudo (baixa resolução da malha, fruto do limite dos recursos computacionais), somente a distribuição de pressão sobre as superfícies do aerofólio (figura 82) e as linhas de escoamento ao redor do mesmo (figuras 83 e 84) podem ser apreciadas. Evidencia-se que as superfícies superiores dos elementos que constituem a asa dianteira possuem maior magnitude de pressão do que a atmosférica. Por sua vez, destaca-se o aparecimento de duas regiões de baixa pressão na superfície inferior da asa (uma em cada lado da asa, nas extremidades), visto que o gradiente de pressão é ainda maior do que a superfície superior. Portanto, vemos que cada superfície (superior e inferior) possui sua parcela de contribuição para a geração de downforce. Todavia, a contribuição da superfície inferior é maior do que a superior. Com relação às linhas de escoamento, destaque-se a configuração da asa dianteira deste modelo, onde existe a tendência de coagir o ar a contornar externamente a região dos pneus dianteiros. Além disso, o fenômeno comumente conhecido na aviação como Efeito de Ponta de Asa formação de vórtices nas extremidades da asa é amenizado pelas superfícies verticais das extremidades da asa dianteira estudada.

112 Figura 82 - Visualizações da distribuição de pressão sobre o modelo adaptado de aerofólio dianteiro do modelo RB7, da equipe RedBull Racing. 112

113 CONSIDERAÇÕES FINAIS Ao longo dos estudos presentes neste trabalho, considera-se muito satisfatório o ganho de conhecimento sobre o assunto. No que concerne à preparação de geometrias para estudos, desenvolveu-se habilidade na geração de malhas numéricas; pois cerca de 60 malhas numéricas foram produzidas, contabilizando as descartadas e as presentes neste trabalho. No que diz respeito ao trabalho de simulação CFD propriamente dita, os resultados de diferentes modelos de turbulência, assim como demais parâmetros e configurações, agregaram conhecimento quanto à qualidade de resultados e recursos computacionais. E mesmo com recursos computacionais limitados (laptop com processador Intel Core i7; 2,20 GHz e 6 GB de memória RAM), foram gerados na produção deste trabalho 55,6 GB de informação. Por último, mas não menos importante, consolidou-se conhecimentos na aerodinâmica automobilística, principalmente no que se refere ao uso de aerofólios. A pesquisa proporcionou importantes pontos históricos do ramo, além de maior análise técnica e crítica dos componentes aplicados nas categorias da atualidade e tendências futuras para o setor. Tais conhecimentos serão utilizados em trabalhos futuros, onde o automobilismo continuará sendo tema.

114 114 REFERÊNCIAS ABBOTT, Ira H.; von DOENHOFF, Albert. E. Theory of Wing Sections: Including a Summary of Airfoil Data. New York: Dover, AIRFOIL Tools. NACA 4 digit airfoil specification. Disponível em: < http: //www.airfoiltools.com/airfoil/naca4digit>. Acesso em: 10 jun AEROSPACEWEB. NACA Airfoil Series. Disponível em: < spaceweb.org/question/airfoils/q0041.shtml>. Acesso em: 11 jun ALI, Imad S. et al. Modeling of Turbulent Separation Flow. World Academy of Science, Engineering and Technology, Venice, abr Disponível em: <http://www.uobabylon.edu.iq/uobcoleges/fileshare/articles/v76-73(%20dr.emad%20).pdf>. Acesso em: 02 jun ALLIANZ. Grand Prix Insights: Aerodynamics Disponível em: <http:// Acesso em: 28 mar ANDERSSON, Bengt et al. Computational Fluid Dynamics for Engineers. New York: Cambridge University Press, ANSYS Help. Versão Cecil Township: Ansys Inc., AUTORACING. Ferrari 458 Italia, um sonho tanto nas pistas quanto nas ruas Disponível em: <http://www.autoracing.com.br/ferrari-458-italia-um-sonhotanto-nas-pistas-quanto-nas-ruas/>. Acesso em: 12 jul BASHA, Wassim. Accurate Drag Prediction For Transitional External Flow over Airfoils f. Dissertação (MSc in Mechanical Engineering) Concordia University), Montréal, CAÑADA, Eduardo. Aerodynamic analysis and optimization of the rear wing of a WRC car f. Dissertação (MSc in Motorsport Engineering) School of Technology, Oxford Brookes University, Oxford, ELENI, Douvi C. et al. Evaluation of the turbulence models for the simulation of the flow over a National Advisory Committee for Aeronautics (NACA)

115 airfoil. Jounal of Mechanical Engineering Research, Patras, mar Disponível em: <http://www.academicjournals.org/jmer/abstract/abstracts/abstracts2012/march/eleni%20et %20al.htm>. Acesso em: 04 jun FERZIGER, Joel H. et al. Computational Method for Fluid Dynamics. 3rd ed. Berlin: Springer, abr F1 Network Disponível em: <http://www.f1network.net>. Acesso em: 14 abr F1 Technical Disponível em: <http://www.f1technical.net>. Acesso em: 25 mar FORMULA Disponível em: <http://www.formula1.com>. Acesso em: GREGORY, N. et al. Low-Speed Aerodynamic Characteristics of NACA 0012 Aerofoil Section, including the Effects of Upper-Surface Roughness Simulating Hoar Frost. London: Her Majesty s Stationery Office, Disponível em: <http://aerade. cranfield.ac.uk/ara/arc/rm/3726.pdf>. Acesso em: 10 jun HILL, T.; THOMAS, G. THE ENCYCLOPEDIA OF FORMULA ONE. Bath, United Kingdom: Parragon, KIEFFER, W. et al. CFD study of section characteristics of Formula Mazda race car. Elsevier, mar Disponível em: <http://www.sciencedirect.com/ science/article/pii/s >. Acesso em: 14 mar MCBEATH, Simon. COMPETITION CAR AERODYNAMICS. 2nd.ed. Yeovil, United Kingdom: Haynes Publishing, MORAN, Jack. An introduction to Theoretical and Computational Aerodynamics. New York: John Wiley & Sons, RACECAR Engineering Disponível em: <http://www.racecarengineering.com>. Acesso em: 14 mar SHELDAHL, Robert E. et al. Aerodynamic Characteristics of Seven Symmetrical Airfoil Sections Through 180-Degree Angle of Attack for Use in

116 116 Aerodynamic Analisys of Vertical Axis Wind Turbines. Albuquerque: Sandia National Laboratories, VERSTEEG, H. K. et al. An introduction to computational fluid dynamics: The finite volume method. Harlow: Longman Scientific & Technical, 1995.

117 117 APÊNDICE No presente apêndice são apresentados figuras representativas adicionais dos estudos realizados neste trabalho. Estas são resultados das simulações de diferentes parâmetros que competem a cada estudo, como o ângulo de ataque para os perfis aerodinâmicos. Relembrando que alguns estudos são realizados em diferentes modelos de turbulência, evita-se neste múltiplas representações. Portanto, os grupos de figuras a seguir apresentam os resultados de uma única bateria de cada estudo, utilizando o modelo de turbulência: Spalart-Allmaras, para: a) NACA 0012 b) Efeito Solo: NACA 0012 c) Duplo Elemento Shear-Stress Transport (SST) k-ω, para: a) NACA b) Formula Mazda: aerofólio dianteiro c) Ferrari 458 Italia (Campeonato Brasileiro de Grand Turismo): inclusão de aerofólio d) Red Bull Racing (Formula 1): aerofólio dianteiro Ressalta-se que a etapa de pós-processamento é realizado pelo software livre VisIt, versão 2.6.2, fonte dos elementos a seguir.

