MEDIDAS COM O INTERFERÔMETRO DE MICHELSON
|
|
|
- Maria dos Santos Lemos Amarante
- 8 Há anos
- Visualizações:
Transcrição
1 DEPARTAMENTO DE FÍSICA DO ESTADO SÓLIDO - IFUFBa 005 ESTRUTURA DA MATÉRIA I (FIS101) Roteiro original elaborado por Edmar M. Nascimento MEDIDAS COM O INTERFERÔMETRO DE MICHELSON 1. Objetivo do Experimento. Fundamentação Teórica.1. O interferômetro de Michelson O interferômetro de Michelson é o tipo mais fundamental de interferômetro de dois feixes. Ele pode ser utilizado para medir comprimentos de onda com grande precisão. Este aparelho foi originalmente construído por A. Michelson em 1881 e visava comprovar a existência do éter, o meio no qual se supunha na época deveria se propagar a luz. O experimento, como se sabe, não foi bem sucedido e anos mais tarde, em 1905, A. Einstein publicou o seu famoso trabalho intitulado Sobre a eletrodinâmica dos corpos em movimento rejeitando definitivamente a existência do éter. A Fig. 1 a seguir mostra esquematicamente, a montagem do interferômetro. M 1 Espelho móvel Espelho semiprateado d 1 F M d M Espelho fixo O Fig. 1
2 Considere que a luz parte da fonte extensa F e incide no espelho semiprateado (M), de espessura desprezível. A luz é então dividida em dois feixes que seguem respectivamente para os espelhos M 1 e M onda são refletidos de volta para M onde eles são respectivamente transmitidos e refletidos indo interferir no ponto de observação O. Sejam e ( ω α ) Y = a s en t (1) ( ω α ) Y = a sen t () as duas ondas que interferem em O e produzem como resultado uma onda que pode ser descrita como onde e ( ω δ ) Y = Asen t+ (3) ( cos ) A= a + a + aa δ (4) 1 1 δ = α1+ α (5) Na pratica para se obter uma fonte extensa uma lente é inserida entre a fonte de luz e o espelho semiprateado. Sendo os espelhos perpendiculares entre si podemos o sistema é equivalente a uma luz proveniente de uma fonte extensa incidindo sobre uma camada de ar, de espessura d = d1 d, entre o espelho M 1 e a imagem virtual do espelho M, como ilustra da figura. P M M 1 P P F d P d θ P dcosθ Fig. Da figura acima pode-se verificar que a diferença de fase entre os dois feixes é π δ = d cos θ (6) λ
3 onde λ é o comprimento de onda da luz utilizada. A distribuição de intensidade no caso em que a1 = a = a pode ser dada por I A = 4a cos δ (7) Portanto máximos ocorrerão cada vez que δ for um múltiplo de π, o que na equação (6) significa que dcos θ = mλ, m= 1,, (8) e círculos concêntricos são produzidos para cada valor de m, d e θ. Se a posição do espelho móvel (M 1 ) é variada de modo que d por exemplo diminua então, de acordo com a equação (8), o diâmetro do circulo também diminuirá. Portanto um circulo desaparecerá cada vez que d seja diminuída (ou aumentada) de λ... Determinação do índice de refração do ar Para determinar o índice de refração do ar um recipiente de comprimento s (cubeta) é inserido no caminho do feixe, em frente ao espelho fixo. Uma bomba de vácuo permite variar a pressão no recipiente. O índice de refração de um gás é linearmente dependente da pressão p, tal que sendo que n ( ) 0 = 1 e n n( p) = n( 0) + p (9) p ( + ) ( ). n n p p n p = p p (10) O caminho ótico para o feixe luminoso percorrendo o recipiente de comprimento s é x = n( p). s (11) Se a pressão no recipiente for variada de p, este caminho ótico sofrerá uma variação de ( ) ( ) x = n p+ p. s n p. s (1) Iniciando-se com a pressão ambiente (p o ) e diminuindo-se até um valor p, observaremos que a configuração inicial do padrão de interferência (caracterizada por exemplo por um mínimo no centro do padrão) se repetirá N vezes. Cada mudança de mínimo para mínimo corresponde a uma variação de λ no caminho ótico. Assim entre as pressões p e p + p o caminho ótico será alterado por { ( ) ( )}. x= N p N p+ p λ (13) 3
