FUNDAMENTOS DA MATEMÁTICA A

Documentos relacionados
Plano Cartesiano. Relação Binária

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA I EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016

BANCO DE EXERCÍCIOS - 24 HORAS

Função do 2 o Grau. 11.Sinal da função quadrática 12.Inequação do 2 o grau

Aulas particulares. Conteúdo

1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0.

EXERCÍCIOS 2006 APOSTILA MATEMÁTICA

GEOMETRIA ANALÍTICA. 2) Obtenha o ponto P do eixo das ordenadas que dista 10 unidades do ponto Q (6, -5).

LTDA APES PROF. RANILDO LOPES SITE:

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI

3. FUNÇÃO. NOÇÕES FUNDAMENTAIS

ALUNO(A): Prof.: André Luiz Acesse: 02/05/2012

CURSO ALCANCE UFPR Matemática 13/08/2016 Página 1 de 6

6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES

Capítulo 3. Fig Fig. 3.2

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática

FUNÇÕES I- PRÉ-REQUISITOS PARA O ESTUDO DAS FUNÇÕES

Capítulo 2. Retas no plano. 1. Retas verticais e não-verticais. Definição 1

(Nova) Matemática, Licenciatura / Engenharia de Produção

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... }

Matemática I Tecnólogo em Construção de Edifícios e Tecnólogo em Refrigeração e Climatização. y = ax² + bx + c

Plano de Recuperação 1º Semestre EF2-2011

1 Geometria Analítica Plana

Preliminares de Cálculo

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 2º Grau. Alex Oliveira Engenharia Civil

ADA 1º BIMESTRE CICLO I MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO 2018

FUNÇÃO QUADRÁTICA PROFESSOR AUGUSTO CORRÊA ENEM 2016

A noção intuitiva de função

Funções Reais a uma Variável Real

TÓPICOS DE MATEMÁTICA II. O Curso está dividido em três unidades, temos que concluir todas.

Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013

MATEMÁTICA Função do 1º grau e 2º grau conceitos iniciais. Prof Jorge Jr.

GEOMETRIA ANALÍTICA 2017

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES

Esboço de Plano de Aula. Conteúdo específico: O uso do software WXMaxima nas equações do 1º Grau.

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 2º grau. Lucas Araújo Engenharia de Produção Rafael Carvalho Engenharia Civil

Capítulo 2. f : A B. 3. A regra em (3) não define uma função de A em B porque 4 A está associado a mais de um. elemento de B.

A noção intuitiva de função

Geometria Analítica - Aula

Observe na imagem a seguir, a trajetória realizada por uma bola no momento em que um jogador a chutou em direção ao gol.

eixo das ordenadas y eixo das abscissas Origem 1º quadrante 2º quadrante O (0, 0) x 4º quadrante 3º quadrante

Capítulo 1. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.

Objetivos. Expressar o vértice da parábola em termos do discriminante e dos

Matemática. FUNÇÃO de 1 GRAU. Professor Dudan

O ESTUDO DAS FUNÇÕES INTRODUÇÃO

Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA

A idéia de função. O conceito de função é um dos mais importantes em toda a Matemática.

Capítulo 2. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.

Fundamentos da Matemática A

1. Considere os conjuntos A = {0; 2} e B = {1; 2; 3}. A respeito de produto cartesiano entre dois conjuntos, assinale a alternativa correta:

Matemática. FUNÇÃO de 1 GRAU. Professor Dudan

RESUMO - GRÁFICOS. O coeficiente de x, a, é chamado coeficiente angular da reta e está ligado à inclinação da reta

Resposta: f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo 5, 5 5, 5 3, 3. f(g(x) = x 5.

