1304 Difração de elétrons
|
|
|
- Simone Bernardes Henriques
- 8 Há anos
- Visualizações:
Transcrição
1 1 Roteiro elaborado com base na documentação que acompanha o conjunto por: Máximo F. da Silveira Instituto de Física UFRJ Tópicos Relacionados Reflexão de Bragg, método Debye-Scherrer, planos de rede, estrutura do grafite, ondas de matéria, equação de de Broglie. Princípios e objetivos Elétrons acelerados a alta velocidade são difratados por um fino aglomerado de grafite policristalino, produzindo anéis de interferência que podem ser visualisados em uma tela fluorescente. As distâncias interplanares do grafite são determinadas a partir dos diâmetros dos anéis e do potencial acelerador. Equipamentos 127 V 220 V Tubo de difração de elétrons Resistor de alto valor, 10 MOhm Encaixe com pino Plug conector, 2 pçs Cabo de conexão, 250 mm, vermelho Cabo de conexão, 250 mm, azul Cabo de conexão 750 mm, vermelho Cabo de conexão, 750 mm, amarelo Cabo de conexão, 750 mm, azul Unidade de alimentação de alta tensão,0-10kv e Fonte de alimentação, VDC e Problemas 1. Medir o diâmetro dos dois anéis de difração mais internos para diferentes tensões do anodo. 2. Calcular os comprimentos de onda dos elétrons a partir das tensões no anodo. 3. Determinar os espaçamentos interplanares do grafite a partir da relação entre os raios dos anéis de difração e o comprimento de onda. Montagem e procedimentos Proceda a montagem do experimento conforme a Fig. 1. Conecte os terminais do tubo de difração de elétrons da fonte de tensão conforme o esquema da Fig. 2. Conecte a alta tensão ao anodo G3 através da ponta resistiva de proteção de 10 MΩ.
2 2 Fig. 1: Montagem experimental para difração de elétrons.
3 3 Fig. 2: Montagem e fonte de alimentação para o tubo de difração de eletrons. Ajuste as tensões das grades G1 e G4 e a alta tensão G3 de forma a obter anéis de difração estreitos e bem definidos. Registre a tensão do anodo no mostrador da fonte de alta tensão. Para determinar o diâmetro dos anéis de difração meça os limites interno e externo dos anéis com o paquímetro (em uma sala escurecida) e tome o valor médio. Note a presença de um outro fraco anel atrás do segundo. Teoria e análise Para explicar o fenômeno de interferência, um comprimento de onda λ, que depende do momento, é atribuido aos elétrons de acordo com a equação de de Broglie: λ = h/p (1) onde h = 6, Js, é a constante de Planck. O momento pode ser calculado a partir da velocidade v que os elétrons adquirem devido ao potencial acelerador U A : m v 2 /2 = p 2 /2m = e U A (2) O comprimento de onda é portanto λ = h/(2meu A ) 1/2 (3)
4 4 onde e = 1, As (a carga do elétron) e m = 9, kg (a massa de repouso do elétron). Para as tensões U A aplicadas, a massa de repouso do elétron pode substituir a massa relativística com um erro de apenas 0,5%. O feixe de elétrons atinge um filme policristalino de grafite depositado sobre uma tela de cobre e é refletido conforme a condição estabelecida pela equação de Bragg: 2dsenθ = nλ (n = 1, 2, 3 ) (4) Fig. 3: Rede Cristalina do grafite. Onde d é o espaçamento entre planos adjacentes de átomos de carbono e θ o ângulo de Bragg (ângulo entre o feixe incidente e os planos da rede). No grafite policristalino a ligação entre as camadas individuais (Fig. 3) são rompidas de forma que sua orientação é randômica. O feixe de elétrons é portanto espalhado na forma de um cone, produzindo anéis de interferência na tela fluorescente.