118 Figura 83 - Perfil NACA 0012: Gradientes de velocidade para α = 0, 4 e

119 Figura 84 - Perfil NACA 0012: Gradientes de velocidade para α = 12, 16 e

120 Figura 85 - Perfil NACA 0012: Gradientes de pressão (com linhas de escoamento) para α=0, 4 e

121 Figura 86 - Perfil NACA 0012: Gradientes de pressão (com linhas de escoamento) para α=12, 16 e

122 Figura 87 - Perfil NACA : Gradientes de velocidade para α = -4, 0 e

123 Figura 88 - Perfil NACA : Gradientes de velocidade para α = 8, 12 e

124 Figura 89 - Perfil NACA : Gradientes de velocidade para α =

125 Figura 90 - Perfil NACA : Gradientes de pressão (com linhas de escoamento) α = -4, 0 e

126 Figura 91 - Perfil NACA : Gradientes de pressão (com linhas de escoamento) α = 8, 12 e

127 Figura 92 - Perfil NACA : Gradientes de pressão (com linhas de escoamento) α =

128 Figura 93 - Perfil NACA 0012: Gradientes de velocidade para h = 200, 175 e 150 mm. 128

129 Figura 94 - Perfil NACA 0012: Gradientes de velocidade para h = 125, 100 e 75 mm. 129

130 Figura 95 - Perfil NACA 0012: Gradientes de velocidade para h = 50 mm. 130

131 Figura 96 - Perfil NACA 0012: Gradientes de pressão (e linhas de escoamento) para h=200, 175 e 150 mm. 131

132 Figura 97 - Perfil NACA 0012: Gradientes de pressão (e linhas de escoamento) para h=125, 100 e 75 mm. 132

133 Figura 98 - Perfil NACA 0012: Gradientes de pressão (e linhas de escoamento) para h = 50 mm. 133

134 Figura 99 - Duplo Elemento: Gradientes de velocidade para flap em α = 0, 5 e

135 Figura Duplo Elemento: Gradientes de velocidade para flap em α = 15, 20 e

136 Figura Duplo Elemento: Gradientes de velocidade para flap em α =

137 Figura Duplo Elemento: Gradientes de pressão (e linhas de escoamento) para flap em α = 0, 5 e

138 Figura Duplo Elemento: Gradientes de pressão (e linhas de escoamento) para flap em α = 15, 20 e

139 Figura Duplo Elemento: Gradientes de pressão (e linhas de escoamento) para flap em α =

140 Figura Formula Mazda: Gradientes de velocidade para α = -4, 0 e

141 Figura Formula Mazda: Gradientes de velocidade para α = 8, 12 e

142 Figura Formula Mazda: Gradientes de pressão (e linhas de escoamento) para α = -4, 0 e

143 Figura Formula Mazda: Gradientes de pressão (e linhas de escoamento) para α = 8, 12 e

144 Figura Ferrari 458 Italia: Linhas de escoamentos (acima) sobre os gradientes de pressão (ao centro) e de velocidade (abaixo), para o perfil original. 144

145 Figura Ferrari 458 Italia: Gradientes de pressão (acima) e de velocidade (abaixo), para o perfil original. 145

146 Figura Ferrari 458 Italia: Linhas de escoamentos (acima) sobre os gradientes de pressão (ao centro) e de velocidade (abaixo), para aerofólio proposto para flap em α =

147 Figura Ferrari 458 Italia: Gradientes de pressão (acima) e de velocidade (abaixo), para aerofólio proposto para flap em α =

148 Figura Parte 1: Linhas de fluxo ao redor do aerofólio dianteiro do modelo RB7 (Red Bull Racing, Formula 1), em diferentes níveis de altura. 148

149 Figura Parte 2: Linhas de fluxo ao redor do aerofólio dianteiro do modelo RB7 (Red Bull Racing, Formula 1), em diferentes níveis de altura. 149

Figura 1-1. Entrada de ar tipo NACA. 1

Figura 1-1. Entrada de ar tipo NACA. 1 1 Introdução Diversos sistemas de uma aeronave, tais como motor, ar-condicionado, ventilação e turbinas auxiliares, necessitam captar ar externo para operar. Esta captura é feita através da instalação

Leia mais

Desenvolvimento de um gerador de malhas para o estudo do escoamento transônico em um aerofólio

Desenvolvimento de um gerador de malhas para o estudo do escoamento transônico em um aerofólio Desenvolvimento de um gerador de malhas para o estudo do escoamento transônico em um aerofólio Leo Moreira Lima. ITA Instituto tecnológico de Aeronáutica, São José dos Campos, SP, 12228-900, Brasil. Bolsista

Leia mais

Aplicativo visual para problemas de transferência de calor 1

Aplicativo visual para problemas de transferência de calor 1 Artigos Aplicativo visual para problemas de transferência de calor 1 Lin Chau Jen, Gerson Rissetti, André Guilherme Ferreira, Adilson Hideki Yamagushi, Luciano Falconi Coelho Uninove. São Paulo SP [Brasil]

Leia mais

Figura 7.20 - Vista frontal dos vórtices da Figura 7.18. Vedovoto et al. (2006).

Figura 7.20 - Vista frontal dos vórtices da Figura 7.18. Vedovoto et al. (2006). 87 Figura 7.20 - Vista frontal dos vórtices da Figura 7.18. Vedovoto et al. (2006). Figura 7.21 - Resultado qualitativo de vórtices de ponta de asa obtidos por Craft et al. (2006). 88 A visualização do

Leia mais

ANÁLISE DO ESCOAMENTO SOBRE AEROFÓLIOS USANDO A TÉCNICA DOS VOLUMES FINITOS

ANÁLISE DO ESCOAMENTO SOBRE AEROFÓLIOS USANDO A TÉCNICA DOS VOLUMES FINITOS ANÁLISE DO ESCOAMENTO SOBRE AEROFÓLIOS USANDO A TÉCNICA DOS VOLUMES FINITOS Stéfano Bruno Ferreira IC Aluno de graduação do curso de Engenharia Aeronáutica do Instituto Tecnológico de Aeronáutica Bolsista

Leia mais

UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS CCT CURSO DE TECNOLOGIA EM SISTEMAS DE INFORMAÇÃO

UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS CCT CURSO DE TECNOLOGIA EM SISTEMAS DE INFORMAÇÃO UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS CCT CURSO DE TECNOLOGIA EM SISTEMAS DE INFORMAÇÃO COMPUTER AIDED ENGINEERING - CAE FABIANO RAMOS DOS SANTOS SERGIO DA COSTA FERREIRA

Leia mais

Figura 4.6: Componente horizontal de velocidade (128x128 nós de colocação).

Figura 4.6: Componente horizontal de velocidade (128x128 nós de colocação). 59 Figura 4.6: Componente horizontal de velocidade (128x128 nós de colocação). Figura 4.7: Comparação do erro para a componente horizontal de velocidade para diferentes níveis de refinamento. 60 Figura

Leia mais

curso de extensão Análise de Escoamentos através de Dinâmica dos Fluidos Computacional

curso de extensão Análise de Escoamentos através de Dinâmica dos Fluidos Computacional iesss - instituto de pesquisa, desenvolvimento e capacitação curso de extensão Análise de Escoamentos através de Dinâmica dos Fluidos Computacional curso de extensão instituto P&D Análise de Escoamentos

Leia mais

Avaliação de modelos numéricos de CFD para o estudo do escoamento de água da piscina do RMB

Avaliação de modelos numéricos de CFD para o estudo do escoamento de água da piscina do RMB 2013 International Nuclear Atlantic Conference - INAC 2013 Recife, PE, Brazil, November 24-29, 2013 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-05-2 Avaliação de modelos numéricos

Leia mais

TECNOLOGIA DE GRANDES TURBINAS EÓLICAS: AERODINÂMICA. Professora Dra. Adriane Prisco Petry Departamento de Engenharia Mecânica

