Rede Recíproca. CF086 - Introdução a Física do Estado Sólido 1

Documentos relacionados
Capítulo 1 - Cristais

O espectro eletromagnético

04 - DIFRAÇÃO DE RAIO X E DETERMINAÇÃO DA ESTRUTURA CRISTALINA

Introdução à Física do Estado Sólido

ESTRUTURA DOS SÓLIDOS

UNIVERSIDADE FEDERAL DO ABC BC-1105: MATERIAIS E SUAS PROPRIEDADES

Difração de raios X. Ciência dos Materiais

Descoberta dos Raios-X

O Elétron como Onda. Difração de Bragg

Parte III Alguns modos de operação. II Encontro da Rede Mineira de Química - UFSJ - Maio de 2012

SISTEMA HEXAGONAL SIMPLES

Física dos Materiais FMT0502 ( )

A Dualidade Onda-Partícula

Teoria de Bandas 2 Elétrons Quase Livres. CF086 - Introdução a Física do Estado Sólido 1

2018 Dr. Walter F. de Azevedo Jr. Lei de Bragg e Espaço Recíproco

ESTRUTURA CRISTALINA 1

Introdução aos Materiais A Estrutura em Sólidos Cristalinos Metais DEMEC TM229 Prof. Adriano Scheid

PMT Fundamentos de Ciência e Engenharia dos Materiais 2º semestre de 2014

CRISTALOGRAFIA A FOTOGRAFIA DAS MOLÉCULAS

Biologia Estrutural. Espaço Recíproco e a Esfera de Ewald. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br

Lista de Exercícios de Cálculo 3 Primeira Semana

ORDEM. Periocidade. SÓLIDO CRISTALINO OU CRISTAL agregado ordenado e periódico de átomos, moléculas ou iões, formando uma estrutura cristalina regular

Teoria de Bandas 1 Elétrons Livres. CF086 - Introdução a Física do Estado Sólido 1

estrutura atômica cristalino

Introdução a Engenharia e Ciência dos Materiais

NOTAS DE AULAS DE FÍSICA MODERNA

Tecnicas analiticas para Joias

CMS Física do Estado sólido

TÓPICOS EM CARACTERIZAÇÃO DE MATERIAIS DIFRAÇÃO DE RAIOS X

2. Modelo do Átomo Isolado

A Dualidade Onda-Partícula

NOTAS DE AULAS DE FÍSICA MODERNA

Biologia Estrutural. Ondas e Lei de Bragg. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br Dr. Walter F. de Azevedo Jr.

DIFRAÇÃO DE RAIOS X BIOLOGIA ESTRUTURAL Aula 8 Prof. Dr. Valmir Fadel

Introdução a cristalografia de Raios-X

Laboratório de Estrutura da Matéria II

Difração de raios-x ESTRUTURA!! Outra técnica me dá informação sobre. Não confundir com fluorescência

Microscopia de transmissão de elétrons - TEM TEM. NP de Magnetita. Microscópio de Alta-resolução - HRTEM. Nanocristais Ni 03/04/2014

Índices de Miller - Planos

TP064 - CIÊNCIA DOS MATERIAIS PARA EP. FABIANO OSCAR DROZDA

Escola Politécnica FAP GABARITO DA P2 24 de outubro de 2006

Microestrutura. Fernando JG Landgraf

Analise de Joias e Metais por Raios X

Ideias e Conceitos Iniciais. CF086 - Introdução a Física do Estado Sólido 1

Introdução à Física do Estado Sólido

FNC375 - Soluções da Lista 6 - Segunda Parte

Unidade 5 DIFRAÇÃO DE RAIOS X. ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Metalúrgica e de Materiais

Teoria de Grupos e Simetria Cristalina

RAIOS-X (RAIOS RÖNTGEN)

ESTRUTURA CRISTALINA E IMPERFEIÇÕES NOS SÓLIDOS ESTRUTURA CRISTALINA E IMPERFEIÇÕES NOS SÓLIDOS

RAIOS-X (RAIOS RÖNTGEN)

1304 Difração de elétrons

Provinhas de Introdução a Física do Estado Sólido I:

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II ONDAS SONORAS. Prof.

