Conteúdo: Aula 2. Probabilidade e Estatística. Professora: Rosa M. M. Leão

Documentos relacionados
Probabilidade e Estatística

Estatística e Modelos Probabilísticos - COE241

Estatística e Modelos Probabilísticos - COE241

Probabilidades. Wagner H. Bonat Elias T. Krainski Fernando P. Mayer

PROBABILIDADE. Aula 2 Probabilidade Básica. Fernando Arbache

INTRODUÇÃO À PROBABILIDADE

Probabilidade Parte 1. Camyla Moreno

NOÇÕES DE PROBABILIDADE

T o e r o ia a da P oba ba i b lida d de

Prof.: Joni Fusinato

NOÇÕES DE PROBABILIDADE

Pode ser a observação de um fenômeno natural:

Curso de Farmácia Estatística Vital Aula 05 Comentários Adicionais. Prof. Hemílio Fernandes Depto. de Estatística - UFPB

CE Estatística I

Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Ciências Exatas. Probabilidades. Cristian Villegas

Aula 4. NOÇÕES DE PROBABILIDADE

Probabilidade. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva

PROBABILIDADE. Luciana Santos da Silva Martino. PROFMAT - Colégio Pedro II. 01 de julho de 2017

ESTATÍSTICA EXPLORATÓRIA

Aula 07. Modelos Probabilísticos. Stela Adami Vayego - DEST/UFPR 1

Noções sobre Probabilidade

Teoria das Probabilidades

Estatística. Aula : Probabilidade. Prof. Ademar

Teoria das probabilidades

Introdução à Estatística

Teoria das Probabilidades

Probabilidades. Departamento de Matemática Escola Superior de Tecnologia de Viseu. Gestão de Empresas Contabilidade e Administração

MA12 - Unidade 17 Probabilidade

Teoria das Probabilidades

? CARA? OU? COROA? 2

Probabilidade. Professora Ana Hermínia Andrade. Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise

Probabilidades. Carla Henriques e Nuno Bastos. Eng. do Ambiente. Departamento de Matemática Escola Superior de Tecnologia de Viseu

PROBABILIDADE E ESTATÍSTICA UNIDADE V - INTRODUÇÃO À TEORIA DAS PROBABILIDADES

2. INTRODUÇÃO À PROBABILIDADE

Estatística (MAD231) Turma: IGA. Período: 2017/2

NOÇÕES DE PROBABILIDADE

Prof.Letícia Garcia Polac. 26 de setembro de 2017

PROBABILIDADES PROBABILIDADE DE UM EVENTO EM UM ESPAÇO AMOSTRAL FINITO

Exercícios de Probabilidade - Lista 1. Profa. Ana Maria Farias

1 Definição Clássica de Probabilidade

2. INTRODUÇÃO À PROBABILIDADE

Probabilidade em espaços discretos. Prof.: Joni Fusinato

Teoria das Probabilidades

Prof. Herivelto Tiago Marcondes dos Santos

TEORIA DA PROBABILIDADE

Introdução à Probabilidade

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula 1 04/14 1 / 35

PROBABILIDADE. Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti

AULA 08 Probabilidade

Essas medidas são chamadas de estimativas associadas a populações das quais os dados foram extraídos na forma de amostras.

Estatística e Modelos Probabilísticos - COE241

Estatística: Probabilidade e Distribuições

Probabilidade. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo

PROBABILIDADE E ESTATÍSTICA PROBABILIDADES

Disciplina: Prof. a Dr. a Simone Daniela Sartorio de Medeiros. DTAiSeR-Ar

2 Conceitos Básicos de Probabilidade

Sumário. 2 Índice Remissivo 12

Fernando de Pol Mayer. Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR)

Probabilidade. Dr. NIELSEN CASTELO DAMASCENO DANTAS AULA 9

INTRODUÇÃO ÀS PROBABILIDADES15

Modelos de Probabilidade e Inferência Estatística

ELEMENTOS DE PROBABILIDADE. Prof. Paulo Rafael Bösing 25/11/2015

Probabilidades. Palavras como

NOÇÕES DE PROBABILIDADE

MA12 - Unidade 18 Probabilidade Condicional

Teoria das Probabilidades

Conceitos básicos de teoria da probabilidade

UNIVERSIDADE FEDERAL DA PARAÍBA Departamento de Estatística. Probabilidade

UNIVERSIDADE FEDERAL DA PARAÍBA. Cálculo das Probabilidades e Estatística I. Segunda Lista de Exercícios

PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA

Disciplina: Prof. a Dr. a Simone Daniela Sartorio de Medeiros. DTAiSeR-Ar

Disciplina: Prof. a Dr. a Simone Daniela Sartorio. DTAiSeR-Ar

Probabilidade. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo

2. INTRODUÇÃO À PROBABILIDADE

Portal da OBMEP. Material Teórico - Módulo de FRAÇÃO COMO PORCENTAGEM E COMO PROBABILIDADE. Fração como Probabilidade. Sexto Ano do Ensino Fundamental

Introdução a Probabilidade

Matemática & Raciocínio Lógico

2. Nas Figuras 1a a 1d, assinale a área correspondente ao evento indicado na legenda. Figura 1: Exercício 2

Teoria da Probabilidade

Probabilidade - 7/7/2018. Prof. Walter Tadeu

Probabilidade. Definição de Probabilidade Principais Teoremas Probabilidades dos Espaços Amostrais Espaços Amostrais Equiprováveis.

3 NOÇÕES DE PROBABILIDADE

Estatística. Disciplina de Estatística 2011/2 Curso de Administração em Gestão Pública Profª. Ms. Valéria Espíndola Lessa

ESTATÍSTICA I LISTA DE EXERCÍCIOS 2 GABARITO

Estatística e Modelos Probabilísticos - COE241

2. Nas Figuras 1a a 1d, assinale a área correspondente ao evento indicado na legenda. Figura 1: Exercício 2

PROBABILIDADE - INTRODUÇÃO

TÓPICO. Fundamentos da Matemática II INTRODUÇÃO ÀS PROBABILIDADES14. Licenciatura em Ciências USP/ Univesp. Vanderlei S. Bagnato

Aula 16 - Erivaldo. Probabilidade

Experiências Aleatórias. Espaço de Resultados. Acontecimentos

Definição de Probabilidade

1 Probabilidade: Axiomas e Propriedades

UNIVERSIDADE FEDERAL DA PARAÍBA Departamento de Estatística. Probabilidade. Cálculo das Probabilidades e Estatística I Luiz Medeiros

12/06/14. Probabilidade. Probabilidade. A teoria das probabilidades nada mais é do que o bom senso transformado em cálculo.

MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos Propostas de resolução

Transcrição:

Aula 2 Professora: Rosa M. M. Leão Probabilidade e Estatística Conteúdo: 1.1 Por que estudar? 1.2 O que é? 1.3 População e Amostra 1.4 Um exemplo 1.5 Teoria da Probabilidade 1.6 Análise Combinatória 3

na pesquisa de mercado e de opinião pública - definição de novos produtos, lançamentos, vendas, etc; em computação - estudo do desempenho de sistemas, algoritmos para aumentar a eficiência, etc; 1.1 Por que estudar Probabilidade e Estatística? A Estatística é empregada como ferramenta fundamental em várias áreas, tais como: na área médica - metodologia adequada que possibilita decidir sobre a eficiência de um novo tratamento; na indústria - controle de qualidade de produto e processo; na definição de indicadores econômicos e sociais; meteorologia, ecologia, biologia, entre outras. 4

Grande parte das informações divulgadas pelos meios de comunicação provém de pesquisas e estudos estatísticos: "a inflação esse mês foi..." 5 "a taxa de desemprego no Brasil no ano de 2005..." "o candidato A tem 32% da intenção de votos, o candidato B tem 41% e 27% dos entrevistados não souberam ou não quiseram responder" "o número de carros vendidos no país aumentou em 20%" " a altura média da população aumentou em 5% " "o time A teve 60% do tempo de posse de bola,..."

6 Pode também ajudar a responder perguntas do nosso dia a dia, como por exemplo:

Pode também ajudar a responder perguntas do nosso dia a dia, como por exemplo: Será que se jogarmos sempre no mesmo número na Mega Sena teremos uma possibilidade maior de ganhar? 7

Pode também ajudar a responder perguntas do nosso dia a dia, como por exemplo: Será que se jogarmos sempre no mesmo número na Mega Sena teremos uma possibilidade maior de ganhar? Se em um teste com várias perguntas onde teremos que responder "falso" ou "verdadeiro", dá para saber se teremos uma probabilidade de acertar um número maior de respostas se "chutarmos" sempre a mesma resposta? ou seria melhor alternarmos as respostas? 8

Para modelar e/ou avaliar o sistema a ser estudado é preciso coletar dados e/ou fazer algumas suposições: Caso 1: Sistema já existe e deseja-se coletar dados para seu estudo/modelagem. Caso 2: Sistema não existe e deseja-se criar um modelo para prever o seu desempenho. 9

Sobre a obtenção dos dados para estudo/modelagem do sistema: 10

Sobre a obtenção dos dados para estudo/modelagem do sistema: Se o sistema não existe, como obter os dados para criar o modelo? Por quanto tempo deve-se coletar os dados? Pode-se usar os dados coletados durante um certo período (amostra), para concluir sobre o comportamento do sistema? Como definir o período no qual deve-se coletar os dados (24h, somente pela manhã, no horário de maior uso do sistema)? 11

Como fazer para que os dados obtidos para esse período de tempo possam ser generalizados para obtermos infomações sobre o sistema? ii) O que fazer com os dados colhidos? Como organizar esses dados? Como extrair informações de interesse? 12

13 Ou seja, para colher os dados, organizá-los e analisá-los necessitamos de técnicas conhecidas, que nos permitam responder a essas questões com segurança e objetividade.

