Lista de Problemas rad.)
|
|
|
- Cíntia Gomes Silva
- 9 Há anos
- Visualizações:
Transcrição
1 Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Física FIS01044 UNIDADE III Difração Lista de Problemas Problemas extraídos de HALLIDAY, D., RESNICK, R., WALKER, J. Fundamentos de física 4: ótica e física moderna. 4. ed. Rio de Janeiro: Livros Técnicos e Científicos, 1996, cap. 41. O número do problema no original é indicado entre parêntesis. Problemas: 1) (2) Sobre uma fenda estreita incide luz monocromática de 441 nm. Num anteparo, a 2,00 m de distância, o afastamento linear entre o segundo mínimo de difração e o máximo central é de 1,50 cm. a) Calcule o ângulo de difração θ deste segundo mínimo. b) Ache a largura da fenda. (Resposta: (a) 0,43 ; (b) 0,118 mm) 2) (3) Luz de comprimento de onda de 633 nm incide sobre uma fenda estreita. O afastamento angular entre o primeiro mínimo de difração, num lado do máximo central, e o primeiro mínimo no outro lado é 1,20. Qual é a largura da fenda? (Resposta: 60,4 µm) 3) (5) Em uma figura de difração de fenda única, a distância entre o primeiro e o quinto mínimo é de 0,35 mm. O anteparo dista 40 cm da fenda e o comprimento de onda da luz usada é de 550 nm. a) Encontre a largura da fenda. b) Calcule o ângulo do primeiro mínimo de difração. (Resposta: (a) 2,5 mm; (b) 2, rad.) 4) (7) Uma onda plana, de comprimento de onda igual a 590 nm, incide numa fenda com a = 0,40 mm. Uma lente convergente delgada, com distância focal igual a + 70 cm, é colocada atrás da fenda e focaliza a luz sobre o anteparo. a) A que distância está o anteparo da lente? b) Qual é a distância, sobre o anteparo, entre o centro da configuração de difração e o primeiro mínimo?
2 (Resposta: (a) 70 cm; (b) 1 mm.) 5) (9) Ondas sonoras, com freqüência de 3000 Hz e velocidade escalar de 343 m/s, difratam-se pela abertura retangular de uma caixa de alto-falante, para o interior de um grande auditório. A abertura, que tem uma largura horizontal de 30,0 cm, está a 100 m distante de uma parede. Em que ponto dessa parede um ouvinte estará no primeiro mínimo de difração e terá, por isso, dificuldade em ouvir o som? (Resposta: 41,2 m, a partir da perpendicular ao alto-falante.) 6) (10) Os fabricantes de fios metálicos (e de outros objetos de pequenas dimensões) usam, as vezes, raios laser para controlar continuamente a espessura do produto. O fio intercepta um feixe de laser produzindo uma figura de difração semelhante àquela de uma fenda única com largura igual ao diâmetro do fio (veja figura ao lado). Suponhamos que um laser de He-Ne, de comprimento de onda de 632,8 nm, ilumine um fio e que a figura de difração seja observada sobre um anteparo a 2,60 m de distância. Se o diâmetro desejado para o fio é de 1,37 mm, qual é a distância, no anteparo, entre os dois mínimos de décima ordem (de um lado e do outro lado do máximo central)? (Resposta: 24,0 mm.) 7) (11) Uma fenda de 0,10 mm de largura é iluminada por luz de comprimento de onda de 589 nm. Considere os raios que são difratados a θ = 30 e calcule a diferença de fase, no anteparo, entre as ondas de Huygens provenientes do topo e do ponto médio da fenda. (Resposta: 160 ) 8) (12) Luz monocromática com comprimento de onda igual a 538 nm incide sobre uma fenda de largura igual a 0,025 mm. A distância entre a fenda e o anteparo é de 3,5 m. Considere um ponto no anteparo a 1,1 cm do máximo central. a) Calcule b) Calcule (= / 2).