Física IV P1-1 de setembro de 2016

Lista de Exercícios 1: Eletrostática

Física do Estado Sólido: Sólidos Condutores

Propagação Radioelétrica 2017/II Profa. Cristina

ESTRUTURA DOS SÓLIDOS CRISTALINOS CAP. 03 Parte II

Laboratório de Estrutura da Matéria II

Eletromagnetismo II. Preparo: Diego Oliveira. Aula 22

Raios atômicos Física Moderna 2 Aula 6

Segundo Semestre de 2009

Física 3. Resumo e Exercícios P1

ONDA ELETROMAGNÉTICA

10. Determine as equações cartesianas das famílias de retas que fazem um ângulo de π/4 radianos com a reta y = 2x + 1.

Estrutura física da matéria Difração de elétrons

Física II. Capítulo 04 Ondas. Técnico em Edificações (PROEJA) Prof. Márcio T. de Castro 22/05/2017

Universidade Federal do Rio de Janeiro Instituto de Física Primeira Prova (Diurno) Disciplina: Física III-A /2 Data: 17/09/2018

Redes de difração, Interferência e Interferômetros

Escola Politécnica FAP GABARITO DA P2 6 de novembro de 2009

Propriedades Ondulatórias da matéria

Descrição das Atividades

Estrutura Cristalina dos Sólidos (Arranjos Atômicos)

Difração de Elétrons SAD, CBED, NBD

raio do arco: a; ângulo central do arco: θ 0; carga do arco: Q.

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Metalúrgica e de Materiais. Unidade 4 ESTRUTURA DOS SÓLIDOS CRISTALINOS

Lista de Exercícios 1 Forças e Campos Elétricos

No sistema internacional de unidades (SI) esta é medida como Joule por segundo (J/s). Onde 1J/s é igual a 1 Watt (W).

Difração de raios X. Lucas Barboza Sarno da Silva

2015 Dr. Walter F. de Azevedo Jr. Fatores de Estrutura

Biologia Estrutural. Fatores de Estrutura. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br Dr. Walter F. de Azevedo Jr.

Física IV Escola Politécnica GABARITO DA P2 16 de outubro de 2012

Física IV Escola Politécnica GABARITO DA P1 31 de agosto de 2017

O que são redes cristalinas?

NOTAS DE AULAS DE ESTRUTURA DA MATÉRIA

Capítulo 36 Difração

6.1 equações canônicas de círculos e esferas

Dualidade onda-partícula

UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III

Geometria Analítica. Cônicas. Prof Marcelo Maraschin de Souza

03 - REDE CRISTALINA E REDE RECÍPROCA

INTERFERÊNCIA. S 1 r 1 P S 2 r 2 E 1

Física IV Escola Politécnica PS 14 de dezembro de 2017

Física Geral Grandezas

Data e horário da realização: 13/07/2017 das 14 às 17 horas

1318 Raios X / Espectro contínuo e característico Medida da razão h/e.

Aula 3 - Ondas Eletromagnéticas

CÁLCUL O INTEGRAIS TRIPLAS ENGENHARIA

Transcrição:

Rede Recíproca CF086 - Introdução a Física do Estado Sólido 1

Recordando... Redes de Bravais: conjunto de pontos do espaço que respeitam duas definições 1. Conjunto (infinito) de pontos do espaço com uma disposição tal que parece sempre a mesma quando vista de qualquer dos pontos do espaço. 2. Conjunto de pontos do espaço cujos vetores posição a partir de uma origem qualquer situada num dos pontos são dados por R n = n 1 Ԧa 1 + n 2 Ԧa 2 + n 3 Ԧa 3 onde n 1, n 2 e n 3 são inteiros e Ԧa 1, Ԧa 2, Ԧa 3 são três vetores não coplanares, chamados de vetores primitivos. 2