Ou seja, para colher os dados, organizá-los e analisá-los necessitamos de técnicas conhecidas, que nos permitam responder a essas questões com segurança e objetividade. Estas técnicas são: Estatística Probabilidade Inferência estatística 14

Estatística: conjunto de técnicas destinadas a descrever, organizar e resumir os dados a fim de que possamos tirar conclusões de características de interesse. 15

Estatística: conjunto de técnicas destinadas a descrever, organizar e resumir os dados a fim de que possamos tirar conclusões de características de interesse. Probabilidade: teoria utilizada para estudar a "incerteza" dos fenômenos de caráter "aleatório". Pode-se dizer que é a teoria utilizada para quantificar o acaso. 16

Estatística: conjunto de técnicas destinadas a descrever, organizar e resumir os dados a fim de que possamos tirar conclusões de características de interesse. Probabilidade: teoria utilizada para estudar a "incerteza" dos fenômenos de caráter "aleatório". Pode-se dizer que é a teoria utilizada para quantificar o acaso. Inferência estatística: estudo de técnicas que possibilitam a análise e interpretação de dados com objetivo de generalizar e prever resultados. 17

1.3 População e amostra A população é o conjunto de todos os dados que que temos interesse. 18

1.3 População e amostra A população é o conjunto de todos os dados que que temos interesse. Exemplos: i) Se o objeto de estudo for uma aplicação P2P, como por exemplo o BitTorrent. O que é a população? 19

A população é o conjunto de todos os dados que que temos interesse. i) Se o objeto de estudo for uma aplicação P2P, como por exemplo o BitTorrent. O que é a população? ii) Se o objeto de estudo for a confiabilidade de um produto de uma certa fábrica durante um período de tempo, por exemplo, a durabilidade das lâmpadas produzidas durante o ano de 2004, a população será composta por todas as lâmpadas produzidas pela fábrica em questão no ano de 2004. 1.3 População e amostra Exemplos: 20

População pode ser finita ou infinita 21

Em determindas situações há impossibilidade de se analisar toda população, ou por razões econômicas, ou pela população ser infinita. População pode ser finita ou infinita 22

Sabemos que uma aplicação é usada por milhões de pessoas, por exemplo o Skype, e queremos avaliar quantos pacotes de voz, em média, são perdidos prejudicando a qualidade da comunicação: Um exemplo: 23

População - todos os pacotes de voz transmitidos pela aplicação Um exemplo: Sabemos que uma aplicação é usada por milhões de pessoas, por exemplo o Skype, e queremos avaliar quantos pacotes de voz, em média, são perdidos prejudicando a qualidade da comunicação: Amostra - parcela dos pacotes coletados Como escolher? 24

Amostra subconjunto da população a ser estudado o mais parecido possível com a população que lhe deu origem 25

Análise: feita na população total ou em uma amostra Amostra subconjunto da população a ser estudado o mais parecido possível com a população que lhe deu origem 26

Análise: feita na população total ou em uma amostra A1? A2? Amostra subconjunto da população a ser estudado o mais parecido possível com a população que lhe deu origem população amostra 27

Análise: feita na população total ou em uma amostra Amostra subconjunto da população a ser estudado o mais parecido possível com a população que lhe deu origem população amostra A1 28

Teoria de Probabilidade: Conceitos Básicos Situação ou acontecimento cujos resultados não podem ser previstos com certeza. Fenômeno Aleatório 29

Teoria de Probabilidade: Conceitos Básicos Situação ou acontecimento cujos resultados não podem ser previstos com certeza. O clima num determinado dia da semana que vem. Fenômeno Aleatório Exemplos: O resultado do lançamento de um dado. A média final que você tirará nesta disciplina. 30

O conjunto de todos os resultados possíveis de um certo fenômeno aleatório. Denominaremos este espaço pela letra grega Ω (Ômega). Espaço amostral 31

O conjunto de todos os resultados possíveis de um certo fenômeno aleatório. Denominaremos este espaço pela letra grega Ω (Ômega). Os subconjuntos do espaço amostral são chamados de eventos e são representados por letras maiúsculas (A, B, C,...). Espaço amostral 32