4 Considerando-se agora que o feixe de luz atravessa duas vezes o recipiente, pelas equações (1) e (13) temos λ n( p+ p) n( p) = { N( p) N( p+ p) } (14) s e em vista da equação (10) podemos escrever: n N λ = (15) p p s A quantidade N pode ser determinada a partir do gráfico do número de variações do padrão p de interferência versus a pressão. O índice de refração n é então determinado com o uso das equações (15) e (9). 3. Medidas O aparato experimental necessário está mostrado na Fig.03. Ele consiste dos seguinte itens: 1. Interferômetro de Michelson. Laser, He-Ne 1.0 mw 3. Lente f+0mm 4. Suporte para a lente 5. Banco ótico 6. Anteparo 7. Cubeta de vidro (comprimento s=10mm) 8. Bomba de vácuo manual com manômetro 3.1. Ajustes iniciais A fim de obter o maior número possível de círculos de interferência, os espelhos do interferômetro precisam, antes de tudo, serem ajustados. Para fazer este ajuste remova a lente (L) que está entre o laser e o interferômetro. O feixe de laser incide sobre o espelho semi refletor sob um ângulo de 45º, dividindo-se em dois que são refletidos pelos espelhos móvel (M 1 ) e fixo (M ) e finalmente atingem o anteparo (A). Ajuste os parafusos fixados à base do espelho fixo (M ) até que os pontos de luz proveniente dos dois espelhos coincidam. Coloque a seguir a lente (L) entre o laser e o interferômetro (exatamente no meio) e ajuste cuidadosamente até obter uma imagem de círculos concêntricos. 4
5 Lente (L) Laser He-Ne Anteparo Espelho semiprateado Cubeta Espelho fixo (M ) Bomba de vácuo Espelho móvel (M 1 ) Micrômetro Fig Medida do comprimento de onda da luz do laser Para medir o comprimento de onda da luz do laser ajuste o parafuso micrométrico em alguma posição inicial para a qual haja um mínimo de intensidade no centro do padrão de interferência. Anote a posição inicial do micrometro. Gire o parafuso micrométrico e conte o número de mínimos que chegam ao centro do padrão de interferência. Conte 100 períodos e anote a posição final do micrometro. Repita a medida contando 00 periodos. Lembre-se de avaliar os erros cometidos nas medidas A distância que se deslocou o espelho móvel é obtida pela diferença entre as duas posições do micrometro dividida por 10 (fator de redução 1:10 DISCUTA A RAZÃO DESTE FATOR). A partir destas medidas determine o comprimento de onda da luz do laser utilizado Medida do índice de refração do ar Fixe a cubeta de vidro no suporte em frente ao espelho fixo (M ) e ajuste o interferômetro e a lente (L) para obter um padrão de círculos concêntricos.. Iniciando da pressão ambiente (p o =1004 mbar) diminua a pressão usando a bomba de vácuo anotando o número de mínimos que chegam ao centro do padrão de interferência (número de períodos). Anote em uma tabela o número de períodos (N) em função da pressão (p). Note que o valor p que você está medindo é na verdade o decréscimo sofrido pela pressão ambiente 5
6 dentro da cubeta. Faça medidas para N variando de 1 até 7. Avalie os erros cometidos nas medidas. 4. Sugestões para o relatório As sugestões apresentadas abaixo não são limitativas. Visam apenas ressaltar alguns aspectos do experimento e da confecção do relatório que julgamos imprescindíveis. Determine o comprimento de onda do laser a partir das medidas efetuadas na seção 3.. Qual o significado do fator de redução utilizado nestas medidas? Procure na literatura qual o comprimento de onda típico de um laser He-Ne e compare com o valor por você determinado. A partir das medidas efetuadas na seção 3.3, corrija o valor de p medido e trace o gráfico de N x p. A partir do gráfico e tendo em vista o discutido na seção determine o índice de refração do ar. Utilize o comprimento de onda medido na seção 3. e p o =1004 mbar. Procure na literatura o índice de refração do ar na CNTP e compare com o seu resultado. Não esqueça de sempre avaliar e apresentar os erros para cada resultado apresentado. 5. Bibliografia e sugestões de leitura [1] PHYWE series of publications-laboratory Experimentos-Physics Göttinger, Germany [] Artigo de Einstein, de 190, sobre o éter e a teoria da relatividade: [3] John P. McKelvey and Howard Grotch, "Fisica 4 ", Harbra - Harper & Row do Brasil, São Paulo (1981). [4] R. M. Eisberg, Fundamentos da Física Moderna, Guanabara Dois, Rio de Janeiro-RJ (1979) 6