5 5 O ângulo de Bragg θ pode ser calculado a partir do raio r do anel de interferência, mas deve-se perceber que o ângulo de desvio α (Fig. 2) é o dobro: Pela Fig. 2 temos que: α = 2θ sen2α = r/r (5) onde R = 65 mm, é o raio do bulbo de vidro. Fig. 4 : Planos do grafite para os dois primeiors anéis de interferência. Para pequenos ângulos (p.e. cos 10 o = 0,985), pode-se escrever sen 2α = 2sen α cos α 2 sen α (6) assim para pequenos ângulos θ temos: sen α = sen 2θ 2 sen θ (6a) Com esta aproximação obtemos r = 2R nλ/d (7) Os dois anéis de interferência mais internos ocorrem devido às reflexões de primeira ordem (n = 1) pelos planos da rede do grafite com espaçamentos d 1 e d 2 (Fig. 4).
6 6 O comprimento de onda é calculado a partir da tensão no anodo de acordo com (3): U A (KV) λ (pm) 4,00 19,4 4,50 18,3 5,00 17,3 5,50 16,5 6,50 15,2 7,00 14,7 7,40 14,3 Aplicando um ajuste por regressão linear Y = AX + B aos valores medidos dos raios para os dois anéis da Fig. 5, obtemos Fig. 5: Raios dos dois primeiros anéis de interferência em função dos comprimentos de onda dos elétrons.
7 7 A1 = 0,62 (2) 10-9 A2 = 1,03 (2) 10-9 E as contantes de rede d 1 = 211 pm d 2 = 126 pm de acordo com (7), A i = 2R/d i e d i = 2R/A i. Notas - A intensidade dos anéis de interferência de maior ordem são bem menores que os de primeira ordem. Assim, por exemplo, o anel de segunda ordem para d 1 é dificil de indentificar e o anel de quarta ordem simplesmente não pode ser visto. O anel de terceira ordem para d 1 é relativamente fácil de se observar por que o grafite possui dois planos de rede juntos, espaçados por uma distância d 1 /3 (Fig. 6). Na sexta linha, ocorre claramente uma coincidência entre o anel de primeira ordem para d 4 e o de segunda ordem para d 2. Raios (mm) calculados de acordo com (4) para os anéis de interferência esperados, correspondentes ao comprimento de onda definido para U A = 7 KV: n = 1 n = 2 n = 3 n = 4 d 1 8,9 17,7 26,1 34,1 d 2 15,4 29,9 d 3 23,2 d 4 31,0 d 5 38,5
8 8 Fig. 6: Espaçamento interplanar no grafite. d1 = 213 pm d2 = 123 pm d3 = 80.5 pm d4 = 59.1 pm d5 = 46.5 pm. A visibilidade dos anéis de maior ordem depende da intensidade de luz no laboratório e do contrate do sistema de anéis que pode ser influenciado pelas tensões aplicadas a G1 e G4. O foco brilhante no centro da tela pode danificar a camada fluorescente do bulbo. Para evitar este problema, reduza a intensidade luminosa após cada leitura o mais rápido possível. Ajustes sendo efetuados para obter a figura de interferência de elétrons UFES-Vitória.
9 9 Anéis de interferência obtidos na montagem da UFES-Vitória.
Estrutura física da matéria Difração de elétrons
O que você pode aprender sobre este assunto... - Reflexão de Bragg - Método de Debye-Scherer - Planos de rede - Estrutura do grafite - Ondas de matéria - Equação de De Broglie Princípio: Elétrons acelerados
Laboratório de Estrutura da Matéria II
Roteiro: Prof. Dr. Jair Freitas UFES - Vitória Laboratório de Estrutura da Matéria II Difração de elétrons PRINCÍPIO E OBJETIVOS Feixes eletrônicos de alta energia são difratados por um alvo de grafite