3 c) Calcule a razão entre a intensidade deste ponto e a intensidade do máximo central. (Resposta: (a) 0,18 ; (b) 0,459 rad; (c) 0,932.) 9) (18) Os dois faróis de um automóvel que se aproxima estão afastados por 1,4 m. Com quais valores (a) da separação angular e (b) da distância máxima a vista conseguirá resolvê-los? Considere o diâmetro da pupila do observador de 5,0 mm e o comprimento de onda de 550 nm. Considere também que a resolução seja determinada exclusivamente pelos efeitos da difração. (Resposta: (a) 1,34 x 10-4 rad; (b) 10,4 km.) 10) (23) Estime, sob condições ideais, a separação linear de dois objetos, na superfície do planeta Marte que possam ser resolvidos por um observador na Terra usando (a) a vista desarmada e (b) o telescópio de 5,1 m do Monte Palomar. Use os seguintes dados: distância a Marte = 8,0 x 10 7 km; diâmetro da pupila = 5,0 mm; comprimento de onda da luz = 500 nm. (Resposta: (a) 10,74 x km; (b) 10,5 km.) 11) (24) Se o Super-Homem tivesse realmente a visão de raios X para um comprimento de onda 0,10 nm e uma pupila de diâmetro igual a 4,0 mm, qual deveria ser a altitude máxima para ele poder distinguir os bandidos dos mocinhos, supondo que para isso ele precise resolver pontos separados por 5,0 cm. (Resposta: 1640 km.) 12) (25) O cruzador de uma frota de guerra utiliza radar com um comprimento de onda de 1,6 cm A antena circular tem um diâmetro de 2,3 m. Num alcance de 6,2 km, qual deverá ser a menor distância entre duas lanchas para que elas sejam detectadas com dois objetos distintos pelo sistema de radar? (Resposta: 53 m.) 13) (28) Um diafragma circular de 60 cm de diâmetro de uma fonte sonora imersa em água, para detecção submarina, oscila com uma freqüência de 25 khz. Longe da fonte, a intensidade do som é distribuída como uma configuração de difração de um orifício circular cujo diâmetro é igual ao valor do diâmetro do diafragma. a) Considerando a velocidade do som na água igual a 1450 m/s, determine o ângulo entre a normal ao diafragma e a direção do primeiro mínimo. b) Repita os cálculos para uma fonte com uma freqüência (audível) de 1,0 khz. (Resposta: (a) 6,7 ; (b) Como 1,22 > d, não existe nenhuma resposta para 1,0 khz.) 14) (35) Suponhamos que a envoltória central de difração, da figura de difração em uma fenda dupla, contenha 11 franjas brilhantes. Quantas franjas brilhantes estão entre o primeiro e o segundo mínimos da envoltória? (Resposta: 5.)
4 15) (40) (a) Quantas franjas (completas) aparecem entre os primeiros mínimos da envoltória de franjas, de ambos os lados do máximo central, na figura de difração de uma fenda dupla se = 550 nm, d = 0,150 mm e a = 30,0 µm? (b) Qual é a razão entre a intensidade da terceira franja, sem contar a central, e a intensidade da franja central? (Resposta: (a) 9; (b) 0,255.) 16) (41) A luz, de comprimento de onda 440 nm, passa por uma fenda dupla produzindo uma figura de difração cujo gráfico da intensidade I contra o desvio angular é mostrado na figura abaixo. Calcule: a) a largura da fenda; b) a separação entre as fendas; c) Verifique as intensidades mostradas para as franjas de interferência com m = 1 e m = 2. (Resposta: (a) 5,05 µm; (b) 20,2 µm; (c) I/I o = 81% (m = 1); I/I o = 40,5% (m = 2).) 17) (43) Uma rede de difração, com 20,0 mm de largura, tem ranhuras. a) Calcule a distância d entre as larguras adjacentes. b) Sob que ângulos ocorrerão os máximos de intensidade se a radiação incidente tiver um comprimento de onda de 589 nm? (Resposta: (a) 3330 nm; (b) 0; 10,2 ; 20,7 ; 32,0 ; 45,0 ; 62,0.) 18) (48) Uma rede de difração com 1,0 cm de largura tem ranhuras paralelas. Luz monocromática, incidindo normalmente à rede, sofre um desvio de 30 na primeira ordem. Qual é o comprimento de onda da luz? (Resposta: 500 nm.)
5 19) (49) Um feixe de luz, com comprimento de onda de 600 nm, incide normalmente sobre uma rede de difração. Ocorrem dois máximos adjacentes nos ângulos dados por sen = 0,2 e sen = 0,3, respectivamente. Os máximos de quarta ordem não aparecem. a) Qual é a separação entre as ranhuras adjacentes? b) Qual é a menor largura possível de cada ranhura? c) Quais são, com os valores calculados em (a) e em (b), as ordens dos máximos de intensidade produzidos pela rede? E as suas intensidades relativas? (Resposta: (a) 6,0 µm; (b) 1,5 µm; (c) m = 0, 1, 2, 3, 5, 6, 7, 9; I/I o = 100% (m = 0); I/I o = 81% (m = 1); I/I o = 41% (m = 2); I/I o = 9% (m = 3);...) 20) (61) Uma rede tem 600 ranhuras/mm e 5,0 mm de largura. a) Qual o menor intervalo de comprimento de onda que pode ser resolvido, na terceira ordem, nas vizinhanças de = 500 nm? b) Quantos máximos de ordem mais elevada podem ser observados? (Resposta: (a) 56 pm; (b) Nenhum.) 21) (62) Uma fonte contendo uma mistura de átomos de hidrogênio e deutério emite luz vermelha consistindo em dois comprimentos de onda cujo valor médio é 656,3 nm e cuja separação é 0,18 nm. Ache o número mínimo de ranhuras que deve ter uma rede de difração para resolver estas linhas na primeira ordem. (Resposta: 3646 ranhuras.) 22) (63) (a) Quantas ranhuras deve ter uma rede de difração com 4,0 cm de largura para resolver comprimentos de onda de 415,496 e 415,487 nm num espectro de segunda ordem? (b) Em que ângulo os máximos são encontrados? (Resposta: (a) ; (b) 28,7.) 23) (66) Uma rede tem ranhuras distribuídas sobre 76 mm. (a) Qual a dispersão esperada para a luz do sódio ( = 589 nm) nas três primeiras ordens? (b) Qual o poder de resolução da rede nessas ordens? (Resposta: (a) 32, 74 e 250 o / m; (b) , e ) 24) (71) Qual é o menor ângulo de Bragg com que um feixe de raios X de comprimento de onda de 30 pm pode refletir-se nos planos refletores de um cristal de calcita com espaçamento interplanar de 0,30 nm? (Resposta: 2,9.)