Definição Considere uma rede de Bravais em que os pontos sejam dados por vetores R n = n 1 Ԧa 1 + n 2 Ԧa 2 + n 3 Ԧa 3 uma onda plana dada por e ik Ԧr, onde k é o vetor de onda ( k = 2π λ ) e Ԧr é uma posição qualquer do espaço. Para um vetor k genérico a onda plana não tem a mesma periodicidade da rede de Bravais definida por R n. Porém, existe um subconjunto de vetores K m que tem a mesma periodicidade da rede de Bravais. 3

Definição Nesse caso, para os vetores K m ocorre e ik m ( Ԧr+R n ) = e ik m Ԧr ou seja, e ik m R n = 1 O conjunto de vetores K m define uma rede num espaço vetorial complementar ao espaço real, ou direto, chamado de espaço recíproco. A rede no espaço recíproco chama-se rede recíproca, e é uma rede de Bravais, no espaço recíproco. Ela é a rede recíproca à rede de Bravais dada por R n. 4

Construção da Rede Recíproca A rede recíproca é ela própria uma rede de Bravais. Os vetores primitivos da rede recíproca são dados por b 1 = 2π V Ԧa 2 Ԧa 3 ; b 2 = 2π V Ԧa 3 Ԧa 1 ; b 3 = 2π V Ԧa 1 Ԧa 2 onde V = Ԧa 1 Ԧa 2 Ԧa 3 é o volume da célula primitiva na rede direta. O coeficiente 2p não é usado por cristalógrafos, mas em estado sólido é usual. Note que, por construção, Ԧa i b j = 2π δ ij 5

Construção da Rede Recíproca O volume primitivo na rede recíproca vale V K = 2π 3 V Os vetores K m que pertencem à rede recíproca são dados por K m = m 1 b 1 + m 2 b 2 + m 3 b 3 onde m 1, m 2, m 3 são números inteiros (verificar). Com isso, a função e ik m Ԧr tem a periodicidade da rede, pois e ik m Ԧr = e ik m Ԧr+R n 6

Construção da Rede Recíproca Por causa disso, uma função periódica na rede direta pode ser escrita como f Ԧr = K m f m e ikm Ԧr Na mesma ideia, uma função periódica na rede recíproca pode ser escrita como F k = R n F n e ik Rn 7

Planos de rede Considere uma dada rede de Bravais direta. Um plano da rede é um plano que contém pelo menos três pontos não colineares da rede de Bravais. Como consequência da simetria translacional do cristal, um plano de rede contém infinitos pontos de rede, os quais definem uma rede de Bravais bidimensional no plano. Uma família de planos de rede consiste no conjunto de planos paralelos a um dado plano de rede. Planos adjacentes são separados por uma distância d. Uma família de planos contém todos os pontos da rede de Bravais. 8

Planos de rede Existem várias famílias de planos num cristal. 9

Planos de rede A cada família de planos de rede corresponde um conjunto de vetores recíprocos K m perpendiculares aos planos, de modo que o módulo do vetor K m de menor módulo vale K m = 2π. d Para cada vetor K m da rede recíproca de uma dada rede de Bravais direta existe uma família de planos de rede que são perpendiculares a K m. O vetor paralelo a K m de menor módulo tem módulo 2π d, onde d é a distância entre os planos da família. 10

Planos de rede Considerando o vetor K m de menor módulo que seja perpendicular a um dado plano, esse vetor pode ser escrito na base recíproca como K hkl = h b 1 + k b 2 + l b 3 Os coeficientes h, k, l são conhecidos como índices de Miller do plano em questão. São números inteiros e dependem da base primitiva escolhida. 11

Planos de rede Um plano de rede (h, k, l) tem um vetor K hkl como vetor normal. Esse plano intersecta os vetores primitivos Ԧa 1, Ԧa 2, Ԧa 3 em três pontos, dados por x 1 Ԧa 1, x 2 Ԧa 2, x 3 Ԧa 3. Os valores de h, k, l são proporcionais a 1 x 1, 1 x 2, 1 x 3, escolhidos de forma não terem divisor comum. Para evitar números não inteiros, multiplicase os inversos pelo menor fator comum que faz com que os inversos fiquem inteiros. Ex.: quadro. 12