INTERFERÔMETRO DE MICHELSON
Experimento 5 INTERFERÔMETRO DE MICHELSON 5.1 OBJETIVOS Medir o comprimento de onda de um laser de He-Ne Medir o índice de refração de um vidro Medir o índice de refração do ar 5.2 PARTE TEÓRICA Figura
defi departamento de física
defi departamento de física Laboratórios de Física www.defi.isep.ipp.pt Interferómetro de Michelson Instituto Superior de Engenharia do Porto Departamento de Física Rua Dr. António Bernardino de Almeida,
Laboratório de Estrutura da Matéria II
Roteiro: Prof. Dr. Jair Freitas UFES - Vitória Laboratório de Estrutura da Matéria II Interferômetro de Michelson PRINCÍPIO E OBJETIVOS Franjas de interferência são observados no arranjo do interferômetro
Estrutura da Matéria II. Interferometria de Precisão
Universidade do Estado do Rio de Janeiro Instituto de Física Departamento de Física Nuclear e Altas Energias Estrutura da Matéria II Interferometria de Precisão Versão 1.0 (2008) Helio Nogima, Luiz Mundim
Interferometria de Precisão
Universidade do Estado do Rio de Janeiro Instituto de Física Departamento de Física Nuclear e Altas Energias Estrutura da Matéria II Interferometria de Precisão Versão 2.1 (2012) Helio Nogima, Luiz Mundim
Laboratório de Estrutura da Matéria I
Laboratório de Estrutura da Matéria I Interferômetro de Michelson PRINCÍPIO E OBJETIVOS Franjas circulares de interferência são observadas no arranjo do interferômetro de Michelson, permitindo a medida
UNIVERSIDADE ESTADUAL PAULISTA. FACULDADE DE ENGENHARIA DE ILHA SOLTEIRA Departamento de Física e Química
UNIVERSIDADE ESTADUAL PAULISTA JÚLIO DE MESQUITA FILHO FACULDADE DE ENGENHARIA DE ILHA SOLTEIRA Departamento de Física e Química Apostila da Disciplina Fundamentos de Óptica (FIS0935) Docentes: Prof.Dr.
Prática 7: Interferência I: Anéis de Newton
Prática 7: Interferência I: Anéis de Newton I - Introdução Nesta prática, vamos estudar os fenômenos de interferência que ocorrem com fontes de luz, verificando as leis físicas que governam tais processos.
Universidade Federal do Rio Grande do Sul. Instituto de Física Departamento de Física. FIS01184 Física IV-C Área 1 Lista 1
Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Física FIS01184 Física IV-C Área 1 Lista 1 1.A luz do Sol no limite superior da atmosfera terrestre tem uma intensidade de
Apostila de Laboratório. ZAB0474 Física Geral e Experimental IV
Universidade de São Paulo Faculdade de Zootecnia e Engenharia de Alimentos Departamento de Ciências Básicas Apostila de Laboratório ZAB0474 Física Geral e Experimental IV Caio Eduardo de Campos Tambelli
Roteiro didático de aplicação do interferômetro de Michelson-Morley para medida do índice de refração do ar
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Física Programa de Pós-Graduação em Ensino de Física Mestrado Nacional Profissional em Ensino de Física Roteiro didático de aplicação do interferômetro
Física IV para Química
4310277 Física IV para Química Sétima lista de exercícios 1. Suponha que, no experimento de fenda dupla de Young, a separação entre as duas fendas seja de 0, 32 mm. Se um feixe de luz de 500 nm atingir
Cap. 22 Óptica Ondulatória
Cap. 22 Objetivos Usar o modelo de onda luminosa Reconhecer as evidências da natureza da onda luminosa Calcular padrões de interferência produzido por fendas duplas e redes de difração Compreender como
Universidade Federal do Paraná Departamento de Física Laboratório de Física Moderna