6 25) (75) Um feixe de raios X com um certo comprimento de onda incide sobre um cristal de NaCl fazendo um ângulo de 30,0 o com uma certa família de planos refletores de espaçamento igual a 39,8 pm. Se a reflexão nesses planos é de primeira ordem, qual é o comprimento de onda dos raios X? (Resposta: 39,8 pm.) 26) (77) Um feixe de raios X contendo comprimentos de onda desde 95,0 pm até 140 pm incide sobre uma família de planos refletores espaçados por d = 275 pm. O feixe incidente forma um ângulo de 45º com a reta normal aos planos. Quais os comprimentos de onda que terão máximos de intensidade em suas reflexões por esses planos? (Resposta: 97,3 e 130 pm.)
EXERCÍCIOS - DIFRAÇÃO
CURSO: ENGENHARIA - UFSCar FÍSICA 4 - TURMA 09.904-0 Profa. Dra. Ignez Caracelli - DF 02 de dezembro de 2016 EXERCÍCIOS - DIFRAÇÃO 1 Em uma figura de difração de fenda única, a distância entre o primeiro
Capítulo 36 Difração
Capítulo 36 Difração O que é a difração? Difração é um fenômeno, manifestado pelo espalhamento da luz de acordo com o princípio de Huygens, que ocorre com as ondas quando elas passam por um orifício ou
Capítulo 36. Difração
Capítulo 36 Difração Difração e a teoria ondulatória da luz tela fonte I/I 0 canto Objeto opaco região de sombra Luz na sombra ou sombra na luz! Séc. XVII Francesco Grimaldi diffractio desvio da luz a
Lista de Problemas. Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Física FIS01044 UNIDADE III Interferência
Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Física FIS01044 UNIDADE III Interferência Lista de Problemas Problemas extraídos de HALLIDAY, D., RESNICK, R., WALKER, J. Fundamentos
Interferência e Experiência de Young
Nome: nº 2 Professor Caio Interferência e Experiência de Young 1. (UECE 2007) Através de franjas de interferência, é possível determinar características da radiação luminosa, como, por exemplo, o comprimento
PUC-RIO CB-CTC G2 Gabarito FIS FÍSICA MODERNA Turma: 33-A Nome Legível: Assinatura: Matrícula:
PUC-RIO CB-CTC G2 Gabarito FIS1061 - FÍSICA MODERNA 01-11-2013 Turma: 33-A Nome Legível: Assinatura: Matrícula: AS RESPOSTAS PRECISAM SER JUSTIFICADAS A PARTIR DE LEIS FÍSICAS E CÁLCULOS EXPLÍCITOS Não
EXERCÍCIO 3 - INTERFERÊNCIA
CURSO: ENGENHARIA - UFSCar - TURMA 09.904-0 Profa. Dra. Ignez Caracelli - DF 17 de novembro de 2016 EXERCÍCIO 3 - INTERFERÊNCIA Exercícios extraídos do livro Fundamentos de Física volume 4: Óptica e Física
Aula 8 Difração. Física 4 Ref. Halliday Volume4. Profa. Keli F. Seidel
Aula 8 Difração Física 4 Ref. Halliday Volume4 ...referente ao assunto com fenda simples Exemplo 36.2 (Sears) a) Em uma figura de difração de fenda única, qual é a intensidade em um ponto onde a diferença
Universidade Federal do Rio Grande do Sul. Instituto de Física Departamento de Física. FIS01184 Física IV-C Área 1 Lista 1
Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Física FIS01184 Física IV-C Área 1 Lista 1 1.A luz do Sol no limite superior da atmosfera terrestre tem uma intensidade de
Física IV para Química
4310277 Física IV para Química Sétima lista de exercícios 1. Suponha que, no experimento de fenda dupla de Young, a separação entre as duas fendas seja de 0, 32 mm. Se um feixe de luz de 500 nm atingir
2.7. Difração, bandas de frequência e efeito Doppler
2.7. Difração, bandas de frequência e efeito Doppler Difração de ondas A difração de uma onda é o fenómeno que ocorre quando a onda contorna um obstáculo, orifício ou fenda. Este fenómeno observa-se quando
EXPERIMENTO 8 DIFRAÇÃO EM FENDA ÚNICA E EM FENDAS MÚLTIPLAS
EXPERIMENTO 8 DIFRAÇÃO EM FENDA ÚNICA E EM FENDAS MÚLTIPLAS Nesta atividade de laboratório você irá observar e analisar os efeitos provocados quando luz incide em uma fenda simples ou num sistema de muitas
Universidade Federal do Rio de Janeiro Instituto de Física Física IV 2019/1 Lista de Exercícios do Capítulo 3
Universidade Federal do Rio de Janeiro Instituto de Física Física IV 2019/1 Lista de Exercícios do Capítulo 3 Interferência e Difração Professor Carlos Zarro 1) Dois alto-falantes emitindo ondas sonoras
Introdução. Esta figura de difração apareceu em uma tela de observação quando a luz que havia passado por uma fenda vertical estreita chegou à tela.