1318 Raios X / Espectro contínuo e característico Medida da razão h/e.
1 Roteiro elaborado com base na documentação que acompanha o conjunto por: Máximo F. Silveira Instituto de Física UFRJ Tópicos Relacionados Raios-X, equação de Bragg, radiação contínua (bremstrahlung),
Laboratório de Física Moderna
Laboratório de Física Moderna DUALIDADE ONDA-PARTÍCULA DIFRAÇÃO DE ELÉTRONS (Experiência B.1) PRINCÍPIOS E OBJETIVOS A dualidade onda-partícula para o elétron agora será explorada via a apresentação do
Difracção de electrões
Difracção de electrões Objectivos: i) Verificar que electrões com energias da ordem de -0 kev são difractados por um filme de grafite, exibindo o seu carácter ondulatório; ii) verificar a relação de de
Laboratório de Estrutura da Matéria II
Roteiro: Prof. Dr. Jair Freitas UFES - Vitória Laboratório de Estrutura da Matéria II Difração de raios X PRINCÍPIO E OBJETIVOS Feixes de raios X são analisados através de difração por monocristais, para
1303 Determinação da razão e/m 0
1 Roteiro elaborado com base na documentação que acompanha o conjunto por: Máximo F. da Silveira Instituto de Física UFRJ Tópicos Relacionados Raios catódicos, força de Lorentz, elétrons em campos transversais,
O Elétron como Onda. Difração de Bragg
O Elétron como Onda Em 1924, de Broglie sugeriu a hipótese de que os elétrons poderiam apresentar propriedades ondulatórias além das suas propriedades corpusculares já bem conhecidas. Esta hipótese se
RAIOS-X (RAIOS RÖNTGEN)
RAIOS-X (RAIOS RÖNTGEN) Descobertos por Wilhelm Röntgen (1895) Primeiro prêmio Nobel em física (1901) Radiação extremamente penetrante (
RAIOS-X (RAIOS RÖNTGEN)
RAIOS-X (RAIOS RÖNTGEN) Descobertos por Wilhelm Röntgen (1895) Primeiro prêmio Nobel em física (1901) Radiação extremamente penetrante (
Radiação de corpo negro, f.e.m. termoelétrica, dependência da resistência com a temperatura.
1 Roteiro elaborado com base na documentação que acompanha o conjunto por: Máximo F. da Silveira Instituto de Física - UFRJ Tópicos Relacionados Radiação de corpo negro, f.e.m. termoelétrica, dependência
Prof. Dr. Lucas Barboza Sarno da Silva
Prof. Dr. Lucas Barboza Sarno da Silva Difração numa fenda simples Lente convergente Princípio de Huygens 03/09/2015 Prof. Dr. Lucas Barboza Sarno da Silva 2 De acordo com o princípio de Huygens, cada
Estrutura física da matéria Espectro atômico de sistemas com dois elétrons: He, Hg
O que você pode aprender sobre este assunto... Parahélio Ortohélio Energia de conversão Spin Momento angular Interação de momento angular spin-órbita Estados singleto e tripleto Multiplicidade Série de
O espectro eletromagnético
Difração de Raios X O espectro eletromagnético luz visível raios-x microondas raios gama UV infravermelho ondas de rádio Comprimento de onda (nm) Raios Absorção, um fóton de energia é absorvido promovendo
A Dualidade Onda-Partícula
A Dualidade Onda-Partícula O fato de que as ondas têm propriedades de partículas e viceversa se chama Dualidade Onda-Partícula. Todos os objetos (macroscópicos também!) são onda e partícula ao mesmo tempo.