Universidade Federal do Paraná Departamento de Física Laboratório de Física Moderna Bloco 02: O DUBLETO DO SÓDIO Os níveis de energia de um átomo de hidrogênio calculados pela equação de Schrödinger são
INTERFERÊNCIA E DIFRAÇÃO DA LUZ
INTERFERÊNCIA E DIFRAÇÃO DA LUZ INTRODUÇÃO A luz é uma onda eletromagnética; portanto é constituída por campos elétrico e magnético que oscilam, periodicamente, no tempo e no espaço, perpendiculares entre
Universidade de São Paulo Instituto de Física de São Carlos Laboratório Avançado de Física INTERFERÔMETRO DE MICHELSON
Universidade de São Paulo Instituto de Física de São Carlos Laboratório Avançado de Física INTERFERÔMETRO DE MICHELSON Os interferômetros conhecidos são convenientemente divididos em duas classes: uns
LABORATÓRIO DE FÍSICA EXPERIMENTAL IV EXPERIMENTO B5 INTERFERÔMETRO DE MICHELSON
LABORATÓRIO DE FÍSICA EXPERIMENTAL IV EXPERIMENTO B5 INTERFERÔMETRO DE MICHELSON B5.1 EQUIPAMENTO Interferômetro de Michelson em tamanho padrão (50x50 cm), em base magnética, com suportes magnéticos, espelhos
Universidade Federal do Rio de Janeiro Instituto de Física Disciplina: Física IV-A Data: 03/07/2019. (c) I 1 = I 2.
Universidade Federal do Rio de Janeiro Instituto de Física Disciplina: Física IV-A Data: 03/07/2019 Prova Final 1 Um material não magnético possui a permeabilidade magnética igual à do vácuo µ = µ 0 Um
Apostila de Laboratório. ZAB0474 Física Geral e Experimental IV
Universidade de São Paulo Faculdade de Zootecnia e Engenharia de Alimentos Departamento de Ciências Básicas Apostila de Laboratório ZAB0474 Física Geral e Experimental IV Caio Eduardo de Campos Tambelli
Roteiro didático de aplicação do interferômetro de Michelson-Morley para medida do comprimento de onda do LASER
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Física Programa de Pós-Graduação em Ensino de Física Mestrado Nacional Profissional em Ensino de Física Roteiro didático de aplicação do interferômetro
Laboratório de Estrutura da Matéria II
Roteiro: Prof. Dr. Jair Freitas UFES - Vitória Laboratório de Estrutura da Matéria II Difração de elétrons PRINCÍPIO E OBJETIVOS Feixes eletrônicos de alta energia são difratados por um alvo de grafite
Óptica Ondulatória. 1. Introdução Ondas Electromagnéticas
Óptica Ondulatória 1. Introdução 1.1. Ondas Electromagnéticas As ondas estão presentes por todo o lado na Natureza: luz, som, ondas de radio, etc. No caso da luz visível trat-se de ondas electromagnéticas,
Sala de Estudos FÍSICA Evandro 1 trimestre Ensino Médio 3º ano classe: Prof.Evandro Nome: nº
Sala de Estudos FÍSICA Evandro 1 trimestre Ensino Médio º ano classe: Prof.Evandro Nome: nº Sala de Estudos: Refração, dioptro plano, lâminas de faces paralelas e prismas. 1. (Unicamp) Uma lente de Fresnel
Laboratório de Estrutura da Matéria II
Roteiro: Prof. Dr. Jair Freitas UFES - Vitória Laboratório de Estrutura da Matéria II Difração de raios X PRINCÍPIO E OBJETIVOS Feixes de raios X são analisados através de difração por monocristais, para
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO UNIVERSITÁRIO NORTE DO ESPÍRITO SANTO
53 Experimento 2: Óptica Geométrica em meios homogêneos e isotrópicos 2.2.1 Objetivos Conceituar raios de luz; Verificar os princípios da óptica geométrica para meios homogêneos e isotrópicos; Verificar
EXPERIMENTO 8 DIFRAÇÃO EM FENDA ÚNICA E EM FENDAS MÚLTIPLAS
EXPERIMENTO 8 DIFRAÇÃO EM FENDA ÚNICA E EM FENDAS MÚLTIPLAS Nesta atividade de laboratório você irá observar e analisar os efeitos provocados quando luz incide em uma fenda simples ou num sistema de muitas
6 ÓTICA. Cuba de Ondas / Software SAM. 6 - Interferência NOME ESCOLA EQUIPE SÉRIE PERÍODO DATA
FÍSICA 6 ÓTICA Cuba de Ondas / Software SAM 6 - Interferência NOME ESCOLA EQUIPE SÉRIE PERÍODO DATA Objetivos Observar a interferência de ondas planas, variando a distância entre as fontes e a freqüência.