TECNOLOGIA DE GRANDES TURBINAS EÓLICAS: AERODINÂMICA. Professora Dra. Adriane Prisco Petry Departamento de Engenharia Mecânica TECNOLOGIA DE GRANDES TURBINAS EÓLICAS: AERODINÂMICA Professora Dra. Adriane Prisco Petry Departamento de Engenharia Mecânica ELETRÔNICA DE POTENCIA AERODINÂMICA ELETRICIDADE DINÂMICA DOS ENGENHARIA CIVIL

Leia mais

Mecânica dos Fluidos. Aula 10 Escoamento Laminar e Turbulento. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos. Aula 10 Escoamento Laminar e Turbulento. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Aula 10 Escoamento Laminar e Turbulento Tópicos Abordados Nesta Aula Escoamento Laminar e Turbulento. Cálculo do Número de Reynolds. Escoamento Laminar Ocorre quando as partículas de um fluido movem-se

Leia mais

ESTUDO DO COMPORTAMENTO AERODINÂMICO DE UM ESPELHO RETROVISOR

ESTUDO DO COMPORTAMENTO AERODINÂMICO DE UM ESPELHO RETROVISOR CENTRO UNIVERSITÁRIO DA FEI PROJETO DE INICIAÇÃO CIENTÍFICA ESTUDO DO COMPORTAMENTO AERODINÂMICO DE UM ESPELHO RETROVISOR LATERAL ATRAVÉS DE SIMULAÇÃO CFD TRANSIENTE RELATÓRIO FINAL Orientador: Prof. Dr.

Leia mais

LCAD. Introdução ao Curso de Métodos Numéricos I. LCAD - Laboratório de Computação de Alto Desempenho

LCAD. Introdução ao Curso de Métodos Numéricos I. LCAD - Laboratório de Computação de Alto Desempenho LCAD - Laboratório de Computação de Alto Desempenho LCAD Introdução ao Curso de Métodos Numéricos I Lucia Catabriga Departamento de Informática CT/UFES Processo de Solução Fenômeno Natural Modelo Matemático

Leia mais

ANÁLISE ESTRUTURAL DE CHASSIS DE VEÍCULOS PESADOS COM BASE NO EMPREGO DO PROGRAMA ANSYS

ANÁLISE ESTRUTURAL DE CHASSIS DE VEÍCULOS PESADOS COM BASE NO EMPREGO DO PROGRAMA ANSYS ANÁLISE ESTRUTURAL DE CHASSIS DE VEÍCULOS PESADOS COM BASE NO EMPREGO DO PROGRAMA ANSYS José Guilherme Santos da Silva, Francisco José da Cunha Pires Soeiro, Gustavo Severo Trigueiro, Marcello Augustus

Leia mais

Introdução ao Projeto de Aeronaves. Aula 13 Grupo Moto-Propulsor e Seleção de Hélices

Introdução ao Projeto de Aeronaves. Aula 13 Grupo Moto-Propulsor e Seleção de Hélices Introdução ao Projeto de Aeronaves Aula 13 Grupo Moto-Propulsor e Seleção de Hélices Tópicos Abordados Grupo Moto-Propulsor. Motores para a Competição AeroDesign. Características das Hélices. Modelo Propulsivo.

Leia mais

ANÁLISE DE MALHAS COMPUTACIONAIS EM TORNO DE PEÇAS DE INTERESSE EM ENGENHARIA AERONÁUTICA

ANÁLISE DE MALHAS COMPUTACIONAIS EM TORNO DE PEÇAS DE INTERESSE EM ENGENHARIA AERONÁUTICA ANÁLISE DE MALHAS COMPUTACIONAIS EM TORNO DE PEÇAS DE INTERESSE EM ENGENHARIA AERONÁUTICA Bruno Quadros Rodrigues IC saraiva06@bol.com.br Nide Geraldo docouto R. F. Jr PQ nide@ita.br Instituto Tecnológico

Leia mais

ANÁLISE TRIDIMENSIONAL DA VELOCIDADE E PRESSÃO ESTATÍSCA DO AR EM SILO DE AERAÇÃO USANDO ELEMENTOS FINITOS RESUMO ABSTRACT 1.

ANÁLISE TRIDIMENSIONAL DA VELOCIDADE E PRESSÃO ESTATÍSCA DO AR EM SILO DE AERAÇÃO USANDO ELEMENTOS FINITOS RESUMO ABSTRACT 1. ANÁLISE TRIDIMENSIONAL DA VELOCIDADE E PRESSÃO ESTATÍSCA DO AR EM SILO DE AERAÇÃO USANDO ELEMENTOS FINITOS RESUMO EDUARDO VICENTE DO PRADO 1 DANIEL MARÇAL DE QUEIROZ O método de análise por elementos finitos

Leia mais

MECÂNICA DOS FLUIDOS 2 ME262

MECÂNICA DOS FLUIDOS 2 ME262 UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE TECNOLOGIA E GEOCIÊNCIAS (CTG) DEPARTAMENTO DE ENGENHARIA MECÂNICA (DEMEC) MECÂNICA DOS FLUIDOS ME6 Prof. ALEX MAURÍCIO ARAÚJO (Capítulo 5) Recife - PE Capítulo

Leia mais

AVALIAÇÃO DO ESCOAMENTO DE FLUIDOS INCOMPRESSÍVEIS EM TUBULAÇÕES USANDO CFD

AVALIAÇÃO DO ESCOAMENTO DE FLUIDOS INCOMPRESSÍVEIS EM TUBULAÇÕES USANDO CFD AVALIAÇÃO DO ESCOAMENTO DE FLUIDOS INCOMPRESSÍVEIS EM TUBULAÇÕES USANDO CFD 1 Délio Barroso de Souza, 2 Ulisses Fernandes Alves, 3 Valéria Viana Murata 1 Discente do curso de Engenharia Química 2 Bolsista

Leia mais

DINÂMICA DOS FLUIDOS COMPUTACIONAL. CFD = Computational Fluid Dynamics

DINÂMICA DOS FLUIDOS COMPUTACIONAL. CFD = Computational Fluid Dynamics DINÂMICA DOS FLUIDOS COMPUTACIONAL CFD = Computational Fluid Dynamics 1 Problemas de engenharia Métodos analíticos Métodos experimentais Métodos numéricos 2 Problemas de engenharia FENÔMENO REAL (Observado

Leia mais

ANÁLISE NUMÉRICA DA INFLUÊNCIA DE AGULHAS NO PERFIL DE VELOCIDADE DE UM ESCOAMENTO DE UM TÚNEL DE VENTO

ANÁLISE NUMÉRICA DA INFLUÊNCIA DE AGULHAS NO PERFIL DE VELOCIDADE DE UM ESCOAMENTO DE UM TÚNEL DE VENTO Congresso de Métodos Numéricos em Engenharia 2015 Lisboa, 29 de Junho a 2 de Julho, 2015 APMTAC, Portugal, 2015 ANÁLISE NUMÉRICA DA INFLUÊNCIA DE AGULHAS NO PERFIL DE VELOCIDADE DE UM ESCOAMENTO DE UM

Leia mais

Processos em Engenharia: Modelagem Matemática de Sistemas Fluídicos

Processos em Engenharia: Modelagem Matemática de Sistemas Fluídicos Processos em Engenharia: Modelagem Matemática de Sistemas Fluídicos Prof. Daniel Coutinho coutinho@das.ufsc.br Departamento de Automação e Sistemas DAS Universidade Federal de Santa Catarina UFSC DAS 5101

Leia mais

Eixo Temático ET-09-009 - Energia ESTUDO DA TERMOFLUIDODINÂMICA DE UM SECADOR SOLAR DE EXPOSIÇÃO DIRETA: MODELAGEM E SIMULAÇÃO