O Efeito Fotoelétrico
O Efeito Fotoelétrico O efeito fotoelétrico é a emissão de elétrons por um material, geralmente metálico, quando exposto a uma radiação eletromagnética (como a luz) suficientemente energética, ou seja,
Apostila de Laboratório. ZAB0474 Física Geral e Experimental IV
Universidade de São Paulo Faculdade de Zootecnia e Engenharia de Alimentos Departamento de Ciências Básicas Apostila de Laboratório ZAB0474 Física Geral e Experimental IV Caio Eduardo de Campos Tambelli
Apostila de Laboratório. ZAB0474 Física Geral e Experimental IV
Universidade de São Paulo Faculdade de Zootecnia e Engenharia de Alimentos Departamento de Ciências Básicas Apostila de Laboratório ZAB0474 Física Geral e Experimental IV Caio Eduardo de Campos Tambelli
Física IV para Química
4310277 Física IV para Química Sétima lista de exercícios 1. Suponha que, no experimento de fenda dupla de Young, a separação entre as duas fendas seja de 0, 32 mm. Se um feixe de luz de 500 nm atingir
Universidade Federal do Rio de Janeiro Instituto de Física Disciplina: Física IV-A Data: 03/07/2019. (c) I 1 = I 2.
Universidade Federal do Rio de Janeiro Instituto de Física Disciplina: Física IV-A Data: 03/07/2019 Prova Final 1 Um material não magnético possui a permeabilidade magnética igual à do vácuo µ = µ 0 Um
Difração de Elétrons
UNIVERSIDADE DE SÃO PAULO Licenciatura em Ciências Exatas SLC-567 Práticas de Ensino de Ciências do Primeiro Grau Profº Euclydes Marega Jr. Difração de Elétrons Carlos Alberto de Souza Claudio Bonse Bretas
Lista de Problemas rad.)
Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Física FIS01044 UNIDADE III Difração Lista de Problemas Problemas extraídos de HALLIDAY, D., RESNICK, R., WALKER, J. Fundamentos
ZAB Física Geral e Experimental IV
ZAB0474 - Física Geral e Experimental IV Experimentos 1 Polarização 2 Difração 3 Espectro Atômico 4 Luminescência Experimento 1 - Polarização Objetivo: Medir a intensidade da luz que atravessa um conjunto
Difração de Elétrons. Relatório, 09 de maio de 2008 Brenno Gustavo Barbosa e Thiago Schiavo Mosqueiro
Difração de Elétrons Relatório, 09 de maio de 2008 Brenno Gustavo Barbosa e Thiago Schiavo Mosqueiro Difração de Elétrons Em torno do século XX, o modelo clássico da física divergia em resposta de diversos
FNC375 - Soluções da Lista 6 - Segunda Parte
FNC375 - Soluções da Lista 6 - Segunda Parte 16 de novembro de 004 Propriedades ondulatórias das partículas Medida do comprimento de onda da matéria 1. Qual é o ângulo de Bragg φ para elétrons difratados
Descoberta dos Raios-X
Descoberta dos Raios-X 1895 - Wilhelm Conrad Roentgen Experimentos com tubo de raios catódicos brilho em um cristal fluorescente perto do tubo mesmo mantendo o tubo coberto Raios invisíveis, natureza desconhecida:
Introdução a cristalografia de Raios-X
UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE QUÍMICA - DQMC Introdução a cristalografia de Raios-X Prof Karine P. Naidek Introdução a cristalografia de Raios-X
Difração de raios X. Ciência dos Materiais
Difração de raios X Ciência dos Materiais A descoberta dos raios X Roentgen 1895 Mão da Sra. Roentgen Mão do Von Kolliker 1ª radiografia da história Tubo de Crookes 3-99 DIFRAÇÃO DE RAIOS X Difração de
Max von Laue sugeriu que se os raios X fossem uma forma de radiação eletromagnética, efeitos de interferência deveriam ser observados.