Planos de rede Convenção: planos de rede hkl: especificados entre parênteses (h, k, l) ou (h k l). Ex: o plano (1,2,3) ou (1 2 3) tem um vetor normal K de componentes (1,2,3), de modo que, se a rede de Bravais for cúbica, o plano intercepta os vetores primitivos em valores proporcionais a 1 3, 1 2, 1. 13

Planos de rede Um plano com vetor perpendicular K = (1, 2,3) é representado como (1, 2, 3) ou (1 2 3), ou seja, coloca-se uma barra acima do número para indicar o sinal negativo. Uma direção e sentido na rede direta é dada de forma similar. As coordenadas do vetor paralelo a uma dada reta são dadas entre colchetes, ou seja, [n 1, n 2, n 3 ] ou n 1 n 2 n 3. Essa direção contém pontos de rede, um dos quais é o ponto de rede direta R n = n 1 Ԧa 1 + n 2 Ԧa 2 + n 3 Ԧa 3. Ex.: 1,0,0 corresponde, numa rede cúbica simples, à direção positiva do eixo x. No mesmo cristal cúbico, 0 1 0 define a direção e sentido do eixo y negativo. 14

Planos de rede Famílias de planos que são iguais por causa da simetria do cristal são representadas entre chaves. Ex.: na rede cúbica, os planos (100), (010) e (001) são representados por 1 0 0. Direções e sentidos equivalentes por operações de simetria são representados entre bras e kets: a direção 1 0 0 corresponde às direções 1 0 0, 0 1 0, 0 0 1, 1 0 0, 0 1 0, 0 0 1. Obs.: Apenas num cristal cúbico a direção h k l é perpendicular ao plano (h k l). 15

Planos de rede Distância d hkl entre planos (hkl): Dem.: quadro. d hkl = 2π K m Note que K m Ԧr = 0, ±2π, ±4π, são equações de planos onde ondas planas têm fase constante. 16

Célula de Wigner-Seitz x Primeira Zona de Brillouin A célula de W-S é uma célula primitiva da rede direta. Na rede recíproca também há uma célula de W-S, que é chamada de primeira zona de Brillouin (1ª ZB). Existem outras zonas de Brillouin teoria de níveis eletrônicos. 17

Zonas de Brillouin Rede SC: Rede direta Ԧa 1 = a x Ԧa 2 = a y Ԧa 3 = a z Rede recíproca b 1 = 2π a x b 2 = 2π a y M = 2π a R = 2π a Γ = 0 X = 2π a x 1 2 x + 1 2 y 1 2 x + 1 y + z 2 b 3 = 2π a z 18

Zonas de Brillouin Rede FCC: Rede direta Ԧa 1 = a 2 Ԧa 2 = a 2 Ԧa 3 = a 2 y + z ( z + x) ( x + y) Rede recíproca b 1 = 2π a y + z x Γ = 0 X = 2π a x W = 2π 1 x + y a 2 L = 2π 1 a 2 x + 1 y + z 2 b 2 = 2π a b 3 = 2π a ( z + x y) ( x + y z) 19

Zonas de Brillouin Rede BCC: Ԧa 1 = a 2 Ԧa 2 = a 2 Ԧa 3 = a 2 Rede direta Rede recíproca b 1 = 2π a y + z x ( z + x y) ( x + y z) y + z N = 2π a P = 2π a Γ = 0 H = 2π a y 1 2 x + 1 2 y 1 2 x + 1 y + z 2 b 2 = 2π a b 3 = 2π a ( z + x) ( x + y) 20

Zonas de Brillouin Rede hexagonal: Rede direta Ԧa 1 = a x + 3 y 2 Ԧa 2 = a x + 3 y 2 Ԧa 3 = c z Rede recíproca b 1 = 2π x + 1 a 3 y Γ = 0 P = 2π 2 a 3 x Q = 2π 1 a 2 x + 1 2 3 y A = 2π 1 c 2 z b 2 = 2π a Ԧa 3 = 2π c z x + 1 3 y 21