Eixo Temático ET-09-009 - Energia ESTUDO DA TERMOFLUIDODINÂMICA DE UM SECADOR SOLAR DE EXPOSIÇÃO DIRETA: MODELAGEM E SIMULAÇÃO 426 Eixo Temático ET-09-009 - Energia ESTUDO DA TERMOFLUIDODINÂMICA DE UM SECADOR SOLAR DE EXPOSIÇÃO DIRETA: MODELAGEM E SIMULAÇÃO Maria Teresa Cristina Coelho¹; Jailton Garcia Ramos; Joab Costa dos Santos;

Leia mais

Universidade Federal de Minas Gerais Departamento de Engenharia Mecânica

Universidade Federal de Minas Gerais Departamento de Engenharia Mecânica Universidade Federal de Minas Gerais Departamento de Engenharia Mecânica Analise de Tensões em Perfil Soldado Comparação de Resultados em Elementos Finitos Aluno: Rafael Salgado Telles Vorcaro Registro:

Leia mais

Bancada de visualização de escoamentos: maquetes

Bancada de visualização de escoamentos: maquetes MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA Bancada de visualização de escoamentos: maquetes RELATÓRIO DE TRABALHO DE CONCLUSÃO

Leia mais

A TÉCNICA DOS MÚLTIPLOS DOMÍNIOS APLICADA À GERAÇÃO DE MALHAS NO SOFTWARE ANSYS CFX-MESH

A TÉCNICA DOS MÚLTIPLOS DOMÍNIOS APLICADA À GERAÇÃO DE MALHAS NO SOFTWARE ANSYS CFX-MESH VI CONGRESSO NACIONAL DE ENGENHARIA MECÂNICA VI NATIONAL CONGRESS OF MECHANICAL ENGINEERING 18 a 21 de agosto de 2010 Campina Grande Paraíba - Brasil August 18 21, 2010 Campina Grande Paraíba Brazil A

Leia mais

Perda de Carga e Comprimento Equivalente

Perda de Carga e Comprimento Equivalente Perda de Carga e Comprimento Equivalente Objetivo Este resumo tem a finalidade de informar os conceitos básicos para mecânicos e técnicos refrigeristas sobre Perda de Carga e Comprimento Equivalente, para

Leia mais

PROJETO DE PÁS DE TURBINAS EÓLICAS DE ALTA PERFORMANCE AERODINÂMICA

PROJETO DE PÁS DE TURBINAS EÓLICAS DE ALTA PERFORMANCE AERODINÂMICA Anais do 15 O Encontro de Iniciação Científica e Pós-Graduação do ITA XV ENCITA / 2009 Instituto Tecnológico de Aeronáutica São José dos Campos SP Brasil Outubro 19 a 22 2009. PROJETO DE PÁS DE TURBINAS

Leia mais

UTILIZAÇÃO DA DINÂMICA DOS FLUIDOS COMPUTACIONAL NA COMPLEMENTAÇÃO DO ENSINO DA DISCIPLINA FENÔMENOS DE TRANSPORTE

UTILIZAÇÃO DA DINÂMICA DOS FLUIDOS COMPUTACIONAL NA COMPLEMENTAÇÃO DO ENSINO DA DISCIPLINA FENÔMENOS DE TRANSPORTE Anais do XXXIV COBENGE. Passo Fundo: Ed. Universidade de Passo Fundo, Setembro de 2006. ISBN 85-7515-371-4 UTILIZAÇÃO DA DINÂMICA DOS FLUIDOS COMPUTACIONAL NA COMPLEMENTAÇÃO DO ENSINO DA DISCIPLINA FENÔMENOS

Leia mais

FATOR C - RUGOSIDADE

FATOR C - RUGOSIDADE FATOR C - RUGOSIDADE Rugosidade é definida no caso particular das tubulações, aquela que tem uma anomalia interna, representada por protuberâncias, rugas ou ainda crateras em sua estrutura interna natural

Leia mais

ESTUDO NUMÉRICO DO ESCOAMENTO EM UM SOPRADOR DE UM TÚNEL DE VENTO PARA BAIXAS VELOCIDADES

ESTUDO NUMÉRICO DO ESCOAMENTO EM UM SOPRADOR DE UM TÚNEL DE VENTO PARA BAIXAS VELOCIDADES XI Simpósio de Mecânica Computacional II Encontro Mineiro de Modelagem Computacional Juiz De Fora, MG, 28-30 de Maio De 2014 ESTUDO NUMÉRICO DO ESCOAMENTO EM UM SOPRADOR DE UM TÚNEL DE VENTO PARA BAIXAS

Leia mais

Escoamento em dutos em L

Escoamento em dutos em L 4ª Parte do Trabalho EM974 Métodos Computacionais em Engenharia Térmica e Ambiental Escoamento em dutos em L Rafael Schmitz Venturini de Barros RA:045951 Marcelo Delmanto Prado RA: 048069 1. Introdução

Leia mais

TÍTULO: CURVA DA BOMBA E DO SISTEMA PARA O TRANSPORTE DE FLUIDO VISCOSO

TÍTULO: CURVA DA BOMBA E DO SISTEMA PARA O TRANSPORTE DE FLUIDO VISCOSO Anais do Conic-Semesp. Volume 1, 2013 - Faculdade Anhanguera de Campinas - Unidade 3. ISSN 2357-8904 TÍTULO: CURVA DA BOMBA E DO SISTEMA PARA O TRANSPORTE DE FLUIDO VISCOSO CATEGORIA: CONCLUÍDO ÁREA: ENGENHARIAS

Leia mais

USO DO SOFTWARE LIVRE APLICADO À ENGENHARIA QUÍMICA

USO DO SOFTWARE LIVRE APLICADO À ENGENHARIA QUÍMICA USO DO SOFTWARE LIVRE APLICADO À ENGENHARIA QUÍMICA Ana Paula Salum Duarte, Manolo Horta Barbosa Orellana, Renato Prates de Oliveira Campos Departamento de Engenharia Química, Universidade Federal de Minas

Leia mais

CARACTERIZAÇÃO DAS CURVAS DE POTÊNCIA DE UM VENTILADOR DE FLUXO AXIAL

CARACTERIZAÇÃO DAS CURVAS DE POTÊNCIA DE UM VENTILADOR DE FLUXO AXIAL XIX Congresso Nacional de Estudantes de Engenharia Mecânica - 13 a 17/08/2012 São Carlos-SP Artigo CREEM2012 CARACTERIZAÇÃO DAS CURVAS DE POTÊNCIA DE UM VENTILADOR DE FLUXO AXIAL Rangel S. Maia¹, Renato

Leia mais

Simulação Numérica do Aquecimento de Água Utilizando-se um Cilindro Ferromagnético

Simulação Numérica do Aquecimento de Água Utilizando-se um Cilindro Ferromagnético Simulação Numérica do Aquecimento de Água Utilizando-se um Cilindro Ferromagnético Paulo Tibúrcio Pereira, Universidade Federal de São João Del Rei UFSJ Engenharia de Telecomunicações 36420-000, Ouro Branco,

Leia mais

MÉTODO DOS ELEMENTOS FINITOS

MÉTODO DOS ELEMENTOS FINITOS INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS ENGENHARIA E TECNOLOGIA ESPACIAIS MECÂNICA ESPACIAL E CONTROLE MESTRADO MÉTODO DOS ELEMENTOS FINITOS Seminário de Dinâmica Orbital I CMC-203-0 Prof. Dr. Mário

Leia mais

MÉTODO DOS ELEMENTOS FINITOS COMO FERRAMENTA DIDÁTICA PARA O ENSINO DE ELETROSTÁTICA E MAGNETOSTÁTICA

MÉTODO DOS ELEMENTOS FINITOS COMO FERRAMENTA DIDÁTICA PARA O ENSINO DE ELETROSTÁTICA E MAGNETOSTÁTICA MÉTODO DOS ELEMENTOS FINITOS COMO FERRAMENTA DIDÁTICA PARA O ENSINO DE ELETROSTÁTICA E MAGNETOSTÁTICA Danilo Nobre Oliveira danilonobre@danilonobre.eng.br Ginúbio Braga Ferreira ginubio@gmail.com Universidade

Leia mais

Palavras chave: plasma, escoamento supersônico, reentrada atmosférica, bocal CD cônico, CFD.