Unidade 1 - Aula 3 * Tradução e adaptação livre das aulas do Professor Rick Trebino em: www.physics.gatech.edu/frog Propriedades da Onda de Matéria* * + Difração de Elétrons 3.1 Espalhamento de Raio X
As seguintes considerações devem ser feitas inicialmente ou ao longo do trabalho:
EXPERIÊNCIA 1: Pesa-espíritos EXEMPLO DE RESOLUÇÃO: Esquema da montagem: H 0 h 0 M As seguintes considerações devem ser feitas inicialmente ou ao longo do trabalho: M = massa do tubo + massa adicionada
Seleção de comprimento de onda com filtros de interferência
Seleção de comprimento de onda com filtros de interferência O que você pode aprender... Energia do fóton Absorção de fóton Efeito fotoelétrico externo Função trabalho Fotocélula Filtro de interferência
Física IV P1-1 de setembro de 2016
Questão 1 Física IV - 4323204 P1-1 de setembro de 2016 (I) Considere um conjunto de duas fendas de largura l, espaçadas por uma distância de 5l. Sobre estas duas fendas incide uma onda plana monocromática,
EXPERIMENTO 12: MEDIDA DA RAZÃO CARGA/MASSA DO ELÉTRON
EXPERIMENTO 12: MEDIDA DA RAZÃO CARGA/MASSA DO ELÉTRON 12.1 OBJETIVO Medir a razão carga/massa do elétron pelo método de Thomsom usando um osciloscópio didático adaptado. 12.2 INTRODUÇÃO A razão e/m foi
222 Estudo da propagação de ondas em gases e sólidos
1 Roteiro elaborado com base na documentação que acompanha o conjunto por: Hermes Urébe Guimarães & Osvaldo Guimarães PU-SP Tópicos Relacionados Ondas longitudinais, velocidade do som em, freqüência, comprimento
Física IV Escola Politécnica GABARITO DA P1 31 de agosto de 2017
Física IV - 4323204 Escola Politécnica - 2017 GABARITO DA P1 31 de agosto de 2017 Questão 1 I) 1,0 ponto) Numa experiência de Young, duas fendas separadas por uma distância de d = 1,5 mm são iluminadas
Física IV Escola Politécnica GABARITO DA P1 30 de agosto de 2018
Física IV - 4323204 Escola Politécnica - 2018 GABARITO DA P1 30 de agosto de 2018 Questão 1 Luz proveniente de uma fonte monocromática de comprimento de onda λ é difratada por uma fenda de largura a em
Tecnicas analiticas para Joias
Tecnicas analiticas para Joias Técnicas avançadas de analise A caracterização de gemas e metais da área de gemologia exige a utilização de técnicas analíticas sofisticadas. Estas técnicas devem ser capazes
Interferência e Experiência de Young
Nome: nº 2 Professor Caio Interferência e Experiência de Young 1. (UECE 2007) Através de franjas de interferência, é possível determinar características da radiação luminosa, como, por exemplo, o comprimento
obstáculo: dimensões comparáveis ao comprimento de onda. onda: desvio na propagação.
onda + obstáculo = difração obstáculo: dimensões comparáveis ao comprimento de onda. onda: desvio na propagação. Princípio de Huygens Óptica geométrica não funciona!!! Óptica geométrica que prevê a luz
NOTAS DE AULAS DE FÍSICA MODERNA
NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 4 PROPRIEDADES ONDULATÓRIAS DA MATÉRIA Edição de junho de 2014 CAPÍTULO 4 PROPRIEDADES ONDULATÓRIAS DA MATÉRIA ÍNDICE 4.1- Postulados de
CAPÍTULO 38 HALLIDAY, RESNICK. 8ª EDIÇÃO
FÍSICA QUÂNTICA: FÓTONS E ONDAS DE MATÉRIA - II Prof. André L. C. Conceição DAFIS CAPÍTULO 38 HALLIDAY, RESNICK. 8ª EDIÇÃO Fótons e ondas de matéria Revisão O) Fóton: 1905 Einstein: luz quantizada fóton
Propriedades Ondulatórias da matéria
Propriedades Ondulatórias da matéria 184 Postulado de de Broglie: A luz que apresenta fenômenos como difração e interferência tem também propriedades que só podem ser interpretadas como se ela fosse tratada
216 Demonstração da Lei de Ampère