Como investigar a estrutura atômica? Para investigar a estrutura atômica dos materiais, que envolve dimensões da ordem de 1 Å, precisamos usar técnicas experimentais que explorem esse fato. Considerando técnicas de difração, são necessárias ondas que tenham comprimentos de onda na faixa de 1 Å. No caso de ondas eletromagnéticas, devemos usar raios x. Outras opções são nêutrons (é preciso um reator, mas pode-se investigar propriedades magnéticas) ou elétrons (pouca penetração, bom para superfícies). 22

Formulação de Van Laue O cristal é composto de unidades (átomos, moléculas, íons,...) situados nos pontos da rede de Bravais Os pontos irradiam em todas as direções (não necessariamente com a mesma eficiência) ao serem submetidos ao feixe de radiação incidente. Picos são observados quando há interferência construtiva entre essas irradiações. 23

Formulação de Van Laue Considere a figura: feixe incidente: direção n, vetor k = k n. feixe difratado: direção n, vetor k = k n. vetor Ԧd: vetor de separação entre os dois pontos de rede. Diferença de caminho: d cos θ + d cos θ = Ԧd n n Para haver interferência construtiva, deve ocorrer: Ԧd n n = jλ 24

Formulação de Van Laue Reescrevendo, e tendo em conta que Ԧd = R n, temos R n k k = 2πj Multiplicando por i e aplicando exponencial: exp ir n k k = 1 Definindo Δk = k k, e lembrando a definição de rede recíproca, vemos que, se K = Δk é um vetor da rede recíproca, há interferência construtiva e ocorre um pico de difração. 25

Formulação de Van Laue Como k = k e k = k + K, temos que é a condição de Laue. k K = 1 2 K Ou seja, a projeção de k sobre K deve ser tal que resulte em K 2 para haver um pico de difração. O vetor k deve terminar num plano que bissecta K para satisfazer a condição de Laue. Esses planos são chamados de planos de Bragg. Recordando as zonas de Brillouin, vemos que os vetores k devem terminar na superfície da ZB. 26

Formulação de Bragg Há outro modo de formular a condição de Laue. Observe a figura. Para termos interferência construtiva, a diferença de caminho deve ser dada por nλ = 2d hkl sen θ (lei de Bragg). Se um detector for colocado fazendo um ângulo 2θ com a direção original do feixe incidente, medirá o pico de difração. 27

Formulação de Bragg Uma mesma rede contem várias famílias de planos, de modo que, para uma mesma direção de radiação incidente, outros feixes difratados podem existir, satisfazendo a lei de Bragg. Nas figuras, as redes são as mesmas, mas agora deve satisfazer a nλ = 2d hkl sen θ. 28

Equivalência Bragg Van Laue Temos que K é perpendicular ao plano (h k l), e é múltiplo de K 0, de modo que K = nk 0. Como d hkl = 2π/K 0, temos K = 2πn d hkl. Da figura K = 2k sen θ. Então, 2kd hkl sen θ = 2πn. Como k = 2π λ, resulta em nλ = 2d hkl sen θ, que é a lei de Bragg. 29

Equivalência Bragg Van Laue A condição de Laue implica que k termine num plano de Bragg. Em geral, isso não ocorrerá em 3D para um dado k. É preciso relaxar alguma condição para k para poder experimentalmente obter picos de difração, permitindo variação na direção, módulo ou ambos. 30

Esfera de Ewald Construção geométrica para visualizar possíveis vetores K associados a picos de difração: esfera de Ewald. Considera-se um vetor k incidente, partindo de qualquer ponto da rede recíproca (origem). Desenha-se uma esfera de raio k, centrada na ponta de k. Os pontos da rede recíproca que ficam na superfície da esfera são pontos que aparecem na difração, pois satisfazem K = k k. 31