Em Matemática existem situações em que há necessidade de distinguir dois pares pela ordem dos elementos. Por exemplo, no sistema de equações

Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU

BANCO DE QUESTÕES TURMA PM-PE FUNÇÕES

Aula Elipse. Definição 1. Nosso objetivo agora é estudar a equação geral do segundo grau em duas variáveis:

Funções. Aula 9. Ricardo Ferreira Paraizo. e-tec Brasil Matemática Instrumental. Vince Petaccio. Fonte:

Gênesis S. Araújo Pré-Cálculo

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU

CÁLCULO I. Aula n o 02: Funções. Denir função e conhecer os seus elementos; Listar as principais funções e seus grácos.

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI

Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica?

PROFESSOR: ALEXSANDRO DE SOUSA

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO QUADRÁTICA PARTE 2

TEORIA CONSTRUINDO E ANALISANDO GRÁFICOS 812EE 1 INTRODUÇÃO

Funções quadráticas. Definição. Função quadrática é toda a função de R em R que pode ser. (ou seja, é toda a função r.v.r. polinomial de grau 2).

Estudante: Circunferência: Equação reduzida da circunferência: Circunferência: Consideremos uma circunferência de centro C (a, b) e raio r.

MATEMÁTICA. Conceito de Funções. Professor : Dêner Rocha

01- Assunto: Função Polinomial do 1º grau. Determine o domínio da função f(x) =

As funções quadráticas são usadas em diversas aplicações: - Equacionamento do movimento de um ponto com aceleração constante.

CURSO: Licenciatura em Matemática TURMA: LM 2011/01_1ºSEM PROFESSOR: NÍCOLAS MORO MÜLLER PLANO DE ENSINO

Caderno 2. Concurso Público Conteúdo. - Coletânea de Exercícios Gerais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 RELAÇÕES e FUNÇÕES

2. Escreva em cada caso o intervalo real representado nas retas:

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Funções. Aula 01. Projeto GAMA

MATEMÁTICA I FUNÇÕES. Profa. Dra. Amanda L. P. M. Perticarrari

UNIDADE IV FUNÇÃO AFIM OU POLINOMIAL do 1 o. GRAU

Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO

LISTA DE EXERCÍCIOS DE RECUPERAÇÃO GEOMETRIA 2ºANO

PLANTÕES DE JULHO MATEMÁTICA

Pesquisa Operacional. Prof. José Luiz

CÁLCULO FUNÇÕES DE UMA E VÁRIAS VARIÁVEIS Pedro A. Morettin, Samuel Hazzan, Wilton de O. Bussab.

Para mais exemplos veja o vídeo:

PLANO DE AULA IDENTIFICAÇÃO

Acadêmico(a) Turma: Capítulo 6: Funções

Geometria Analítica. Geometria Analítica 28/08/2012

3º. EM Prof a. Valéria Rojas Assunto: Determinante, Área do Triângulo, Equação da reta, Eq. Reduzida da Reta

Prof: Danilo Dacar

Hewlett-Packard FUNÇÃO QUADRÁTICA. Aulas 01 a 07 + EXTRA. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Fundação CECIERJ/ Consórcio CEDERJ. Matemática 3º Ano - 3º Bimestre / Plano de Trabalho. Geometria Analítica. Tarefa 2

LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU

Capítulo 3. Função afim. ANOTAÇÕES EM AULA Capítulo 3 Função afim 1.5 CONEXÕES COM A MATEMÁTICA

EXERCICIOS DE APROFUNDAMENTO MATEMATICA FUNÇÕES NUMEROS COMPLEXOS

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega

Questão 2: Classifique como conjunto vazio ou conjunto unitário considerando o universo dos números naturais: a) b) c) d) e) f) g) }

Notas de Aula Disciplina Matemática Tópico 03 Licenciatura em Matemática Osasco -2010

INTRODUÇÃO AO ESTUDO DE FUNÇÃO. Prof. Ade1000son

0 < c < a ; d(f 1, F 2 ) = 2c

Transcrição:

VICE-REITORIA DE ENSINO DE GRADUAÇÃO E CORPO DISCENTE COORDENAÇÃO DE EDUCAÇÃO A DISTÂNCIA FUNDAMENTOS DA MATEMÁTICA A Rio de Janeiro / 007 TODOS OS DIREITOS RESERVADOS À UNIVERSIDADE CASTELO BRANCO

SUMÁRIO Qudro-síntese do conteúdo programático... 04 Contextualização da disciplina... 05 UNIDADE I RELAÇÕES BINÁRIAS 1.1 - Sistema cartesiano ortogonal... 06 1. - Produto cartesiano... 08 1.3 - Relação binária... 08 UNIDADE II FUNÇÕES.1 - Introdução... 11. - Definição... 11.3 - Gráfico de funções... 15.4 - Funções crescentes e decrescentes... 16.5 - Função constante... 17.6 - Função afim... 17.7 - Função quadrática... 19.8 - Funções modulares... 4 Glossário... 5 Gabarito... 6 Referências Bibliográficas... 31

Quadro-síntese do conteúdo programático UNIDADES DE PROGRAMA OBJETIVOS 1 - Relações Binárias Possibilitar ao aluno a recordação dos conceitos de par ordenado, relação e função. - Funções Estudar as formas de reconhecer quando uma relação é uma função e aprender a traçar gráficos corretamente. 3 - Trigonometria Estudar as funções trigonométricas e as relações entre elas.

Contextualização da Disciplina Ao elaborarmos este instrucional, procuramos apresentar a teoria de modo resumido, enfatizando os exercícios e suas resoluções, evitando o excessivo formalismo. Acreditamos ter conseguido um bom desenvolvimento seqüencial das unidades, mantendo um rigor coerente com o nível para o qual o material é proposto. O objetivo é fazer com que o aluno domine as idéias básicas da disciplina de Fundamentos da Matemática A extremamente necessárias para o bom desempenho das disciplinas do curso.

UNIDADE I 5 RELAÇÕES BINÁRIAS 1.1 Sistema Cartesiano Ortogonal Considerando dois elementos a e b podemos, admitir a existência de um terceiro elemento (a,b) que denominamos par ordenado. Dois pares ordenados (a,b) e (c,d) são iguais se, os primeiros elementos de cada par forem iguais, isto é, a = c, e se os segundos elementos de cada par também forem iguais, ou seja, b = d. Logo: (a,b) = (c,d) a = c e b = d. Com base no que foi apresentado acima, devemos observar que (,3) (3,), embora os conjuntos {,3} e {3,} sejam iguais. Todo o par ordenado pode ser representado por um ponto no plano cartesiano. O plano cartesiano é um plano α no qual consideramos dois eixos x e y perpendiculares entre si. Seja o ponto O, o ponto de intersecção desses eixos, denominado origem do plano cartesiano. Temos: Plano α Plano cartesiano; Eixo x eixo das abscissas (Ox); Eixo y eixo das ordenadas (Oy); O origem; a abscissa do ponto P; b ordenada do ponto P; (a, b) coordenadas do ponto P; À direita da origem temos os números positivos e, à esquerda, números negativos. Acima da origem temos números positivos e, abaixo, números negativos.

6 Exemplos 1) Representar, no plano cartesiano, os seguintes pontos: A(, 5), B( 5,1), C( 3, 3) e D(, 3). ) Representar, no plano cartesiano, os seguintes pontos: G(3, 0), H( 3, 0), I (0, 3) e J(0, 3). Cada uma das quatro regiões determinadas pelos eixos x e y são chamadas quadrantes.