Palavras chave: plasma, escoamento supersônico, reentrada atmosférica, bocal CD cônico, CFD. Anais do 15 O Encontro de Iniciação Científica e Pós-Graduação do ITA XV ENCITA / 9 Instituto Tecnológico de Aeronáutica São José dos Campos SP Brasil Outubro 19 a 9. APLICAÇÃO DA SIMULAÇÃO COMPUTACIONAL

Leia mais

SIMULAÇÃO NUMÉRICA DE UMA BOLHA DE SEPARAÇÃO EM BORDO ARREDONDADO UTILIZANDO EQUAÇÕES MÉDIAS DE REYNOLDS

SIMULAÇÃO NUMÉRICA DE UMA BOLHA DE SEPARAÇÃO EM BORDO ARREDONDADO UTILIZANDO EQUAÇÕES MÉDIAS DE REYNOLDS SIMULAÇÃO NUMÉRICA DE UMA BOLHA DE SEPARAÇÃO EM BORDO ARREDONDADO UTILIZANDO EQUAÇÕES MÉDIAS DE REYNOLDS WENDEL RODRIGUES MIRANDA, EDSON DIAS NASCIMENTO JUNIOR, ANDRÉ LUIZ TENÓRIO REZENDE Departamento

Leia mais

Técnicas adotas para seu estudo: soluções numéricas (CFD); experimentação (análise dimensional); teoria da camada-limite.

Técnicas adotas para seu estudo: soluções numéricas (CFD); experimentação (análise dimensional); teoria da camada-limite. Escoamento externo Técnicas adotas para seu estudo: soluções numéricas (CFD); experimentação (análise dimensional); teoria da camada-limite. Soluções numéricas, hoje um campo interessante de pesquisa e

Leia mais

OBTENÇÃO DE COEFICIENTES AERODINÂMICOS ATRAVÉS DE MECÂNICA COMPUTACIONAL DE FLUIDOS PARA DETERMINAÇÃO DE AÇÕES EM EDIFICAÇÕES DEVIDAS AO VENTO

OBTENÇÃO DE COEFICIENTES AERODINÂMICOS ATRAVÉS DE MECÂNICA COMPUTACIONAL DE FLUIDOS PARA DETERMINAÇÃO DE AÇÕES EM EDIFICAÇÕES DEVIDAS AO VENTO Tema: Estruturas de Aço OBTENÇÃO DE COEFICIENTES AERODINÂMICOS ATRAVÉS DE MECÂNICA COMPUTACIONAL DE FLUIDOS PARA DETERMINAÇÃO DE AÇÕES EM EDIFICAÇÕES DEVIDAS AO VENTO Anderson Guerra¹ Zacarias M. Chamberlain

Leia mais

Verificação e Validação em CFD

Verificação e Validação em CFD Erro de arredondamento. Erro iterativo. Erro de discretização. As três componentes do erro numérico têm comportamentos diferentes com o aumento do número de graus de liberdade (refinamento da malha). Erro

Leia mais

OTIMIZAÇÃO DO AEROFÓLIO NACA PARA UM VEÍCULO AÉREO NÃO TRIPULADO COM APLICAÇÃO AGRÍCOLA

OTIMIZAÇÃO DO AEROFÓLIO NACA PARA UM VEÍCULO AÉREO NÃO TRIPULADO COM APLICAÇÃO AGRÍCOLA Mecánica Computacional Vol XXIX, págs. 3657-3669 (artículo completo) Eduardo Dvorkin, Marcela Goldschmit, Mario Storti (Eds.) Buenos Aires, Argentina, 15-18 Noviembre 2010 OTIMIZAÇÃO DO AEROFÓLIO NACA

Leia mais

ANÁLISE EM CFD DO PROCESSO DE COMBUSTÃO DE CARVÃO NUMA CALDEIRA AQUATUBULAR: DEFEITOS DE FUNCIONAMENTO

ANÁLISE EM CFD DO PROCESSO DE COMBUSTÃO DE CARVÃO NUMA CALDEIRA AQUATUBULAR: DEFEITOS DE FUNCIONAMENTO ANÁLISE EM CFD DO PROCESSO DE COMBUSTÃO DE CARVÃO NUMA CALDEIRA AQUATUBULAR: DEFEITOS DE FUNCIONAMENTO Luís F. Dondoni, Pedro L. Bellani, Eduardo M. Nadaletti, Leandro L. Felipetto, Maria L. S. Indrusiak

Leia mais

Simulação Numérica Direta de Escoamentos Transicionais e Turbulentos

Simulação Numérica Direta de Escoamentos Transicionais e Turbulentos Simulação Numérica Direta de Escoamentos Transicionais e Turbulentos Simulação numérica direta (DNS), Formalismo, Equações Navier-Stokes no espaço espectral, Considerações sobre métodos numéricos para

Leia mais

Introdução ao Projeto de Aeronaves. Aula 39 Relatório de Projeto Técnicas de Estruturação

Introdução ao Projeto de Aeronaves. Aula 39 Relatório de Projeto Técnicas de Estruturação Introdução ao Projeto de Aeronaves Aula 39 Relatório de Projeto Técnicas de Estruturação Tópicos Abordados Relatório de Projeto. Técnicas de Estruturação para uma boa Avaliação. Elaboração do Relatório

Leia mais

Testes de túnel de vento

Testes de túnel de vento Fornecido pelo TryEngineering - Foco da lição Esta lição enfoca os testes em túnel de vento que engenheiros de várias áreas usam quando desenvolvem produtos como aeronaves, automóveis e até mesmo edifícios.

Leia mais

ANÁLISE DIMENSIONAL. Grandezas básicas, unidades, dimensões

ANÁLISE DIMENSIONAL. Grandezas básicas, unidades, dimensões ANÁLISE DIMENSIONAL A análise dimensional é uma ferramenta poderosa e simples para avaliar e deduzir relações físicas. A similaridade é um conceito diretamente relacionado, que consiste basicamente na

Leia mais

MÉTODO DOS ELEMENTOS FINITOS APLICADO A ENGENHARIA CIVIL

MÉTODO DOS ELEMENTOS FINITOS APLICADO A ENGENHARIA CIVIL MÉTODO DOS ELEMENTOS FINITOS APLICADO A ENGENHARIA CIVIL COSTA, Marcelo Sidney Mendes Faculdade de Ciências Sociais e Agrárias de Itapeva BILESKY, Luciano Rossi Prof. Orientador - Faculdade de Ciências

Leia mais

FRONTEIRA IMERSA PARA CORPOS ESBELTOS

FRONTEIRA IMERSA PARA CORPOS ESBELTOS Faculdade de Engenharia Mecânica Universidade Federal de Uberlândia 18 e 19 de Novembro de 2015, Uberlândia - MG FRONTEIRA IMERSA PARA CORPOS ESBELTOS João Rodrigo Andrade, jandrade@mec.ufu.br Aristeu

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DE SUL TRABALHO DE FÍSICA. Por que o avião voa? JEFERSON WOHANKA. Porto Alegre, 11 de junho de 2007.