Introdução Esta figura de difração apareceu em uma tela de observação quando a luz que havia passado por uma fenda vertical estreita chegou à tela. A difração fez com que o feixe luminoso se alargasse
Aula 7 Difração. Física 4 Ref. Halliday Volume4. Profa. Keli F. Seidel
Aula 7 Difração Física 4 Ref. Halliday Volume4 Sumário ; Difração de Fresnel e Difração de Fraunhofer; Intensidade na Difração Produzida por uma Fenda Simples; Introdução Sabemos que o som é capaz de contornar
Aula 9 A Difração. Física 4 Ref. Halliday Volume4. Profa. Keli F. Seidel
Aula 9 A Difração Física 4 Ref. Halliday Volume4 Sumário Difração de fenda única circular A difração de Raios-X Relembrando... Uma única fenda com Largura Finita A figura de difração de fenda simples com
Física IV. Instituto de Física - Universidade de São Paulo. Aula: difração
Física IV Instituto de Física - Universidade de São Paulo Professor: Valdir Guimarães E-mail: [email protected] Aula: difração Difração da Luz Para garantir que as ondas saindo de S1 e S2 sejam coerentes.
Física IV. Prática: Interferência e Difração. Baseado no material preparado por Sandro Fonseca Helena Malbouisson Clemencia Mora
Física IV Prática: Interferência e Difração Baseado no material preparado por Sandro Fonseca Helena Malbouisson Clemencia Mora Interferência Princípio de Huygens Todos os pontos de uma frente de onda se
Física VIII Ondas eletromagnéticas e Física Moderna
Física VIII Ondas eletromagnéticas e Física Moderna Aula 5: Difração Parte II 1 Baseado no material preparado por Sandro Fonseca de Souza Helena Malbouisson Redes de difração Grande número de fendas (ranhuras)
obstáculo: dimensões comparáveis ao comprimento de onda. onda: desvio na propagação.
onda + obstáculo = difração obstáculo: dimensões comparáveis ao comprimento de onda. onda: desvio na propagação. Princípio de Huygens Óptica geométrica não funciona!!! Óptica geométrica que prevê a luz
Física IV - Laboratório. Difração
Física IV - Laboratório Difração Difração l Fenômeno característico das ondas em que estas tendem a contornar obstáculos, curvando-se após passar por suas bordas. l É um caso especial do fenômeno de interferência,
Prof. Dr. Lucas Barboza Sarno da Silva
Prof. Dr. Lucas Barboza Sarno da Silva Difração numa fenda simples Lente convergente Princípio de Huygens 03/09/2015 Prof. Dr. Lucas Barboza Sarno da Silva 2 De acordo com o princípio de Huygens, cada
8.2. Na extremidade de uma corda suficientemente longa é imposta uma perturbação com frequência f = 5 Hz que provoca uma onda de amplitude
Constantes Velocidade do som no ar: v som = 344 m /s Velocidade da luz no vácuo c = 3 10 8 m/s 8.1. Considere uma corda de comprimento L e densidade linear µ = m/l, onde m é a massa da corda. Partindo
1) Descreva e explique detalhadamente um sistema de filtragem espacial do tipo 4f.