1 Roteiro elaborado com base na documentação que acompanha o conjunto por: Hermes Urébe Guimarães Tópicos Relacionados Campos magnéticos uniformes, indução magnética, força de Lorentz, portadores de carga,
Olimpíadas de Física Seleção para as provas internacionais. Prova Experimental B
SOCIEDADE PORTUGUESA DE FÍSICA Olimpíadas de Física 2014 Seleção para as provas internacionais Prova Experimental B 24/Maio/2014 Olimpíadas de Física 2014 Seleção para as provas internacionais Prova Experimental
Cap. 22 Óptica Ondulatória
Cap. 22 Objetivos Usar o modelo de onda luminosa Reconhecer as evidências da natureza da onda luminosa Calcular padrões de interferência produzido por fendas duplas e redes de difração Compreender como
EFEITO FOTOELÉCTRICO
EFEITO FOTOELÉCTRICO 1. Resumo Neste trabalho pretende se efectuar a verificação experimental do efeito fotoeléctrico e, partindo daí, determinar o valor de uma das constantes fundamentais da natureza,
Teoria - Difração e Interferência
Objetivos Teoria - Difração e Interferência Observar os fenômenos de difração e interferência da luz; Medir o diâmetro de um fio de cabelo. Introdução Um feixe de luz coerente, ao atravessar uma fenda
Universidade Federal do Rio Grande do Sul. Instituto de Física Departamento de Física. FIS01184 Física IV-C Área 1 Lista 1
Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Física FIS01184 Física IV-C Área 1 Lista 1 1.A luz do Sol no limite superior da atmosfera terrestre tem uma intensidade de
Exp. 3 - Espectroscopia por refração - O Prisma
Exp. 3 - Espectroscopia por refração - O Prisma Quando a luz atravessa uma superfície entre dois meios, ela sofre um desvio refração Se a luz for composta de vários comprimentos de onda (λ), os desvios
Instituto de Física EXPERIÊNCIA 11. Deflexão de feixe de elétrons - razão carga massa (e/m) I. OBJETIVOS DESCRIÇÃO DO EXPERIMENTO
EXPERIÊNCIA 11 Deflexão de feixe de elétrons - razão carga massa (e/m) I. OBJETIVOS - Verificar a dependência da trajetória de um feixe de elétrons quando sujeito a diferentes potenciais de aceleração
NOTAS DE AULAS DE FÍSICA MODERNA
NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 5 PROPRIEDADES ONDULATÓRIAS DA MATÉRIA Edição de janeiro de 2009 CAPÍTULO 5 PROPRIEDADES ONDULATÓRIAS DA MATÉRIA ÍNDICE 5.1- Postulados
Física IV Escola Politécnica GABARITO DA P2 16 de outubro de 2012
Física IV - 4320402 Escola Politécnica - 2012 GABARITO DA P2 16 de outubro de 2012 Questão 1 Ondas longas de rádio, com comprimento de onda λ, de uma estação radioemissora E podem chegar a um receptor
DIFRAÇÃO E INTERFERÊNCIA
DIFRAÇÃO E INTERFERÊNCIA Material Utilizado: (Parte C - Difração por Rede) - um conjunto (PASCO OS-8500) constituído de um banco óptico, uma fonte de luz incandescente, dois porta-componentes, uma escala
EXERCÍCIOS - DIFRAÇÃO
CURSO: ENGENHARIA - UFSCar FÍSICA 4 - TURMA 09.904-0 Profa. Dra. Ignez Caracelli - DF 02 de dezembro de 2016 EXERCÍCIOS - DIFRAÇÃO 1 Em uma figura de difração de fenda única, a distância entre o primeiro
Rede Recíproca. CF086 - Introdução a Física do Estado Sólido 1
Rede Recíproca CF086 - Introdução a Física do Estado Sólido 1 Recordando... Redes de Bravais: conjunto de pontos do espaço que respeitam duas definições 1. Conjunto (infinito) de pontos do espaço com uma
Difração de raios X. Lucas Barboza Sarno da Silva
Difração de raios X Lucas Barboza Sarno da Silva Raios X Descoberta Ondas eletromagnéticas Raios X característicos e contínuos Difratômetro de raios X Geometria Tubo de raios X Detetores Difração de raios
Interferência de ondas: está relacionada com a diferença de fase entre as ondas. A diferença de fase entre duas ondas pode mudar!!!!