POLARIZAÇÃO DA LUZ. Figura 1 - Representação dos campos elétrico E e magnético B de uma onda eletromagnética que se propaga na direção x.
POLARIZAÇÃO DA LUZ INTRODUÇÃO Uma onda eletromagnética é formada por campos elétricos e magnéticos que variam no tempo e no espaço, perpendicularmente um ao outro, como representado na Fig. 1. A direção
DETERMINAÇÃO DA ESPESSURA DE UM CABELO ATRAVÉS DE PADRÕES DE DIFRACÇÃO
1 Trabalho nº 6 DETERMINAÇÃO DA ESPESSURA DE UM CABELO ATRAVÉS DE PADRÕES DE DIFRACÇÃO por A. J. Silvestre 2 1 Objectivo Determinar a espessura de um cabelo através do estudo do padrão de difracção gerado
Medição da Velocidade da Luz
Laboratório de Introdução à Física Experimental 2017/18 1 Medição da Velocidade da Luz em diferentes materiais homogéneos e isotrópicos 1 Introdução Em muitas das experiências descritas na literatura para
Interferência e Experiência de Young
Nome: nº 2 Professor Caio Interferência e Experiência de Young 1. (UECE 2007) Através de franjas de interferência, é possível determinar características da radiação luminosa, como, por exemplo, o comprimento
a) faça o diagrama das forças que atuam sobre o garoto no ponto B e identifique cada uma das forças.
UFJF CONCURSO VESTIBULAR PROVA DE FÍSICA Na solução da prova, use quando necessário: 3 3 Aceleração da gravidade g = m / s ; Densidade da água ρ =, g / cm = kg/m 8 Velocidade da luz no vácuo c = 3, m/s
d = t sen (θ a θ b ). b
Universidade Federal do Rio de Janeiro Instituto de Física Física IV 019/1 Lista de Exercícios do Capítulo Propriedades da Luz Professor Carlos Zarro 1) Três espelhos interceptam-se em ângulos retos. Um
TRABALHO Nº 1 DETERMINAÇÃO DO COMPRIMENTO DE ONDA DE UMA RADIAÇÃO DUPLA FENDA DE YOUNG
TRABALHO Nº 1 DETERMINAÇÃO DO COMPRIMENTO DE ONDA DE UMA RADIAÇÃO DUPLA FENDA DE YOUNG Pretende-se realizar a experiência clássica de Thomas Young e utilizar o padrão de interferência de duas fontes pontuais
Fundamentos de Óptica
UNIVERSIDADE ESTADUAL PAULISTA JÚLIO DE MESQUITA FILHO FACULDADE DE ENGENHARIA DE ILHA SOLTEIRA Departamento de Física e Química Apostila da Disciplina Fundamentos de Óptica (FIS0935) Docente: Prof.Dr.
UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL
UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL Laboratório de Física Moderna I Análise de Espectros Atômicos com o Espectrômetro com Prisma Objetivo Familiarizar-se e aprender
PUC-RIO CB-CTC G1 Gabarito - FIS FÍSICA MODERNA Turma: 33-A Nome Legível: Assinatura: Matrícula:
PUC-RIO CB-CTC G1 Gabarito - FIS1061 - FÍSICA MODERNA 20-09-2013 Turma: 33-A Nome Legível: Assinatura: Matrícula: AS RESPOSTAS PRECISAM SER JUSTIFICADAS A PARTIR DE LEIS FÍSICAS E CÁLCULOS EXPLÍCITOS Não
1678: teoria ondulatória para a luz (anterior e menos completa que o eletromagnetismo de Maxwell)
Christian Huygens (1629 1695) 1678: teoria ondulatória para a luz (anterior e menos completa que o eletromagnetismo de Maxwell) Vantagens da teoria: explicar as leis de reflexão e refração em termos de
Aula do cap. 17 Ondas
Aula do cap. 17 Ondas O que é uma onda?? Podemos definir onda como uma variação de uma grandeza física que se propaga no espaço. É um distúrbio que se propaga e pode levar sinais ou energia de um lugar
Estrutura física da matéria Difração de elétrons
O que você pode aprender sobre este assunto... - Reflexão de Bragg - Método de Debye-Scherer - Planos de rede - Estrutura do grafite - Ondas de matéria - Equação de De Broglie Princípio: Elétrons acelerados
Figura 1 - Onda electromagnética colimada
Biofísica P12: Difração e interferência 1. Objectivos Observação de padrões de difração e interferência Identificação das condições propícias ao aparecimento de fenómenos de difração e interferência Aplicação
Física VIII Ondas eletromagnéticas e Física Moderna
Física VIII Ondas eletromagnéticas e Física Moderna Aula 5: Interferência (continuação), Difração Parte I 1 Baseado no material preparado por Sandro Fonseca de Souza Helena Malbouisson Interferômetro de
1304 Difração de elétrons
1 Roteiro elaborado com base na documentação que acompanha o conjunto por: Máximo F. da Silveira Instituto de Física UFRJ Tópicos Relacionados Reflexão de Bragg, método Debye-Scherrer, planos de rede,
Cap. 35 -Interferência A luz como onda;
Cap. 35 -Interferência A luz como onda; Princípio de Huygens; Interferência; Mudança de fase: material; Mudança de fase: percurso; Experimento de Young; Coerência; Intensidade de franjas; Mudança de fase:
Física IV. Prática: Interferência e Difração. Baseado no material preparado por Sandro Fonseca Helena Malbouisson Clemencia Mora
Física IV Prática: Interferência e Difração Baseado no material preparado por Sandro Fonseca Helena Malbouisson Clemencia Mora Interferência Princípio de Huygens Todos os pontos de uma frente de onda se
ZAB Física Geral e Experimental IV
ZAB0474 - Física Geral e Experimental IV Experimentos 1 Polarização 2 Difração 3 Espectro Atômico 4 Luminescência Experimento 1 - Polarização Objetivo: Medir a intensidade da luz que atravessa um conjunto
Universidade Federal do Paraná Departamento de Física Laboratório de Física Moderna
Universidade Federal do Paraná Departamento de Física Laboratório de Física Moderna Bloco 01: AS LINHAS DE BALMER A teoria quântica prevê uma estrutura de níveis de energia quantizados para os elétrons
Introdução às Ciências Físicas Módulo 1 Aula 1
Experimento 2 A emissão da luz por diferentes fontes Objetivo: Construir um modelo para a emissão de luz por uma fonte não puntiforme. Material utilizado! caixa escura! máscaras! fonte de luz 1 com lâmpadas
Física IV - Laboratório. Interferência
Física IV - Laboratório Interferência Natureza da luz Em 1678 Christiaan Huygens propôs um modelo da luz como uma frente de pontos infinitesimais de ondas. Princípio de Huygens: Cada frente de onda é um
Aula 6 Interferência. Física 4 Ref. Halliday Volume4. Profa. Keli F. Seidel
Aula 6 Interferência Física 4 Ref. Halliday Volume4 Relembrando... Fenômenos de interferência de ondas eletromagnéticas... Interferência Experiência de Young Experiência de Young Pontos de máximo são denominados