Métodos experimentais Método de Laue: direção de k fixa, mas feixe é policromático, de λ 1 a λ 2, correspondendo a k 1 = 2π e k λ 2 = 2π. 1 λ 2 32

Métodos experimentais Cristal girante: λ é fixo, mas direção de k varia. Na prática, gira-se o cristal, de modo que a rede recíproca gira junto com ele. 33

Métodos experimentais Método do pó ou Debye-Scherrer: λ é fixo, mas gira-se o cristal em todas as orientações possíveis. Na prática, usa-se uma amostra policristalina na forma de pó, para permitir todas as orientações para a rede recíproca. 34

Amplitude de Espalhamento O que se mede numa difração de raios x é o resultado da superposição das ondas emitidas pelos elétrons nos átomos. Cada elétron recebe uma onda plana com vetor de onda k e emite uma onda plana com vetor de onda k. Com relação a uma dada origem, elétrons em pontos diferentes emitem ondas com defasagens diferentes. 35

Amplitude de Espalhamento Recordando, uma rede de Bravais tem pontos de rede descritos por R n. O cristal tem unidades (base) situadas em pontos Ԧd ν. Considere inicialmente um dado átomo, situado na posição Ԧd j, e os elétrons desse átomo. Definimos uma densidade volumétrica de carga ρ e (Ԧr ) para esses elétrons, considerando uma origem O no átomo. Cada elétron recebe uma onda plana com vetor de onda k e emite uma onda plana com vetor de onda k. Com relação a uma dada origem, elétrons em pontos diferentes emitem ondas com defasagens diferentes. 36

Amplitude de Espalhamento Definimos a densidade numérica de elétrons, mediante Numa posição Ԧr, há dn Ԧr = ρ Ԧr dv elétrons. A fase introduzida por eles vale K Ԧr. Com isso, a amplitude espalhada pelos elétrons desse dado átomo fica A j K ρ Ԧr = 1 e ρ e(ԧr ) = න ρ Ԧr e ik Ԧr dv at Essa amplitude espalhada é chamada fator de espalhamento atômico f j (K). 37

Amplitude de Espalhamento Portanto, f j K = A j K = න Ԧr atρ e ik Ԧr dv = 1 e න ρ e at Ԧr e ik Ԧr dv A contribuição dos átomos situados nas posições Ԧd j é dada por A K ν = j e ik Ԧd j න ρ Ԧr e ik Ԧr dv at 38

Amplitude de Espalhamento Pode-se escrever também F K K ν = f j (K)e ik Ԧd j j A intensidade espalhada é proporcional ao módulo quadrado da amplitude, ou seja, a F K 2 = F K F K. F K indica quais picos podem estar presentes e quais picos não aparecem num padrão de difração. Se F K = 0, o pico não aparece. Se F K 0, o pico pode não aparecer devido a outros fatores que também influem na intensidade. 39

Amplitude de Espalhamento F K está ligado à base e à geometria da rede de Bravais, e f j ao tipo de átomo presente na base. O conhecimento da base permite obter os valores de F K. Exemplos no quadro. No caso de simetria esférica, o fator de espalhamento atômico pode ser escrito como f K = න 4πr 2 ρ r 0 sen Kr Kr dr 40

I (un. arb.) Amplitude de Espalhamento Ex.: Se trigonal Se - trigonal 20 40 60 80 100 2 (graus) 41

Amplitude de Espalhamento Como fica a amplitude no caso de amorfos? Nesse caso, os átomos não estão em posições que seguem um base, e temos A K = j f j K න ρ j V Ԧr e ik Ԧr dv Apesar de a expressão ser similar, há grandes diferenças no que se refere aos valores de intensidade e de forma do sinal obtido, pois a falta de uma unidade que se repete faz com que as interferências que ocorrem resultem em picos largos e pouco intensos. 42

Amplitude de Espalhamento Ex.: Se trigonal x Se amorfo Se trigonal Se amorfo I (un. arb.) 20 40 60 80 100 2 (graus) 43