Interferência de ondas: está relacionada com a diferença de fase entre as ondas. Construtiva: em fase Destrutiva: fora de fase A diferença de fase entre duas ondas pode mudar!!!! Coerência: para que duas
Física IV. Prática: Interferência e Difração. Baseado no material preparado por Sandro Fonseca Helena Malbouisson Clemencia Mora
Física IV Prática: Interferência e Difração Baseado no material preparado por Sandro Fonseca Helena Malbouisson Clemencia Mora Interferência Princípio de Huygens Todos os pontos de uma frente de onda se
Escola Politécnica FAP GABARITO DA P2 6 de novembro de 2009
P2 Física IV Escola Politécnica - 29 FAP 224 - GABARITO DA P2 6 de novembro de 29 Questão Uma película de óleo de silicone flutuando sobre água é iluminada por uma luz branca a partir do ar. A luz refletida
EXERCÍCIO 3 - INTERFERÊNCIA
CURSO: ENGENHARIA - UFSCar - TURMA 09.904-0 Profa. Dra. Ignez Caracelli - DF 17 de novembro de 2016 EXERCÍCIO 3 - INTERFERÊNCIA Exercícios extraídos do livro Fundamentos de Física volume 4: Óptica e Física
2.7. Difração, bandas de frequência e efeito Doppler
2.7. Difração, bandas de frequência e efeito Doppler Difração de ondas A difração de uma onda é o fenómeno que ocorre quando a onda contorna um obstáculo, orifício ou fenda. Este fenómeno observa-se quando
Experiência 10 DIFRAÇÃO E INTERFERÊNCIA
INSTITUTO DE FÍSICA UNIVERSIDADE DE SÃO PAULO Laboratório de Eletromagnetismo (4300373) Grupo:......... (nomes completos) Prof(a).:... Diurno ( ) Noturno ( ) Data : / / 1. Introdução Experiência 10 DIFRAÇÃO
Capítulo 38 Fótons e Ondas de Matéria Questões Múltipla escolha cap. 38 Fundamentos de Física Halliday Resnick Walker
Capítulo 38 Fótons e Ondas de Matéria Questões Múltipla escolha cap. 38 Fundamentos de Física Halliday Resnick Walker 1) Qual é o nome das partículas associadas ao campo eletromagnético? a) Fônons. b)
1678: teoria ondulatória para a luz (anterior e menos completa que o eletromagnetismo de Maxwell)
Christian Huygens (1629 1695) 1678: teoria ondulatória para a luz (anterior e menos completa que o eletromagnetismo de Maxwell) Vantagens da teoria: explicar as leis de reflexão e refração em termos de
Aula 5 Interferência. Física 4 Ref. Halliday Volume4. Profa. Keli F. Seidel
Aula 5 Interferência Física 4 Ref. Halliday Volume4 Sumário Definição de Difração; O Experimento de Young; Coerência; Intensidade das Franjas de Interferência; Difração Vamos falar sobre o experimento
Laboratório Física IV Experimento e/me
Laboratório Física IV Experimento e/me Profa. Clemencia Mora Herrera Prof. Helena Malbouisson baseado nos slides do Prof. Dilson Damião para Est. da Matéria I Introdução Os raios catódicos são feixes de
Lista de Exercícios 3 Corrente elétrica e campo magnético
Lista de Exercícios 3 Corrente elétrica e campo magnético Exercícios Sugeridos (16/04/2007) A numeração corresponde ao Livros Textos A e B. A22.5 Um próton desloca-se com velocidade v = (2i 4j + k) m/s
Lista de Problemas. Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Física FIS01044 UNIDADE III Interferência
Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Física FIS01044 UNIDADE III Interferência Lista de Problemas Problemas extraídos de HALLIDAY, D., RESNICK, R., WALKER, J. Fundamentos