defi departamento de física
defi departamento de física Laboratórios de Física www.defi.isep.ipp.pt Coeficiente de dilatação térmica Instituto Superior de Engenharia do Porto Departamento de Física Rua Dr. António Bernardino de Almeida,
Lista de Problemas. Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Física FIS01044 UNIDADE III Interferência
Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Física FIS01044 UNIDADE III Interferência Lista de Problemas Problemas extraídos de HALLIDAY, D., RESNICK, R., WALKER, J. Fundamentos
ESPECTROSCOPIA ÓTICA
INSTITUTO DE FÍSICA DA UFBA DEPARTAMENTO DE FÍSICA DO ESTADO SÓLIDO DISCIPLINA: ESTRUTURA DA MATÉRIA I (FIS101) ESPECTROSCOPIA ÓTICA I. OBJETIVOS DO EXPERIMENTO: 1. Familiaridade com um espectrômetro ótico
LISTA DE EXERCÍCIOS. NHT ÓPTICA Prof. Herculano Martinh
LISTA DE EXERCÍCIOS NHT3044 - ÓPTICA Prof. Herculano Martinh LISTA 1 1. No modelo corpuscular clássico para a luz, cada cor corresponde a um corpúsculo de tipo ou natureza diferente. Assim, a luz branca
Física Experimental IV Polarização - Lei de Malus. Prof. Alexandre Suaide Prof. Manfredo Tabacniks
Física Experimental IV - 2008 Polarização - Lei de Malus Prof. Alexandre Suaide Prof. Manfredo Tabacniks Polarização da luz Objetivos Estudar o fenômeno de polarização da luz Aula 1 Métodos de polarização
EXERCÍCIOS PARA A LISTA 8 CAPÍTULO 22 ÓPTICA ONDULATÓRIA
Exercícios Conceituais QUESTÃO 1. A figura ao lado mostra a imagem projetada em uma tela num experimento com fenda dupla. Para cada item a seguir, o espaçamento entre as franjas irá aumentar, diminuir
3 - Na figura a seguir, está esquematizado um aparato experimental que é utilizado. 1 - Dois raios de luz, um vermelho (v) e outro
1 - Dois raios de luz, um vermelho (v) e outro azul (a), incidem perpendicularmente em pontos diferentes da face AB de um prisma transparente imerso no ar. No interior do prisma, o ângulo limite de incidência
Interferência de ondas: está relacionada com a diferença de fase entre as ondas. A diferença de fase entre duas ondas pode mudar!!!!
Interferência de ondas: está relacionada com a diferença de fase entre as ondas. Construtiva: em fase Destrutiva: fora de fase A diferença de fase entre duas ondas pode mudar!!!! Coerência: para que duas
Fundamentos de Óptica
UNIVERSIDADE ESTADUAL PAULISTA JÚLIO DE MESQUITA FILHO FACULDADE DE ENGENHARIA DE ILHA SOLTEIRA Departamento de Física e Química Apostila da Disciplina Fundamentos de Óptica (FIS0935) Docente: Prof.Dr.
25 Problemas de Óptica
25 Problemas de Óptica Escola Olímpica - Gabriel Lefundes 25 de julho de 2015 Problema 1. O ângulo de deflexão mínimo um certo prisma de vidro é igual ao seu ângulo de refração. Encontre-os. Dado: n vidro
Física IV. Prática: Espectroscopia e Determinação da constante de Rydberg
Física IV Prática: Espectroscopia e Determinação da constante de Rydberg Baseado no material preparado por Sandro Fonseca Helena Malbouisson Clemencia Mora Parte I: Espectroscopia Linhas de emissão e estrutura
Lista de Problemas rad.)
Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Física FIS01044 UNIDADE III Difração Lista de Problemas Problemas extraídos de HALLIDAY, D., RESNICK, R., WALKER, J. Fundamentos
TRABALHO PRÁTICO 2 GASES: DETERMINAÇÃO DA RELAÇÃO DO VOLUME COM A PRESSÃO DE UMA AMOSTRA DE AR EM TEMPERATURA CONSTANTE VERIFICAÇÃO DA LEI DE BOYLE
TRABALHO PRÁTICO 2 GASES: DETERMINAÇÃO DA RELAÇÃO DO VOLUME COM A PRESSÃO DE UMA AMOSTRA DE AR EM TEMPERATURA CONSTANTE VERIFICAÇÃO DA LEI DE BOYLE 1. Introdução A Lei de Boyle, verificada experimentalmente,
Física IV P1-1 de setembro de 2016
Questão 1 Física IV - 4323204 P1-1 de setembro de 2016 (I) Considere um conjunto de duas fendas de largura l, espaçadas por uma distância de 5l. Sobre estas duas fendas incide uma onda plana monocromática,