1 LISTA 6 Óptica de Fourier 1) Descreva e explique detalhadamente um sistema de filtragem espacial do tipo 4f. 2) Desenhar qualitativamente como se veria o padrão de difração da grade mostrada na figura
Física IV Escola Politécnica GABARITO DA P1 31 de agosto de 2017
Física IV - 4323204 Escola Politécnica - 2017 GABARITO DA P1 31 de agosto de 2017 Questão 1 I) 1,0 ponto) Numa experiência de Young, duas fendas separadas por uma distância de d = 1,5 mm são iluminadas
Escola Politécnica FAP GABARITO DA P2 6 de novembro de 2009
P2 Física IV Escola Politécnica - 29 FAP 224 - GABARITO DA P2 6 de novembro de 29 Questão Uma película de óleo de silicone flutuando sobre água é iluminada por uma luz branca a partir do ar. A luz refletida
Aula 7 Difração. Física 4 Ref. Halliday Volume4. Profa. Keli F. Seidel
Aula 7 Difração Física 4 Ref. Halliday Volume4 Sumário ; Difração de Fresnel e Difração de Fraunhofer; Intensidade na Difração Produzida por uma Fenda Simples; Introdução Sabemos que o som é capaz de contornar
INTERFERÊNCIA E DIFRAÇÃO DA LUZ
INTERFERÊNCIA E DIFRAÇÃO DA LUZ INTRODUÇÃO A luz é uma onda eletromagnética; portanto é constituída por campos elétrico e magnético que oscilam, periodicamente, no tempo e no espaço, perpendiculares entre
Experiência 10 DIFRAÇÃO E INTERFERÊNCIA
INSTITUTO DE FÍSICA UNIVERSIDADE DE SÃO PAULO Laboratório de Eletromagnetismo (4300373) Grupo:......... (nomes completos) Prof(a).:... Diurno ( ) Noturno ( ) Data : / / 1. Introdução Experiência 10 DIFRAÇÃO
Aula 8 Difração. Física 4 Ref. Halliday Volume4. Profa. Keli F. Seidel
Aula 8 Difração Física 4 Ref. Halliday Volume4 Sumário Difração de Fenda dupla (difração e interferência); ; Redes de Difração; Poder de Resolução e Dispersão; Difração de Fenda Dupla (Difração e interferência)
Aula 5 Interferência. Física 4 Ref. Halliday Volume4. Profa. Keli F. Seidel
Aula 5 Interferência Física 4 Ref. Halliday Volume4 Sumário Definição de Difração; O Experimento de Young; Coerência; Intensidade das Franjas de Interferência; Difração Vamos falar sobre o experimento
Física IV Poli Engenharia Elétrica: 6ª Aula (21/08/2014)
Física IV Poli Engenharia Elétrica: 6ª Aula (1/08/014) Prof. Alvaro Vannucci Na última aula vimos: Interferência em Filmes Finos: se a diferença de percurso (t) for igual a um número inteiro de comprimentos
UNIVERSIDADE ESTADUAL PAULISTA. FACULDADE DE ENGENHARIA DE ILHA SOLTEIRA Departamento de Física e Química
UNIVERSIDADE ESTADUAL PAULISTA JÚLIO DE MESQUITA FILHO FACULDADE DE ENGENHARIA DE ILHA SOLTEIRA Departamento de Física e Química Apostila da Disciplina Fundamentos de Óptica (FIS0935) Docentes: Prof.Dr.
Física IV Escola Politécnica GABARITO DA P2 14 de outubro de 2014
Física IV - 4320402 Escola Politécnica - 2014 GABARITO DA P2 14 de outubro de 2014 Questão 1 Num arranjo experimental os pontos S 1 e S 2 funcionam como fontes de luz idênticas emitindo em fase com comprimentos
Física IV P1-1 de setembro de 2016
Questão 1 Física IV - 4323204 P1-1 de setembro de 2016 (I) Considere um conjunto de duas fendas de largura l, espaçadas por uma distância de 5l. Sobre estas duas fendas incide uma onda plana monocromática,
Física IV Ondas Eletromagnéticas parte 3
Física IV Ondas Eletromagnéticas parte 3 Sandro Fonseca de Souza Marcia Begalli IF-UERJ Difração e a teoria ondulatória da luz tela fonte I/I 0 canto Objeto opaco região de sombra Luz na sombra ou sombra
Cap. 36 -Difração. Difração por uma fenda estreita e comprida; Posição de mínimos; Intensidade;
Cap. 36 -Difração Teoria ondulatória da luz; Difração por uma fenda estreita e comprida; Posição de mínimos; Intensidade; Difração por uma fenda circular; Posição de 1º mínimo; Resolução; Difração por
Física IV Poli Engenharia Elétrica: 5ª Aula (19/08/2014) Interferência em Filmes Finos (Películas Delgadas)
Física IV Poli Engenharia Elétrica: 5ª Aula (19/08/2014) Prof. Alvaro Vannucci Na última aula vimos: Na experiência de fenda-dupla, aplicando o método dos fasores para somar os campos elétricos das ondas
Interferência de duas fendas
Interferência de duas fendas Experiência de Young natureza ondulatória da luz. As duas fontes coerentes, resultantes da iluminação de duas fendas muito estreitas e paralelas, produz na tela um padrão de