UNIVERSIDADE FEDERAL DO RIO GRANDE DE SUL TRABALHO DE FÍSICA. Por que o avião voa? JEFERSON WOHANKA. Porto Alegre, 11 de junho de 2007. UNIVERSIDADE FEDERAL DO RIO GRANDE DE SUL TRABALHO DE FÍSICA Por que o avião voa? JEFERSON WOHANKA Porto Alegre, 11 de junho de 2007. ÍNDICE INTRODUÇÃO...3 AS FORÇAS QUE ATUAM SOBRE O AVIÃO...4 COMO É

Leia mais

Conceitos gerais. A movimentação do ar e dos gases de combustão é garantida por: Ventiladores centrífugos Efeito de sucção da chaminé

Conceitos gerais. A movimentação do ar e dos gases de combustão é garantida por: Ventiladores centrífugos Efeito de sucção da chaminé TIRAGEM Definição Tiragem é o processo que garante a introdução do ar na fornalha e a circulação dos gases de combustão através de todo gerador de vapor, até a saída para a atmosfera 00:43 2 Conceitos

Leia mais

HIDRODINÂMICA CONDUTOS SOB PRESSÃO

HIDRODINÂMICA CONDUTOS SOB PRESSÃO HIDRODINÂMICA CONDUTOS SOB PRESSÃO CONDUTOS SOB PRESSÃO Denominam-se condutos sob pressão ou condutos forçados, as canalizações onde o líquido escoa sob uma pressão diferente da atmosférica. As seções

Leia mais

A seguir será dada uma classificação ampla da Mecânica dos Fluidos baseada nas características físicas observáveis dos campos de escoamento.

A seguir será dada uma classificação ampla da Mecânica dos Fluidos baseada nas características físicas observáveis dos campos de escoamento. Universidade Federal do Paraná Curso de Engenharia Industrial Madeireira MÁQUINAS HIDRÁULICAS AT-087 Dr. Alan Sulato de Andrade alansulato@ufpr.br A seguir será dada uma classificação ampla da Mecânica

Leia mais

Universidade Federal do Paraná

Universidade Federal do Paraná Universidade Federal do Paraná Programa de pós-graduação em engenharia de recursos hídricos e ambiental TH705 Mecânica dos fluidos ambiental II Prof. Fernando Oliveira de Andrade Problema do fechamento

Leia mais

CONTEÚDOS PROGRAMADOS (Energia Solar - EEK508)

CONTEÚDOS PROGRAMADOS (Energia Solar - EEK508) (Energia Solar - EEK508) (Equipamentos de Processos - EEK524) (Fontes Alternativas de Energia - EEK525) (INSTRUMENTAÇÃO E CONTROLE - EEK 509) 1 Introdução Introdução ao controle de processos 2 2 - Controladores

Leia mais

Ao descolarmos de uma grande altitude a densidade diminui, o que acontece à sustentação?

Ao descolarmos de uma grande altitude a densidade diminui, o que acontece à sustentação? O que é a aerodinâmica? Aerodinâmica é o estudo do ar em movimento e das forças que actuam em superfícies sólidas, chamadas asas, que se movem no ar. Aerodinâmica deriva do grego "aer", ar, e "dynamis",

Leia mais

Catálogo. Pontifícia Universidade Católica do Rio Grande do Sul Faculdade de Engenharia Centro de Energia Eólica. Apoio:

Catálogo. Pontifícia Universidade Católica do Rio Grande do Sul Faculdade de Engenharia Centro de Energia Eólica. Apoio: Catálogo Apoio: APRESENTAÇÃO O (CE-EÓLICA) se consolida como uma ação estratégica da PUCRS em função do crescimento das competências nesta área, a partir de atividades especificas realizadas pelo NUTEMA,

Leia mais

EXPERIÊNCIA Nº 4 ESTUDO DE UM TROCADOR DE CALOR DE FLUXO CRUZADO

EXPERIÊNCIA Nº 4 ESTUDO DE UM TROCADOR DE CALOR DE FLUXO CRUZADO EXPERIÊNCIA Nº 4 ESTUDO DE UM TROCADOR DE CALOR DE FLUXO CRUZADO 1. CONCEITOS ENVOLVIDOS Convecção de calor em escoamento externo; Transferência de calor em escoamento cruzado; Camada limite térmica; Escoamento

Leia mais

DIMENSIONAMENTO DE UMA BIELA DE COMPRESSOR HERMÉTICO QUANTO À FADIGA ATRAVÉS DE ANÁLISE POR ELEMENTOS FINITOS

DIMENSIONAMENTO DE UMA BIELA DE COMPRESSOR HERMÉTICO QUANTO À FADIGA ATRAVÉS DE ANÁLISE POR ELEMENTOS FINITOS XIX Congresso Nacional de Estudantes de Engenharia Mecânica - 13 a 17/08/2012 São Carlos-SP Artigo CREEM2012 DIMENSIONAMENTO DE UMA BIELA DE COMPRESSOR HERMÉTICO QUANTO À FADIGA ATRAVÉS DE ANÁLISE POR

Leia mais

Estudo numérico de uma pequena turbina eólica de rotor tipo H.

Estudo numérico de uma pequena turbina eólica de rotor tipo H. Estudo numérico de uma pequena turbina eólica de rotor tipo H. Diogo Borges Alves Marçal Dissertação para obtenção do Grau de Mestre em Engenharia Mecânica Presidente: Orientador: Co-orientador: Vogal:

Leia mais

CAPITULO 1 INTRODUÇÃO ÀS CIÊNCIAS TÉRMICAS 1.1 CIÊNCIAS TÉRMICAS

CAPITULO 1 INTRODUÇÃO ÀS CIÊNCIAS TÉRMICAS 1.1 CIÊNCIAS TÉRMICAS CAPITULO 1 INTRODUÇÃO ÀS CIÊNCIAS TÉRMICAS 1.1 CIÊNCIAS TÉRMICAS Este curso se restringirá às discussões dos princípios básicos das ciências térmicas, que são normalmente constituídas pela termodinâmica,

Leia mais

WWW.RENOVAVEIS.TECNOPT.COM

WWW.RENOVAVEIS.TECNOPT.COM Como funciona um aerogerador Componentes de um aerogerador Gôndola:contém os componentes chaves do aerogerador. Pás do rotor:captura o vento e transmite sua potência até o cubo que está acoplado ao eixo

Leia mais

Medidas elétricas I O Amperímetro

Medidas elétricas I O Amperímetro Medidas elétricas I O Amperímetro Na disciplina Laboratório de Ciências vocês conheceram quatro fenômenos provocados pela passagem de corrente elétrica num condutor: a) transferência de energia térmica,

Leia mais

ANÁLISE DO ESCOAMENTO DE UM FLUIDO REAL: água

ANÁLISE DO ESCOAMENTO DE UM FLUIDO REAL: água UFF Universidade Federal Fluminense Escola de Engenharia Departamento de Engenharia Química e de Petróleo Integração I Prof.: Rogério Fernandes Lacerda Curso: Engenharia de Petróleo Alunos: Bárbara Vieira

Leia mais

SIMULAÇÃO NUMÉRICA DO ESCOAMENTO EM TORNO DE UM PAR DE CILINDROS DE BASE QUADRADA DISPOSTOS EM DIFERENTES ARRANJOS GEOMÉTRICOS

SIMULAÇÃO NUMÉRICA DO ESCOAMENTO EM TORNO DE UM PAR DE CILINDROS DE BASE QUADRADA DISPOSTOS EM DIFERENTES ARRANJOS GEOMÉTRICOS 4 o PDPETRO, Campinas, SP 1 SIMULAÇÃO NUMÉRICA DO ESCOAMENTO EM TORNO DE UM PAR DE CILINDROS DE BASE QUADRADA DISPOSTOS EM DIFERENTES ARRANJOS GEOMÉTRICOS 1 Vinicius Souza Morais (UNESP Universidade Estadual