1. Produto Cartesiano 7 Sejam A e B dois conjuntos não vazios. Denominamos produto cartesiano de A por B o conjunto A x B, formado por pares ordenados onde o primeiro elemento de cada par pertence a A e o segundo elemento de cada par pertence a B. Simbolicamente, temos: A x B = {(x,y) x A e y B} Exemplos: 1) Se A = {,4,5,7} e B = {,3}. Determine A x B e B x A: a) A x B = { (,), (,3), (4,), (4,3), (5,), (5,3), (7,), (7,3) } b) B x A = { (,), (,4), (,5), (,7), (3,), (3,4), (3,5), (3,7)} ) Se A = {,4,5}. Determine A = A x A A = {(,), (,4), (,5), (4,), (4,4), (4,5), (5,), (5,4), (5,5)} Observe que: - Se A e B são conjuntos diferentes, então A x B B x A; - Se A tem p elementos e B tem q elementos A x B tem p.q elementos; 1.3 Relação Binária Dados dois conjuntos A e B não-vazios, chama-se Relação Binária de A em B, a qualquer subconjunto R de A x B. Exemplos: 1) Dados os conjuntos A = {,4,5,7} e B = {,3}, verifique se os conjuntos abaixo representam relações de A em B: a) R = { (,), (4,), (5,3), (7,)} b) S = { (,), (4,), (7,4)} c) T = {(4,3)} Soluções: a) R é relação de A em B, pois R A x B, todos os elementos de R são elementos de A x B; b) S não é relação de A em B, pois S A x B, o elemento (7,4) está em S e não está em A x B; c) T é relação de A em B, pois T A x B.

8 ) Se A = {0, 1,, 3} e B = {1,, 4}, determine os elementos da relação R = {(x,y) AxB x y}, o domínio e a imagem, utilizando a diagrama de Venn que aparece a seguir. Solução: R = { (1,1), (,1), (,), (3,1), (3,) } D(R) = {1,,3} e Im(R) = {1,} Obs.: O domínio da relação R é formado por todos os valores de x de cada par pertencente a R e a imagem da relação R é formado por todos os valores de y de cada par pertencente a R, ou seja: Domínio da Relação: D(R) = {x / (x,y) R} Imagem da Relação: Im(R) = {y / (x,y) R} Exercícios de Fixação 1) Localizar no plano cartesiano os seguintes pontos: A (3, ) B ( 1, 4) C ( 3, 1) D (4, 5) E (0, 3) F ( 1, 0) G (4, 0) H (0, 4) I (0, 0) ) Sejam os conjuntos A = {, 1, 0, 1} e B = {0, }. Determine: a) A x B b) B x A c) d) A B

3) Se A x B = {(0, ), (0, 3), (1, ), (1, 3), (5, ), (5, 3)}. Determine os conjuntos A e B: 4) Se A B e B tem 5 elementos, qual o número máximo de elementos de A x B? 9 5) Dados os conjuntos A =, 1,0,1, e B = 0,1,,3,4, : a) A relação R = ( x, y ) A x B / y = x b) A relação { } { } determine { } {( x, y ) A x B / y = + 1} R = x 6) Determine o domínio e a imagem de cada relação do 5º exercício: 7) Sejam os conjuntos = { 0,1, } e B = { 0,,3}. A Determine a relação R de A em B definida por x < y: 8) O produto cartesiano foi definido com os conjuntos A e B não vazios, se A ou B fossem vazios, como ficaria A x B? 9) Antes de passar para a próxima unidade, veja se você consegue definir o que é uma função e verificar quais relações dos exercícios anteriores (5 e 7), são funções, justificando a sua resposta: Exercícios de Auto-Avaliação 1) Sabendo-se que A x B = {(0,), (0,4), (0,6), (1,), (1,4), (1,6)}, determine os conjuntos A e B: ) Se A = {0,} e B = (0,,3}, determine (A B) x B: 3) Dados A = {0,1,}, B = {1,,3} e C = {4,5,6}, determine: a) (A B) x C b) (B C) x A c) (C A) x (B A) 4) Um conjunto A tem 5 elementos e um outro conjunto B, tem 4 elementos. Determine o número de elementos de: a) A x B c) A² b) B x A d) B² 5) Um conjunto A possui (x 6) elementos; um conjunto B possui (3x + 1) elementos. Calcule x, sabendo-se que A x B tem 14 elementos: 6) Um homem tem cinco camisas e três calças. De quantas maneiras diferentes ele poderá vestir-se, usando, cada vez, uma calça com uma camisa? 7) Dados os conjuntos A = {, 1, 0, 1} e B = { 1, 0, 1,, 3, 4}, determine as relações abaixo, o seu domínio e a sua imagem: a) R = {(x,y) A x B y = x + 1} b) S = {(x,y) A x B x y} c) T = {(x,y) A x B x² + y² = 3} 8) Dados A = {x N x 10} e a relação R = {(x,y) A² x + y = 10}, determine o domínio e a imagem da relação: 9) Calcule os valores de x e y de modo que: (5x + y, x + y) = (1, 5): 10) Localize, no plano cartesiano, os pontos A(0, 0), B(0, 6), C(6, 6), D(9, 10) e E(9, 0). Calcule a área e o perímetro da figura formada pela união dos pontos A, B, C, D, E e A:

10 UNIDADE II FUNÇÕES.1 Introdução A noção de função é fundamental em Matemática. As funções estão no nosso dia-a-dia mesmo que nós não nos apercebamos disso. Vejamos alguns exemplos: a) A quantidade de combustível consumida por um automóvel é função da distância que ele percorre; b) O valor da conta de luz depende, de uma forma determinada, da quantidade de energia que usamos naquele período, ou seja, a quantia paga é função da quantidade de energia usada. c) O preço de uma corrida de táxi é função da distância percorrida; d) A nota de um aluno na prova depende da quantidade de acertos que ele teve. Na própria Matemática, temos exemplos: a) A área de um círculo depende do tamanho do raio r, que é dada por A = ð.r. Podemos dizer que a área é função do raio, ou seja, A = f(r). b) A área do quadrado depende do tamanho do lado l do quadrado, que é dado por A = l. Logo, a área do quadrado é função do lado, ou seja, A = f(l). Muitas vezes, obtém-se uma função através de uma equação. Por exemplo, a relação entre a medida C da temperatura em graus Celsius e a medida F da mesma temperatura, em graus Fahrenheit, é definida como sendo: F 3 9 = C 5 Podemos escrever F = f (C ) ou C = f (F), vejamos: Se Se ou 5.( F 3) C = C = 9 f ( F). Definição Dados dois conjuntos A e B, não vazios, uma função f: A B é uma correspondência que, a cada elemento x A, associa um único elemento y B. O conjunto A (conjunto de partida) é chamado domínio da função f e o conjunto B (conjunto de chegada) é chamado contradomínio da função f. Como indicamos a função por f, temos y = f(x).

Como x é livre para variar no domínio da função, dizemos que x é variável independente, e que y, por estar dependendo de x, é a variável dependente. O conjunto dos elementos de B que estão associados por f a algum elemento de A, é chamado conjunto imagem de f. 11 Em símbolos, podemos escrever: f: A B x A, y B (x,y) f ou f: A B x A, y B y = f(x). Temos: D(f) = A, CD(f) = B e Im(f) = Exemplos: 1) Sejam os conjuntos A = {-1,0,1,} e B = {1,,3,4}. Verifique se a relação R de A em B definida por y = x + 1 é uma função, justificando a sua resposta: Solução: { y B (x, y) f} Não é função, porque nem todo elemento de A tem correspondente em B, observe que a imagem de seria o 5, mas o elemento 5 não pertence ao conjunto B. ) Verifique se a relação de R = A em R = B, cujo gráfico que aparece abaixo é uma função: + Solução: Não é função pois existem elementos de A com dois correspondentes em B.