1678: teoria ondulatória para a luz (anterior e menos completa que o eletromagnetismo de Maxwell)
Christian Huygens (1629 1695) 1678: teoria ondulatória para a luz (anterior e menos completa que o eletromagnetismo de Maxwell) Vantagens da teoria: explicar as leis de reflexão e refração em termos de
Física VIII Ondas eletromagnéticas e Física Moderna
Física VIII Ondas eletromagnéticas e Física Moderna Aula 5: Interferência (continuação), Difração Parte I 1 Baseado no material preparado por Sandro Fonseca de Souza Helena Malbouisson Interferômetro de
Estrutura física da matéria Difração de elétrons
O que você pode aprender sobre este assunto... - Reflexão de Bragg - Método de Debye-Scherer - Planos de rede - Estrutura do grafite - Ondas de matéria - Equação de De Broglie Princípio: Elétrons acelerados
Física IV Escola Politécnica GABARITO DA P1 30 de agosto de 2018
Física IV - 4323204 Escola Politécnica - 2018 GABARITO DA P1 30 de agosto de 2018 Questão 1 Luz proveniente de uma fonte monocromática de comprimento de onda λ é difratada por uma fenda de largura a em
DIFRAÇÃO E INTERFERÊNCIA
DIFRAÇÃO E INTERFERÊNCIA Material Utilizado: (Parte C - Difração por Rede) - um conjunto (PASCO OS-8500) constituído de um banco óptico, uma fonte de luz incandescente, dois porta-componentes, uma escala
Aula-4 Difração. Curso de Física Geral F-428
Aula-4 Difração Curso de Física Geral F-428 A Sunday on La Grande Jatte Georges Seurat (French, 1859-1891) A Sunday on La Grande Jatte -- 1884, 1884-86 Oil on canvas, 81 3/4 x 121 1/4 in. (207.5 x 308.1
Aula 5 Interferência. Física 4 Ref. Halliday Volume4. Profa. Keli F. Seidel
Aula 5 Interferência Física 4 Ref. Halliday Volume4 Sumário Definição de Difração; O Experimento de Young; Coerência; Intensidade das Franjas de Interferência; Difração Vamos falar sobre o experimento
Prof. Dr. Lucas Barboza Sarno da Silva
Prof. Dr. Lucas Barboza Sarno da Silva A luz uma onda eletromagnética Equações de Maxwell S S C C q E. ds 0 B. ds 0 db E. dr dt B. dr i 0 0 0 de dt Velocidade da luz: 1 8 c 310 m / s 0 0 03/09/2015 Prof.
Física 3 Verificação Suplementar 02/04/2016 Atenção: Leia as recomendações antes de fazer a prova.
Física 3 Verificação Suplementar 02/04/2016 Atenção: Leia as recomendações antes de fazer a prova. 1 Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2 Leia os enunciados com atenção.
LISTA DE EXERCÍCIOS - ONDAS
UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE FÍSICA - DEPARTAMENTO DE FÍSICA GERAL DISCIPLINA: FIS 1 - FÍSICA GERAL E EXPERIMENTAL II-E www.fis.ufba.br/~fis1 LISTA DE EXERCÍCIOS - ONDAS 013.1 1. Considere
3Parte. FICha De avaliação N.º 3. Grupo I
FICha De avaliação N.º 3 ESCOLA: NOME: N. O : TURMA: DATA: Grupo I 1 As ondas eletromagnéticas foram previstas por Maxwell e comprovadas experimentalmente por Hertz. 1.1 Selecione a opção correta. A. as
Física 4. Guia de Estudos P1
Física 4 Guia de Estudos P1 1. Introdução O curso de física IV visa introduzir aos alunos os conceitos de física moderna através de uma visão conceitual dos fenômenos e uma abordagem simplificada das demonstrações.
2º trimestre TB- FÍSICA Data: Ensino Médio 1º ano classe: Prof. J.V. Nome: nº
º trimestre TB- FÍSICA Data: Ensino Médio 1º ano classe: Prof. J.V. Nome: nº Valor: 10 Nota:.. 1. (Ufsm 011) Na figura a seguir, são representados um objeto (O) e a sua imagem (I) formada pelos raios de
Apostila de Laboratório. ZAB0474 Física Geral e Experimental IV
Universidade de São Paulo Faculdade de Zootecnia e Engenharia de Alimentos Departamento de Ciências Básicas Apostila de Laboratório ZAB0474 Física Geral e Experimental IV Caio Eduardo de Campos Tambelli
Física IV. Prática VII Sandro Fonseca de Souza
Física IV Prática VII Sandro Fonseca de Souza 1 Normas e Datas Atendimento ao estudante: sexta-feira de 14:00-15:00 na sala 3016 A. Presença é obrigatória as aulas de lab. e os alunos somente podem faltar
Difração. Universidade Federal de Itajubá. Física Geral IV - FIS503
Difração Universidade Federal de Itajubá Física Geral IV - FIS503 O Experimento de Young (1801) 2 Difração: o princípio de Huygens 3 Difração A difração é mais perceptível quando a abertura é da ordem
Universidade Federal do Rio de Janeiro Instituto de Física Disciplina: Física IV-A Data: 03/07/2019. (c) I 1 = I 2.