Leia mais

CE-EÓLICA PUCRS UNIVERSITY CE-EÓLICA PUCRS UNIVERSITY ATIVIDADES CE-OLICA NOVAS TECNOLOGIAS - ETAPAS GERAIS DO PROJETO

CE-EÓLICA PUCRS UNIVERSITY CE-EÓLICA PUCRS UNIVERSITY ATIVIDADES CE-OLICA NOVAS TECNOLOGIAS - ETAPAS GERAIS DO PROJETO ATIVIDADES CE-OLICA Jorge A. Villar Alé CE-EÓLICA villar@pucrs.br AVALIAÇAO DO GERADOR EM BANCADA AVALIAÇAO AERODINÂMICA DE AEROFÓLIOS DESEMPENHO DE TURBINAS EÓLICAS DESEMPENHO AERODINÂMICO DO ROTOR EÓLICO

Leia mais

Aperfeiçoando o desempenho da pulverização com Dinâmica de fluidos computacional. Bicos Automação Análise Técnica. Sistemas

Aperfeiçoando o desempenho da pulverização com Dinâmica de fluidos computacional. Bicos Automação Análise Técnica. Sistemas Aperfeiçoando o desempenho da pulverização com Dinâmica de fluidos computacional Bicos Automação Análise Técnica Sistemas Dinâmica de fluidos computacional (DFC) DCF é uma ciência da previsão: Vazão do

Leia mais

MEC - UNIVERSIDADE FEDERAL FLUMINENSE CONSELHO DE ENSINO E PESQUISA RESOLUÇÃO N.º 108/2010

MEC - UNIVERSIDADE FEDERAL FLUMINENSE CONSELHO DE ENSINO E PESQUISA RESOLUÇÃO N.º 108/2010 MEC - UNIVERSIDADE FEDERAL FLUMINENSE CONSELHO DE ENSINO E PESQUISA RESOLUÇÃO N.º 108/2010 EMENTA: Estabelece o Currículo do Curso de Graduação em Engenharia Mecânica - Niterói O CONSELHO DE ENSINO E PESQUISA

Leia mais

PROJETO DE FÓRMULA SAE UNICAMP EQUIPE FSAE-UNICAMP

PROJETO DE FÓRMULA SAE UNICAMP EQUIPE FSAE-UNICAMP PROJETO DE FÓRMULA SAE UNICAMP EQUIPE FSAE-UNICAMP VII Competição Fórmula SAE BRASIL Petrobras Relatório de Parceria Centro de Tecnologia da Informação Renato Archer Autores: Willen Grimm Balaniuc Danilo

Leia mais

onde Gr é o número de Grashof e Pr é o número de Prandtl que são definidos da forma: ; Re = UH ν ; X x

onde Gr é o número de Grashof e Pr é o número de Prandtl que são definidos da forma: ; Re = UH ν ; X x - mcsilva@fem.unicamp.br Universidade Estadual de Campinas - UNICAMP/Faculdade de Engenharia Mecânica - FEM Departamento de Energia - DE Campinas - SP - Brasil Caixa Postal 6122 CEP 13088-970 - carlosav@fem.unicamp.br

Leia mais

Condensação. Ciclo de refrigeração

Condensação. Ciclo de refrigeração Condensação Ciclo de refrigeração Condensação Três fases: Fase 1 Dessuperaquecimento Redução da temperatura até a temp. de condensação Fase 2 Condensação Mudança de fase Fase 3 - Subresfriamento Redução

Leia mais

Algoritmo para Análise Estrutural de Pontes Submetidas a Cargas Móveis

Algoritmo para Análise Estrutural de Pontes Submetidas a Cargas Móveis Algoritmo para Análise Estrutural de Pontes Submetidas a Cargas Móveis José Alves de Carvalho Neto 1, Luis Augusto Conte Mendes Veloso 2 1 Universidade Federal do Pará/ Programa de Pós-Graduação em Engenharia

Leia mais

Mecânica: processos industriais: usinagem, laminação, fundição, solda, prensagem, vapor, gás. Automóveis, suspensão, motor, câmbio.

Mecânica: processos industriais: usinagem, laminação, fundição, solda, prensagem, vapor, gás. Automóveis, suspensão, motor, câmbio. 1 Disciplina de Sistemas de Controle Prof. Luciano Menegaldo e-mail: lmeneg@ime.eb.br home-page: http://lmeneg-aulas.tripod.com Aula 1 Introdução 1. Idéias gerais e exemplos de sistemas de controle - Assunto

Leia mais

ε, sendo ε a rugosidade absoluta das

ε, sendo ε a rugosidade absoluta das DETERMINAÇÃO DAS PERDAS DE CARGA No projeto de uma instalação de bombeamento e da rede de distribuição de água de um prédio, é imprescindível calcular-se a energia que o líquido irá despender para escoar

Leia mais

Vazão ou fluxo: quantidade de fluido (liquido, gás ou vapor) que passa pela secao reta de um duto por unidade de tempo.

Vazão ou fluxo: quantidade de fluido (liquido, gás ou vapor) que passa pela secao reta de um duto por unidade de tempo. Medição de Vazão 1 Introdução Vazão ou fluxo: quantidade de fluido (liquido, gás ou vapor) que passa pela secao reta de um duto por unidade de tempo. Transporte de fluidos: gasodutos e oleodutos. Serviços

Leia mais

Neste ano estudaremos a Mecânica, que divide-se em dois tópicos:

Neste ano estudaremos a Mecânica, que divide-se em dois tópicos: CINEMÁTICA ESCALAR A Física objetiva o estudo dos fenômenos físicos por meio de observação, medição e experimentação, permite aos cientistas identificar os princípios e leis que regem estes fenômenos e

Leia mais

Escoamentos exteriores 21

Escoamentos exteriores 21 Escoamentos exteriores 2 Figura 0.2- Variação do coeficiente de arrasto com o número de Reynolds para corpos tri-dimensionais [de White, 999]. 0.7. Força de Sustentação Os perfis alares, ou asas, têm como

Leia mais

3.12 Simulação de Experiência de Reynolds. Na execução desta experiência, evocamos os seguintes conceitos:

3.12 Simulação de Experiência de Reynolds. Na execução desta experiência, evocamos os seguintes conceitos: 196 Curso Básico de Mecânica dos Fluidos 3.12 Simulação de Experiência de Reynolds Além de simular a experiência de Reynolds, objetivamos mostrar uma das muitas possibilidades de construção de uma bancada

Leia mais

DESENVOLVIMENTO DE UMA FERRAMENTA COMPUTACIONAL PARA DIMENSIONAMENTO E PROJETO DE SISTEMAS OPERANDO POR GAS LIFT

DESENVOLVIMENTO DE UMA FERRAMENTA COMPUTACIONAL PARA DIMENSIONAMENTO E PROJETO DE SISTEMAS OPERANDO POR GAS LIFT DESENVOLVIMENTO DE UMA FERRAMENTA COMPUTACIONAL PARA DIMENSIONAMENTO E PROJETO DE SISTEMAS OPERANDO POR GAS LIFT Rafael Soares da Silva 1 ; Hícaro Hita Souza Rocha 2 ; Gabriel Bessa de Freitas Fuezi Oliva

Leia mais

Extradorso. Intradorso. Corda

Extradorso. Intradorso. Corda AERODINÂMICA Parapente SUMÁRIO Nomenclatura do perfil Sustentação Nomenclatura e estrutura da asa Forças que actuam na asa Controlo da asa Performance Envelope de Voo O PERFIL e a ASA 4 GEOMETRIA DO PERFIL

Leia mais

CFD ANALYSIS OF THE PULVERIZED COAL COMBUSTION IN A BOILER USING DIFFERENT BRAZILIAN MANUFACTURED COALS: CE3100 AND CE4500