1 3) Sejam os conjuntos A = {-3,-1,1,3} e B = {0,1,,3,4,5,6,7,8,9}. Seja a função f: A B, definida por y = x. Determine o conjunto imagem da função: Solução: Se y = x, temos: y = (-3) = 9 y = (-1) = 1 y = 1 = 1 y = 3 = 9 Logo, o conjunto imagem é Im = {1,9}. 4) Seja a função f : R R definida por f ( x) = 3x +. Determine: a) f ( ) + f (0); b) O elemento x do domínio tal que f ( x) = 10 : Soluções: a) Temos: f ( ) = 3.( ) + = 8 e f (0) = 3.0 + =. Logo: f ( ) + f (0) = 8 + = 10. b) Queremos determinar o elemento do domínio cuja imagem é 10. Então: 3 x + = 10 3x = 1 x = 4. 5) O aluguel de um carro, por um período de 30 dias, em uma locadora, é 750 u.m. (unidade monetária), acrescido de uma taxa de u.m. por quilômetro rodado. Sabendo-se que uma pessoa ficou um mês com o carro alugado. Determine: a) Uma lei de associação para essa função; b) O valor a ser pago no final do período, se ele rodar 465 km; c) O número de quilômetros que ele rodou, sabendo-se que pagou 1350 u.m. Soluções: a) y = 750 +. x, onde x representa o número de quilômetros rodados. b) y = 750 +. 465 y = 1680 u.m. c) 750 +. x = 1350. x = 600 x = 300 km Exercícios de Fixação 1) Sejam os conjuntos A = {0,1,,3,4} e B = {-1,0,1,,3,4,5,6,7,8}. Seja a função f: A B definida por y = x 1. Determine: a) o diagrama de Venn de f; b) o conjunto imagem de f. ) Seja a função f: R R (sendo R o Conjunto dos Números Reais) definida por f(x) = x 3x + 4. Determine: a) f b) c) f f ( ) ( 1 3) 3

3 3) Seja a função f: R R (sendo R o Conjunto dos Números Reais) definida por f ( x) = x. Qual é o 5 13 elemento do domínio que tem 3 como imagem? 4 4) Seja a função f: R R (sendo R o Conjunto dos Números Reais) assim definida: x 1, f ( x) = x + 1, se se Calcule: f (0); f (-1) e f (1) 5) Para estudar a capacidade de aprendizagem dos animais, um grupo de alunos de Psicologia fez uma experiência na qual um rato branco era colocado, repetidamente, em um labirinto. Os estudantes notaram que o tempo (em minutos) requerido para o rato percorrer o labirinto, na n-ésima tentativa, era de 1 aproximadamente t (n) = 3 +. n Pede-se: a) O domínio da função; b) O tempo que o rato gastou para percorrer o labirinto na 3ª tentativa; c) Em que tentativa o rato gastou 4 minutos para percorrer o labirinto. 6) Uma fábrica produz p(t) = (t² + t) pares de sapatos após t horas do início de suas atividades diárias. Se a fábrica começa a funcionar às 8 horas da manhã, responda: a) Quantos pares de sapatos são produzidos até às 10h da manhã? b) Quantos pares de sapatos são produzidos até às 11h da manhã? c) Quantos pares de sapatos são produzidos entre 10 e 11h? x < 1 x 1 7) O perímetro de um retângulo de largura x e comprimento y é 36 cm. Encontre a função que dá a área do retângulo em função da largura x: 8) Freqüentemente se diz: considere uma função f dada por f(x), o que significa uma expressão contendo x, sem menção ao domínio da função. Neste caso, supõe-se que tal domínio é formado por todos os valores de x para os quais a expressão pode ser calculada. Em esta observação, determine o domínio das seguintes funções: a) 1 f ( x) = 1 x x + b) f ( x) = x 5 c) f ( x) = x 4x + 3 d) 3 f ( x) = 3x 6 e) f ( x) = 3x + 1 f) y = 3x +

14.3 Gráfico de Funções Podemos descrever uma função por meio de um gráfico, no plano cartesiano. Gráfico é um conjunto de pontos cujas abscissas são elementos do seu domínio e cujas ordenadas são os correspondentes elementos de sua imagem. Exemplos: a) f ( x) = x, D = R b) Devemos recordar que para uma relação ser uma função, todo elemento pertencente ao seu domínio deve corresponder a um único elemento no seu contradomínio. Logo, observe que se você traçar uma reta perpendicular ao eixo das abscissas ela deverá interceptar o gráfico no máximo em um ponto. Observe que a relação ao lado definida de + R em R definida por x = y² não é função, pois temos elementos do domínio com dois correspondentes no contradomínio.