Universidade Federal do Rio de Janeiro Instituto de Física Disciplina: Física IV-A Data: 03/07/2019 Prova Final 1 Um material não magnético possui a permeabilidade magnética igual à do vácuo µ = µ 0 Um
Física. Física Moderna
Física Física Moderna 1. Introdução O curso de física IV visa introduzir aos alunos os conceitos de física moderna através de uma visão conceitual dos fenômenos e uma abordagem simplificada das demonstrações.
DIFRAÇÃO DA LUZ DE UM LASER POR FENDAS
Experimento 6 INTERFERÊNCIA E DIFRAÇÃO DA LUZ DE UM LASER POR FENDAS 6.1 OBJETIVOS Estudo da figura de difração da luz por uma fenda fina em função da largura da fenda. Estudo da figura de interferência
ZAB Física Geral e Experimental IV
ZAB0474 - Física Geral e Experimental IV Experimentos 1 Polarização 2 Difração 3 Espectro Atômico 4 Luminescência Experimento 1 - Polarização Objetivo: Medir a intensidade da luz que atravessa um conjunto
FIS Redes de difração e interferometria Prof. Basílio X. Santiago
FIS02014 - Redes de difração e interferometria Prof. Basílio X. Santiago Redes de difração e interferômetros No texto anterior, quantificamos a dispersão da luz por um prisma e aproveitamos esse caso específico
Interferência de ondas: está relacionada com a diferença de fase entre as ondas. A diferença de fase entre duas ondas pode mudar!!!!
Interferência de ondas: está relacionada com a diferença de fase entre as ondas. Construtiva: em fase Destrutiva: fora de fase A diferença de fase entre duas ondas pode mudar!!!! Coerência: para que duas
Tarefa 03 Professor Bernadelli
Tarefa 03 Professor Bernadelli 01. (ITA SP) Um raio de luz de uma lanterna acesa em A ilumina o ponto B, ao ser refletido por um espelho horizontal sobre a semi-reta DE da figura, estando todos os pontos
Reflexão e refração de ondas
Reflexão e refração de ondas Reflexão de ondas em cordas quando a extremidade é fixa, a reflexão se dá com inversão de fase quando a extremidade é livre, a reflexão se dá sem inversão de fase Refração
Apostila de Laboratório. ZAB0474 Física Geral e Experimental IV
Universidade de São Paulo Faculdade de Zootecnia e Engenharia de Alimentos Departamento de Ciências Básicas Apostila de Laboratório ZAB0474 Física Geral e Experimental IV Caio Eduardo de Campos Tambelli
ONDAS ELETROMAGNÉTICAS:3 CAPÍTULO 33 HALLIDAY, RESNICK. 8ª EDIÇÃO. Revisão: Campos se criam mutuamente. Prof. André L. C.
ONDAS ELETROMAGNÉTICAS:3 Prof. André L. C. Conceição DAFIS CAPÍTULO 33 HALLIDAY, RESNICK. 8ª EDIÇÃO Ondas eletromagnéticas Revisão: Campos se criam mutuamente Lei de indução de Faraday: Lei de indução
Figura 1 - Onda electromagnética colimada
Biofísica P12: Difração e interferência 1. Objectivos Observação de padrões de difração e interferência Identificação das condições propícias ao aparecimento de fenómenos de difração e interferência Aplicação
3 - Na figura a seguir, está esquematizado um aparato experimental que é utilizado. 1 - Dois raios de luz, um vermelho (v) e outro
1 - Dois raios de luz, um vermelho (v) e outro azul (a), incidem perpendicularmente em pontos diferentes da face AB de um prisma transparente imerso no ar. No interior do prisma, o ângulo limite de incidência
EXERCÍCIOS PARA A LISTA 8 CAPÍTULO 22 ÓPTICA ONDULATÓRIA
Exercícios Conceituais QUESTÃO 1. A figura ao lado mostra a imagem projetada em uma tela num experimento com fenda dupla. Para cada item a seguir, o espaçamento entre as franjas irá aumentar, diminuir
FIS Exercícios de Espectroscopia Prof. Basílio X. Santiago
FIS02014 - Exercícios de Espectroscopia Prof. Basílio X. Santiago 1) Sejam os dois contínuos espectrais mostrados na figura abaixo. Responda: a) Estime o valor de λ para o qual se dá o máximo de emissão
Ondas Interferência
Ondas - 2010 Interferência Profa. Ana Barros 1º Semestre 2011 Interferência Princípio de Huygens A Lei da Refração Difração O Experimento de Young Intensidade das Franjas de Interferência Interferência