CFD ANALYSIS OF THE PULVERIZED COAL COMBUSTION IN A BOILER USING DIFFERENT BRAZILIAN MANUFACTURED COALS: CE3100 AND CE4500 CFD ANALYSIS OF THE PULVERIZED COAL COMBUSTION IN A BOILER USING DIFFERENT BRAZILIAN MANUFACTURED COALS: CE3100 AND CE4500 Ac. Luís Carlos Lazzari luislazzari@yahoo.com.br Departamento de Engenharia e

Leia mais

Sua indústria. Seu show. Seu Futuro

Sua indústria. Seu show. Seu Futuro Sua indústria. Seu show. Seu Futuro Usinagem 5-Eixos para Moldes Sandro, Vero Software Vero Software está no topo do relatório de fornecedores de CAM da CIMData 2014 Com maior Market Share, crescimento

Leia mais

Modelagem e Simulação Material 02 Projeto de Simulação

Modelagem e Simulação Material 02 Projeto de Simulação Modelagem e Simulação Material 02 Projeto de Simulação Prof. Simão Sirineo Toscani Projeto de Simulação Revisão de conceitos básicos Processo de simulação Etapas de projeto Cuidados nos projetos de simulação

Leia mais

Introdução ao Estudo de Sistemas Dinâmicos

Introdução ao Estudo de Sistemas Dinâmicos Introdução ao Estudo de Sistemas Dinâmicos 1 01 Introdução ao Estudo de Sistemas Dinâmicos O estudo de sistemas dinâmicos envolve a modelagem matemática, a análise e a simulação de sistemas físicos de

Leia mais

CORACI JÚNIOR GOMES MELHORAMENTOS EM UM VENTILADOR CENTRÍFUGO ATRAVÉS DE SIMULAÇÃO NUMÉRICA

CORACI JÚNIOR GOMES MELHORAMENTOS EM UM VENTILADOR CENTRÍFUGO ATRAVÉS DE SIMULAÇÃO NUMÉRICA CORACI JÚNIOR GOMES MELHORAMENTOS EM UM VENTILADOR CENTRÍFUGO ATRAVÉS DE SIMULAÇÃO NUMÉRICA Monografia apresentada ao Departamento de Engenharia Mecânica da Escola de Engenharia da Universidade Federal

Leia mais

projetos de automação

projetos de automação Utilização de técnicas de simulação para desenvolvimento, testes e validação de projetos de automação doi: 10.4322/tmm.00401004 Eduardo Ferreira de Freitas 1 Marcos de Oliveira Fonseca 2 Rodrigo Madeira

Leia mais

6. Geometria, Primitivas e Transformações 3D

6. Geometria, Primitivas e Transformações 3D 6. Geometria, Primitivas e Transformações 3D Até agora estudamos e implementamos um conjunto de ferramentas básicas que nos permitem modelar, ou representar objetos bi-dimensionais em um sistema também

Leia mais

Fenômenos de Transporte

Fenômenos de Transporte Fenômenos de Transporte Prof. Leandro Alexandre da Silva Processos metalúrgicos 2012/2 Fenômenos de Transporte Prof. Leandro Alexandre da Silva Motivação O que é transporte? De maneira geral, transporte

Leia mais

Verificação e Resolução de problemas com Vibrações Mecânicas e Modelagem Numérica

Verificação e Resolução de problemas com Vibrações Mecânicas e Modelagem Numérica Verificação e Resolução de problemas com Vibrações Mecânicas e Modelagem Numérica Marcos Geraldo S. Diretor da MGS Jánes Landre Júnior Prof. Depto. Engenharia Mecânica, PUC-Minas 1 - Introdução O setor

Leia mais

EXERCÍCIOS RESOLVIDOS

EXERCÍCIOS RESOLVIDOS ENG JR ELETRON 2005 29 O gráfico mostrado na figura acima ilustra o diagrama do Lugar das Raízes de um sistema de 3ª ordem, com três pólos, nenhum zero finito e com realimentação de saída. Com base nas

Leia mais

Desempenho do perfil SG 6042 modificado com flape morphing do tipo Rotating Rib e com o flape simples

Desempenho do perfil SG 6042 modificado com flape morphing do tipo Rotating Rib e com o flape simples UNIVERSIDADE DA BEIRA INTERIOR Engenharia Desempenho do perfil SG 642 modificado com flape morphing do tipo Rotating Rib e com o flape simples Joaquim Guilherme Simões de Jesus Rocha Dissertação para obtenção

Leia mais

Brasília, 09 de dezembro de 2014

Brasília, 09 de dezembro de 2014 Brasília, 09 de dezembro de 2014 Proposta de Uso de Barcaça Frontal Triangular para Fins de Diminuição de Arrasto de Proas de Comboios da Navegação Interior, e a Possibilidade de Frenagem Auxiliada Pela

Leia mais

INE 7001 - Procedimentos de Análise Bidimensional de variáveis QUANTITATIVAS utilizando o Microsoft Excel. Professor Marcelo Menezes Reis

INE 7001 - Procedimentos de Análise Bidimensional de variáveis QUANTITATIVAS utilizando o Microsoft Excel. Professor Marcelo Menezes Reis INE 7001 - Procedimentos de Análise Bidimensional de variáveis QUANTITATIVAS utilizando o Microsoft Excel. Professor Marcelo Menezes Reis O objetivo deste texto é apresentar os principais procedimentos

Leia mais

SENSORES DE TEMPERATURA

SENSORES DE TEMPERATURA UNIVERSIDADE DE CAXIAS DO SUL CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA TECNOLOGIA EM AUTOMATIZAÇÃO INDUSTRIAL DISCIPLINA DE INSTRUMENTAÇÃO SENSORES DE TEMPERATURA PROFESSOR: Valner Brusamarello COMPONENTES:

Leia mais

A Equação 5.1 pode ser escrita também em termos de vazão Q:

A Equação 5.1 pode ser escrita também em termos de vazão Q: Cálculo da Perda de Carga 5-1 5 CÁLCULO DA PEDA DE CAGA 5.1 Perda de Carga Distribuída 5.1.1 Fórmula Universal Aplicando-se a análise dimensional ao problema do movimento de fluidos em tubulações de seção

Leia mais

SUMÁRIO CAPÍTULO 1... 2 CAPÍTULO 2... 6 CAPÍTULO 3... 18 CAPÍTULO 4... 23 CAPÍTULO 5... 32 CAPÍTULO 6... 36 CAPÍTULO 7... 41 CAPÍTULO 8...

SUMÁRIO CAPÍTULO 1... 2 CAPÍTULO 2... 6 CAPÍTULO 3... 18 CAPÍTULO 4... 23 CAPÍTULO 5... 32 CAPÍTULO 6... 36 CAPÍTULO 7... 41 CAPÍTULO 8... SUMÁRIO CAPÍTULO 1... 2 1. INTRODUÇÃO... 2 1.1. Apresentação e organização da monografia... 3 1.2. Motivação... 4 1.3. Objetivos... 5 CAPÍTULO 2... 6 2. HISTÓRICO E APLICAÇÕES DO CFD... 6 2.1 Aplicações

Leia mais

AVALIAÇÃO DA HIDRODINÂMICA DE UM LAVADOR VENTURI: DADOS EXPERIMENTAIS E SIMULAÇÃO NUMÉRICA RESUMO

AVALIAÇÃO DA HIDRODINÂMICA DE UM LAVADOR VENTURI: DADOS EXPERIMENTAIS E SIMULAÇÃO NUMÉRICA RESUMO AVALIAÇÃO DA HIDRODINÂMICA DE UM LAVADOR VENTURI: DADOS EXPERIMENTAIS E SIMULAÇÃO NUMÉRICA V. K. HONDA 1, R. BÉTTEGA 1, V. G. GUERRA 1* 1, Departamento de Engenharia Química * e-mail: vadila@ufscar.br

Leia mais