Difracção de electrões
Difracção de electrões Objectivos: i) Verificar que electrões com energias da ordem de -0 kev são difractados por um filme de grafite, exibindo o seu carácter ondulatório; ii) verificar a relação de de
Física IV. Prática IV e V Clemencia Mora Herrera. baseada nos slides do Prof. Sandro Fonseca
Física IV Prática IV e V Clemencia Mora Herrera baseada nos slides do Prof. Sandro Fonseca 1 Reflexão e Refração Reflexão e Refração 1 = 0 1 1 = c v 1 2 = c v 2 Reflexão: consiste na mudança de direção
Se um feixe de luz laser incidir em uma direção que passa pela borda da caixa, fazendo um ângulo θ com a vertical, ele só poderá iluminar a moeda se
1. (Udesc 2011) Considere uma lâmina de vidro de faces paralelas imersa no ar. Um raio luminoso propaga-se no ar e incide em uma das faces da lâmina, segundo um ângulo θ em relação à direção normal ao
Olimpíada Brasileira de Física a Fase Gabarito Comentado para a prova de 3º ano
Olimpíada Brasileira de Física 2003-2 a Fase Gabarito Comentado para a prova de 3º ano Observações: 1 A prova tem valor total de 44 pontos. Cada questão tem valor total de 6 pontos. A questão 7 tem valor
3B SCIENTIFIC FÍSICA. Kit de aparelhos para óptica laser U Instruções para o uso 10/08 Alf
3B SCIENTIFIC FÍSICA Kit de aparelhos para óptica laser U17303 Instruções para o uso 10/08 Alf 1. Indicações de segurança O laser emite radiação visível com uma longitude de onda de 630-680 nm com um desempenho
ONDAS ELETROMAGNÉTICAS:3 CAPÍTULO 33 HALLIDAY, RESNICK. 8ª EDIÇÃO. Revisão: Campos se criam mutuamente. Prof. André L. C.
ONDAS ELETROMAGNÉTICAS:3 Prof. André L. C. Conceição DAFIS CAPÍTULO 33 HALLIDAY, RESNICK. 8ª EDIÇÃO Ondas eletromagnéticas Revisão: Campos se criam mutuamente Lei de indução de Faraday: Lei de indução
Resolução dos exercícios propostos do livro texto referente a primeira etapa do curso Rodrigo César Pacheco
dos exercícios propostos do livro texto referente a primeira etapa do curso Rodrigo César Pacheco Exercícios do capítulo 1 (páginas 24 e 25) Questão 1.1 Uma fonte luminosa emite uma potência igual a 3mW.
Tarefa 03 Professor Bernadelli
Tarefa 03 Professor Bernadelli 01. (ITA SP) Um raio de luz de uma lanterna acesa em A ilumina o ponto B, ao ser refletido por um espelho horizontal sobre a semi-reta DE da figura, estando todos os pontos
FÍSICA - A ª SÉRIE P2
LISTA DE EXERCÍCIOS COMPLEMENTARES FÍSICA - A - 2011 2ª SÉRIE P2 ALUNO: TURMA: CARTEIRA: MATRÍCULA: DATA: / / Assunto(s): Refração da Luz 01- (PUC) Quando um feixe de luz monocromático sofre uma mudança
Aula 5 Interferência. Física 4 Ref. Halliday Volume4. Profa. Keli F. Seidel
Aula 5 Interferência Física 4 Ref. Halliday Volume4 Sumário Definição de Difração; O Experimento de Young; Coerência; Intensidade das Franjas de Interferência; Difração Vamos falar sobre o experimento
Aula 6 Interferência. Física 4 Ref. Halliday Volume4. Profa. Keli F. Seidel
Aula 6 Interferência Física 4 Ref. Halliday Volume4 Relembrando... Fenômenos de interferência de ondas eletromagnéticas... Interferência Experiência de Young Experiência de Young Pontos de máximo são denominados
Física Experimental II. Exercícios
Física Experimental II Lista de exercícios e problema preparatório para a Prova P2 Exercícios 1) Foi realizado um experimento para determinar o tipo de movimento de um corpo. Mediu-se a posição deste corpo
EXERCÍCIO 3 - INTERFERÊNCIA
CURSO: ENGENHARIA - UFSCar - TURMA 09.904-0 Profa. Dra. Ignez Caracelli - DF 17 de novembro de 2016 EXERCÍCIO 3 - INTERFERÊNCIA Exercícios extraídos do livro Fundamentos de Física volume 4: Óptica e Física
1318 Raios X / Espectro contínuo e característico Medida da razão h/e.
1 Roteiro elaborado com base na documentação que acompanha o conjunto por: Máximo F. Silveira Instituto de Física UFRJ Tópicos Relacionados Raios-X, equação de Bragg, radiação contínua (bremstrahlung),