FÍSICA IV Problemas Complementares 2 O modelo ondulatório da luz: interferência e
FÍSICA IV Problemas Complementares 2 O moelo onulatório a luz: interferência e ifração 21 e Setembro e 2009 Problema 1 Quano uma componente monocromática a luz troca e meio, a sua freqüência permanece
PUC-RIO CB-CTC G1 Gabarito - FIS FÍSICA MODERNA Turma: 33-A Nome Legível: Assinatura: Matrícula:
PUC-RIO CB-CTC G1 Gabarito - FIS1061 - FÍSICA MODERNA 20-09-2013 Turma: 33-A Nome Legível: Assinatura: Matrícula: AS RESPOSTAS PRECISAM SER JUSTIFICADAS A PARTIR DE LEIS FÍSICAS E CÁLCULOS EXPLÍCITOS Não
COLÉGIO ESTADUAL LICEU DE MARACANAÚ TD DE RECUPERAÇÃO DE FÍSICA 1º SEMESTRE. ALUNO(a): Nº
COLÉGIO ESTADUAL LICEU DE MARACANAÚ TD DE RECUPERAÇÃO DE FÍSICA 1º SEMESTRE ALUNO(a): Nº SÉRIE: 2 0 TURMAS: C-D-H-I TURNO: [M] [T] Prof.(s): Diva. 1- A luz amarela se propaga em um determinado vidro com
Cap. 22 Óptica Ondulatória
Cap. 22 Objetivos Usar o modelo de onda luminosa Reconhecer as evidências da natureza da onda luminosa Calcular padrões de interferência produzido por fendas duplas e redes de difração Compreender como
PROVA PARA ALUNOS DO 1 E 2 ANO
LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO: a 3 FASE o o PROVA PARA ALUNOS DO 1 E 2 ANO 1 Essa prova destina-se exclusivamente aos alunos do 1 o e 2 o ano e contém vinte (20) questões. 2 Os alunos do 1 o ano
Aula 6 Interferência. Física 4 Ref. Halliday Volume4. Profa. Keli F. Seidel
Aula 6 Interferência Física 4 Ref. Halliday Volume4 Relembrando... Fenômenos de interferência de ondas eletromagnéticas... Interferência Experiência de Young Experiência de Young Pontos de máximo são denominados
1304 Difração de elétrons
1 Roteiro elaborado com base na documentação que acompanha o conjunto por: Máximo F. da Silveira Instituto de Física UFRJ Tópicos Relacionados Reflexão de Bragg, método Debye-Scherrer, planos de rede,
Teoria - Difração e Interferência
Objetivos Teoria - Difração e Interferência Observar os fenômenos de difração e interferência da luz; Medir o diâmetro de um fio de cabelo. Introdução Um feixe de luz coerente, ao atravessar uma fenda
SUGESTÕES DE EXERCÍCIOS PARA A SEGUNDA AVALIAÇÃO
FÍSICA IV PROF. DR. DURVAL RODRIGUES JUNIOR SUGESTÕES DE EXERCÍCIOS PARA A SEGUNDA AVALIAÇÃO Como na Biblioteca do Campus I e do Campus II temos bom número de cópias do Halliday e poucas do Serway, os
INTERFERÊNCIA E DIFRACÇÃO DE LUZ
INTERFERÊNCIA E DIFRACÇÃO DE LUZ OBJECTIVO Esta experiência consiste em estudar efeitos de interferência de duas fontes luminosas, ou da difracção de luz por fendas ou objectos opacos. Em ambos os casos
Prof. Dr. Lucas Barboza Sarno da Silva
Prof. Dr. Lucas Barboza Sarno da Silva SUMÁRIO Introdução às ondas eletromagnéticas Equações de Maxwell e ondas eletromagnéticas Espectro de ondas eletromagnéticas Ondas eletromagnéticas planas e a velocidade
Fonte emissora de luz (lâmpada de mercúrio); rede (ou grade) de difração (100 ou 600 linhas/mm); espectrômetro Zeiss.
LABORATÓRIO FÍSICA XPRIMNTAL IV XPRIMNTO A5 GRA IFRAÇÃO: MIAS COMPRIMNTOS ONA A5.1 QUIPAMNTO Fonte emissora de luz (lâmpada de mercúrio); rede (ou grade) de difração (100 ou 600 linhas/mm); espectrômetro
Laboratório de Estrutura da Matéria II
Roteiro: Prof. Dr. Jair Freitas UFES - Vitória Laboratório de Estrutura da Matéria II Difração de raios X PRINCÍPIO E OBJETIVOS Feixes de raios X são analisados através de difração por monocristais, para
DETERMINAÇÃO DA ESPESSURA DE UM CABELO ATRAVÉS DE PADRÕES DE DIFRACÇÃO
1 Trabalho nº 6 DETERMINAÇÃO DA ESPESSURA DE UM CABELO ATRAVÉS DE PADRÕES DE DIFRACÇÃO por A. J. Silvestre 2 1 Objectivo Determinar a espessura de um cabelo através do estudo do padrão de difracção gerado
25 Problemas de Óptica
25 Problemas de Óptica Escola Olímpica - Gabriel Lefundes 25 de julho de 2015 Problema 1. O ângulo de deflexão mínimo um certo prisma de vidro é igual ao seu ângulo de refração. Encontre-os. Dado: n vidro