Raio X : produção e interação com a matéria
Raio X : produção e interação com a matéria M. F. Araujo de Resende, T. Fernandes, D. A. S. Gioielli Santos, V. Guimarães, and A. D. dos Santos Instituto de Física, Universidade de São Paulo, 05508-090
Física VIII Ondas eletromagnéticas e Física Moderna
Física VIII Ondas eletromagnéticas e Física Moderna Aula 5: Difração Parte II 1 Baseado no material preparado por Sandro Fonseca de Souza Helena Malbouisson Redes de difração Grande número de fendas (ranhuras)
Física Experimental V Experimentos com raios X
4300313 Raios X EMY -2 Física Experimental V 4300313 Experimentos com raios X Os objetivos principais dos experimentos se relacionam à produção de raios X (por Bremsstrahlung e por fluorescência), à atenuação
Capítulo 36 Difração
Capítulo 36 Difração O que é a difração? Difração é um fenômeno, manifestado pelo espalhamento da luz de acordo com o princípio de Huygens, que ocorre com as ondas quando elas passam por um orifício ou
DIFRAÇÃO DA LUZ DE UM LASER POR FENDAS
Experimento 6 INTERFERÊNCIA E DIFRAÇÃO DA LUZ DE UM LASER POR FENDAS 6.1 OBJETIVOS Estudo da figura de difração da luz por uma fenda fina em função da largura da fenda. Estudo da figura de interferência
MEDIDAS COM O INTERFERÔMETRO DE MICHELSON
DEPARTAMENTO DE FÍSICA DO ESTADO SÓLIDO - IFUFBa 005 ESTRUTURA DA MATÉRIA I (FIS101) Roteiro original elaborado por Edmar M. Nascimento MEDIDAS COM O INTERFERÔMETRO DE MICHELSON 1. Objetivo do Experimento.
SISTEMA HEXAGONAL SIMPLES
SISTEMA HEXAGONAL SIMPLES Os metais não cristalizam no sistema hexagonal simples porque o fator de empacotamento é muito baixo Entretanto, cristais com mais de um tipo de átomo cristalizam neste sistema
4 e 6/Maio/2016 Aulas 17 e 18
9/Abril/016 Aula 16 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda
Determinação da constante de Planck: o efeito fotoeléctrico
Determinação da constante de Planck: o efeito fotoeléctrico Objectivos: - Verificação experimental do efeito fotoeléctrico - Determinação da energia cinética dos fotoelectrões em função da frequência da
Aula 5 Interferência. Física 4 Ref. Halliday Volume4. Profa. Keli F. Seidel
Aula 5 Interferência Física 4 Ref. Halliday Volume4 Sumário Definição de Difração; O Experimento de Young; Coerência; Intensidade das Franjas de Interferência; Difração Vamos falar sobre o experimento
Introdução. Esta figura de difração apareceu em uma tela de observação quando a luz que havia passado por uma fenda vertical estreita chegou à tela.
Introdução Esta figura de difração apareceu em uma tela de observação quando a luz que havia passado por uma fenda vertical estreita chegou à tela. A difração fez com que o feixe luminoso se alargasse
Física IV - Laboratório. Difração
Física IV - Laboratório Difração Difração l Fenômeno característico das ondas em que estas tendem a contornar obstáculos, curvando-se após passar por suas bordas. l É um caso especial do fenômeno de interferência,
DIFRAÇÃO DE RAIOS X ROTEIRO. Experimento I: Lei de Bragg difração de raios X num monocristal
DIFRAÇÃO DE RAIOS X ROTEIRO Experimento I: Lei de Bragg difração de raios X num monocristal I Objetivos i. Investigar a lei da reflexão de Bragg num monocristal de KBr usando a radiação característica
