FGE7 Eleticidade e Magnetismo I Lista de execícios 9 1. Uma placa condutoa uadada fina cujo lado mede 5, cm enconta-se no plano xy. Uma caga de 4, 1 8 C é colocada na placa. Enconte (a) a densidade de caga na placa, (b) o campo eléico imediatamente acima da placa e (c) o campo elético imediatamente abaixo da placa. Você pode supo ue a densidade de caga é unifome. 8 7 a) σ = / A = / l = 4x1 /.5 = 1.6x1 C / m b) e c) σ / ε = 9N / C. Um pedaço de isopo de 1, g tem uma caga total de,7 µc e flutua acima do cento de uma gande folha de plástico, disposta hoizontalmente, ue tem uma densidade supeficial de caga unifome σ. Calcule o valo da densidade de caga supeficial sobe a folha plástica. 6 esposta σ = ε mg / =.5x1 C m /. Um campo elético vetical de magnitude, 1 4 N/C existe acima da supefície da Tea em um dia em ue uma tempestade está se amando. Um cao etangula de 6, m po, m está se deslocando ao longo de uma estada ue se inclina paa baixo 1, o. Detemine o fluxo elético atavés da pate infeio do cao. 5 esposta Θ E = ES cos(1 ) =.54x1 Nm / C 4. Um anel cicula de 4, cm de diâmeto é giado em um campo elético unifome até ue a posição de máximo fluxo elético é encontada. O fluxo medido nesta posição é 5, 1 5 Nm /C. Qual é a magnitude do campo elético? 6 esposta x1 N / C 5. Uma caga puntifome de 1.8 µc está no cento de uma supefície gaussiana cúbica com 55 cm de aesta. Qual é o fluxo elético líuido atavés da supefície? esposta Θ = E / ε = 5 x1 Nm / C 6. Na figua, uma caga puntifome + está a uma distância d/ dietamente acima do cento de um uadado de lado d. Qual é o fluxo elético atavés do uadado? (Sugestão: pense no uadado como uma das faces de um cubo de aesta d.) 1
Θ E = / 6ε Exe. 6 Exe. 7 7. Um caga pontual Q está situada imediatamente acima do cento da face plana de um hemisfeio de aio, como mostado na figua acima. Qual é o fluxo elético (a) atavés da supefície cuva e (b) atavés da face plana? a) Θ = Q / sup cuva ε b) Θsup plana = Q / ε 8. Considee uma casca esféica fina com aio e caga total de Q distibuída unifomemente pela sua supefície. a) Enconte o campo elético a uma distância < do cento da esfea. b) Enconte o campo elético a uma distância do cento da esfea. a) b) 9. Considee uma esfea com aio e caga total de Q distibuída unifomemente pelo seu volume. a) Enconte o campo elético a uma distância < do cento da esfea. b) Enconte o campo elético a uma distância do cento da esfea. a) b) 1. Considee uma esfea com aio e densidade volumética de caga ρ = ρ, sendo ρ uma constante. a) Calcule a caga total contida na esfea. b) Enconte o campo elético a uma distância < do cento da esfea. c) Enconte o campo elético a uma distância do cento da esfea. a) Q = πρ b) ρ c) 4ε
11. Considee uma distibuição de caga em um longo cilindo de aio, com densidade volumética de caga ρ unifome. a) Enconte o campo elético a uma distância < do eixo. b) Enconte o campo elético a uma distância do eixo. ρ a) b) ε ρ ε 1. Considee uma distibuição de caga em um longo cilindo de aio, com densidade volumética de caga ρ = ρ, sendo ρ uma constante. a) Calcule a caga po unidade de compimento contida no cilindo. b) Enconte o campo elético a uma distância < do eixo. c) Enconte o campo elético a uma distância do eixo. a) Q L π = ρ b) ρ c) ε ρ ε 1. A figua mosta uma seção atavés de dois longos e finos cilíndos concênticos de aios a e b (a < b). Os cilindos possuem densidades de cagas po unidade de compimento iguais e de sinais contáios (λ e -λ). Usando a lei de Gauss, calcule o campo elético E () no ponto medido a pati do cento dos cilindos, paa a) a, b) a < b e c) > b. 1 λ a) b) ˆ πε c) Exe. 1 Exe. 14 14. A figua acima mosta uma esfea, de aio a e caga + unifomemente distibuída atavés de seu volume, concêntica com uma casca esféica condutoa de aio inteno b e aio exteno c. A casca tem uma caga líuida de. Detemine expessões paa o campo elético em função
do aio, a) dento da esfea ( < a); b) ente a esfea e a casca (a < b); c) no inteio da casca (b < < c); e d) foa da casca ( > c). e) Calcule as densidades de cagas supeficiais nas supefícies intena e extena da casca. 1 a) a b) 1 c) e d) e) σ int = ; σ ext = 4πb 15. Uma esfea isolante sólida de aio a tem densidade volumética de caga unifome e caga total Q. Uma segunda esfea, condutoa, oca e não caegada, cujos aios inteno e exteno são, espectivamente, b e c, é concêntica à pimeia como mosta a figua abaixo. (a) Enconte a magnitude do campo elético nas egiões < a, a < < b, b < < c e > c. (b) Detemine as cagas po unidade de áea induzidas nas supefícies intena e extena da esfea condutoa. a) a (<a); (a b); (b<<c); (>c) b) σ int = ; σ ext = + 4πb 4πc Exe. 15 Exe. 16 16. Uma esfea de aio a é feita de mateial não conduto e tem caga po unidade de volume ρ unifome. Uma cavidade esféica de aio a é escavada na esfea, confome mosta a figua acima. Moste ue o campo elético dento da cavidade é unifome e dado po aρ ε Dica de sobevivência: use o pincípio da supeposição. O campo dento da cavidade é a soma do campo de duas esfeas, a esfea de aio a com densidade de caga ρ e a esfea de aio a (cavidade) com densidade de caga ρ. 4 yˆ.
17. A figua abaixo mosta uma caga puntifome = 1. 1 7 C, no cento de uma cavidade esféica de aio =. cm existente dento de uma peça de metal. a) Detemine o campo elético no ponto a situado a uma distância de / do cento da cavidade. b) Calcule a densidade supeficial de caga σ na supefície da cavidade. c) Calcule a intensidade do campo elético no ponto b mostado na figua. Exe. 17 1 4 6 6 a) = 4x1 N / C b) σ = = 8.84x1 C / m c) 4 πε 4π 5