Exemplos: Uma moeda é lançada duas vezes e observam-se as faces obtidas Ω = {CC,CR,RC,RR}, onde aqui C é cara e R coroa. 33

Uma moeda é lançada consecutivamente até o aparecimento da primeira cara Exemplos: Uma moeda é lançada duas vezes e observam-se as faces obtidas Ω = {CC,CR,RC,RR}, onde aqui C é cara e R coroa. Ω = {C,RC,RRC,RRRC,...}, que contém um número infinito de elementos. 34

Lembrando da Teoria dos Conjuntos: O conjunto vazio é denotado por A união de dois eventos A e B representa a ocorrência de, pelo menos, um dos eventos A ou B. Denotamos a união de A com B por A intersecção do evento A com B é a ocorrência simultânea de A e B. Denotamos a intersecção de A com B por. 35

A C C B B Exemplo Sejam A, B e C três eventos do espaço amostral Ω : Ω = {A,B,C} Pelo menos um dos eventos ocorre A 36

Ambos os eventos ocorrem A B C C B Exemplo Sejam A, B e C três eventos do espaço amostral Ω : A Ω = {A,B,C} 37

Dois eventos A e B são disjuntos (ou mutuamente exclusivos) quando não têm elementos em comum, ou seja: Dois eventos A e B são complementares se sua união é o espaço amostral e sua intersecção é vazia, ou seja: 38

Exemplo: A B C A e C: eventos disjuntos A B C A c complementar de A A A c 39

Outros exemplos Pelo menos um dos eventos ocorre O evento A ocorre mas o evento B não Nenhum deles ocorre 40

Uma função P(.) é denominada probabilidade se satisfaz as condições:,com todos os disjuntos. ou seja, probabilidade é a função que atribui valores numéricos aos eventos do espaço amostral. 4.3 Probabilidade 41

como atribuir probabilidade aos elementos do espaço amostral? Questão que se coloca: 42

como atribuir probabilidade aos elementos do espaço amostral? Questão que se coloca: 1) Baseado nas características da realização de um fenômeno; 2) Usando as freqüências de ocorrência. 43

Baseado nas características da realização de um fenômeno Lançamento de um dado cúbico perfeitamente homogêneo e simétrico com os lados numerados, teremos o espaço amostral: E nesse caso a probabilidade de ocorrência de cada evento será: Exemplo: 44

Para um número suficientemente grande de lançamentos, podemos usar as freqüências de ocorrência como probabilidades. Mas... Usando as freqüências de ocorrência Exemplo: Pegamos um dado e jogamos várias vezes. 45

O que quer dizer número suficientemente grande de lançamentos? Geralmente a medida que o número de repetições aumenta, as freqüências relativas vão se estabilizando em um número que chamaremos de probabilidade. 46

Sabendo que 52% dos alunos estão na turma A e 48% na turma B, escolhemos um estudante ao acaso. Qual a probabilidade de escolhermos um estudante do sexo feminino ou alguém da turma B? Exemplo: Usemos a tabela abaixo que mostra o número de alunos de cada sexo numa escola: Sexo F M Total n f 37 0,74 13 0,26 50 1 47

Da tabela e das características das turmas A e B temos Tabela P(F) = 0,74; P(A) = 0,52; P(M) = 0,26; P(B) = 0,48. 48

"Qual a probabilidade de escolhermos um estudante do sexo feminino ou alguém da turma B?" Não podemos simplesmente somar P(F) com P(B) já que teríamos probabilidade maior que 1. Estamos somando duas vezes alguns elementos pois há mulheres em ambas as turmas Pergunta colocada: P(F) = 0,74; P(A) = 0,52; P(M) = 0,26; P(B) = 0,48. Queremos 49

Temos que é igual ao número de estudantes do sexo feminino e da turma B. Assim, para obter a probabilidade correta temos que somar as probabilidades P(F) com P(B) e, então subtrair deste valor ou seja, 50

Para o caso geral, temos que a regra da adição de probabilidades, a probabilidade da união de dois eventos A e B, é dada por observe que se os eventos A e B forem disjuntos (e somente neste caso),a probabilidade da intersecção de A com B é nula e temos que a união é igual a soma das probabilidades dos dois eventos. Esta regra pode ser estendida para soma de três ou mais termos. 51

Observe que e que 52

Observe que e que Logo, 53

Contando o número de casos favoráveis para ocorrência de um certo evento, se os eventos são equiprováveis Quando o espaço amostral é grande, temos que usar a análise combinatória P(E) = número de casos favoráveis/número total de casos Como calcular as freqüências de ocorrência: 54