.4 Funções Crescentes e Decrescentes 15 Uma função f(x) é crescente quando, à medida que x aumenta, f(x) também aumenta. Podemos escrever: x1 > x f ( x1) > f ( x ), com x1, x D( f ). Uma função f(x) é decrescente quando, à medida que x aumenta, f(x) diminui. Podemos escrever: x1 > x f ( x1) < f ( x), com x1, x D( f ). Exemplo: Considere a função x, se x 1 f ( x) = x, se 1 < x < representada no gráfico a seguir: x + 8, se x Determine os valores de x para os quais: a) f ( x) é crescente; b) f ( x) é decrescente; c) f ( x) = 0 (raízes); d) f ( x) > 0; e) f ( x) < 0. Soluções: a) 0 < x < ; b) x < 0 ou x > ; c) 0 e 4; d) x < 4; e) x > 4.

16.5 Função Constante Uma função f : R R recebe o nome de função constante quando para todo x R associa sempre o mesmo elemento. Exemplo: Construir o gráfico da função ;.6 Função Afim Uma função f : R R recebe o nome de função afim quando para todo x R associa sempre o elemento, com a, b R e a 0. O gráfico da função afim é uma reta (provado em Geometria Analítica). Obs. Quando b = 0 a função também é chamada função linear. Portanto, podemos afirmar que a função linear é um caso particular da função afim. I O coeficiente a é chamado coeficiente angular ou declividade da reta representada no plano cartesiano; é a tangente do ângulo que a reta forma com o eixo das abscissas. O coeficiente linear b é chamado coeficiente linear; é o ponto em que a reta corta o eixo das ordenadas. O conjunto Imagem de uma função afim é o conjunto dos números reais; observe que para todo y real, existe um x também real, tal que: f(x) = y. Exemplos: Construir o gráfico das seguintes funções: a) f(x) = x a) f(x) = x

c) f(x) = x + 1 d) f(x) = x + 1 17 Observe que nos exemplos (a) e (b) os coeficientes lineares são iguais a zero, logo, a reta corta o eixo y no ponto (0,0), origem do sistema cartesiano. Já nos exemplos (c) e (d) os coeficientes lineares são iguais a 1, portanto os gráficos cortam o eixo das ordenadas no ponto (0,1). Observe, também, que nos exemplos (a) e (c) os coeficientes angulares são positivos (o ângulo varia entre 0 e 90 ), logo elas são crescentes. Nos exemplos (b) e (d) os coeficientes angulares são negativos (o ângulo varia entre 90 e 180 ), logo elas são decrescentes. Exercícios de Fixação y = x + 3 4 y = x + 3 3 1) Construir o gráfico das funções, determinando o conjunto imagem: a) f ( x) = 4 b) f ( x) = 3x + c) f ( x) = 4x d) f ( x) = x + 3 e) f ( x) = x ) A função linear em que o valor do coeficiente angular é igual a 1, recebe o nome de função identidade. Qual o ângulo formado pela função identidade com o eixo das abscissas? 3) Resolver analiticamente e graficamente o sistema de equações: 4) Determinar os valores de K para que a função f ( x) = (3K 6) x + 5 seja crescente:

18 5) Determinar a função cujo gráfico é dado abaixo: 6) Determinar a função afim que passa pelo ponto ( 3, 1) e forma um ângulo de 45 com o eixo das abscissas:.7 Função Quadrática Uma função f : R R recebe o nome de função quadrática quando, para todo x R, associa sempre o elemento, com a, b, c R e a 0. O gráfico da função quadrática é uma parábola (provado em Geometria Analítica). Exemplos: a) f ( x) = x x y (x,y) - 4 (-,4) -1 1 (-1, 1) 0 0 (0, 0) 1 1 (1, 1) 4 (, 4) b) f ( x) = x x y (x,y) - -4 (-, -4) -1-1 (-1, -1) 0 0 (0, 0) 1-1 (1, -1) -4 (, -4)

.7.1 Concavidade 19 Se a > 0 a parábola tem a concavidade voltada para cima e se a < 0, a concavidade voltada para baixo. Nos dois exemplos anteriores temos: no item (a) o a é positivo e no item (b) o a é negativo..7. Raízes e Zeros Os zeros de uma função são os valores de x para os quais f ( x) = 0, isto é, são as raízes da equação f(x) = 0. b ± Logo, se f (x) = 0 ax + bx + c = 0 x =, onde é chamado discriminante. Portanto, os zeros a das funções são as soluções da equação do º grau ax + bx + c = 0. Temos três situações a considerar, em relação ao discriminante: a) Se > 0, a equação terá duas raízes reais e diferentes, logo o gráfico da função irá cortar o eixo das abscissas em dois pontos distintos; b) Se = 0, a equação terá duas raízes reais e iguais, logo o gráfico da função irá cortar o eixo das abscissas em apenas um ponto; c) Se < 0, a equaçãonão terá raízesreais, logoo gráficoda funçãonãoirá cortar o eixo das abscissas..7.3 Vértice da Parábola > b0 O vértice da parábola é o ponto de máximo ou de mínimo da parábola. Se a concavidade da parábola está,. b + b + b 4 voltada para cima, o vértice é um ponto mínimo e se a concavidade da parábola está voltada para baixo, o a a x1 = + b ± a x1 + x x = vértice é um ponto xmáximo. = = a a V a b x = As coordenadas a do vértice da parábola são dadas por Demonstração: Vamos chamar de x a abscissa do vértice da parábola, relativo a função f(x) = ax + bx + c. V Vamos analisar três situações, > 0, = 0 e < 0. Vamos considerar, nos três casos, o a > 0; a demonstração é feita da mesma forma, se a < 0. a) Nesse caso, o vértice é o ponto médio dos zeros da função. Temos: x V b = a b = a 1 x = b a

0 b) = 0 Nesse caso, é fácil perceber que o vértice é a raiz da função. Como, temos: c) Neste caso, a função não tem zeros reais. Sejam dois pontos simétricos P e P, com abscissas x V K e x V + K e, considerando que x V é a média aritmética das abscissas desses dois pontos, temos: f ( K ) = f ( x K ) x. Substituindo na função f(x) = ax + bx+ c, temos: V + V ( K ) + b( x K ) + c = a( x + K ) + b( x + K ) c a x +. V V Desenvolvendo e simplificando, obtemos: bk b 4aKx V = bk x V = x V =. 4aK a V V Observe que o que foi mostrado no item (c), pode ser generalizado para os demais itens. b Sendo x V =, podemos provar que yv =, substituindo na função f ( x) = ax + bx + c. a 4a Temos: = b b b a. b b ab ab f ( x) ax + bx + c f = a. + b. + c = + c = a a a 4a a 4a Simplificando por a, temos: b b + 4ac b 4ac f = = =. a 4a 4a 4a.7.4 Intersecção com o Eixo das Ordenadas Um ponto está localizado no eixo das ordenadas quando o valor da abscissa é zero. Logo, se f(x) = ax y no ponto (0,c). b Logo, as coordenadas do vértice são,. a 4a + bx + c f (0) = a.0.7.5 Imagem + b.0 + c f (0) = c. Logo, a curva que representa a parábola corta o eixo Como o vértice da parábola é o ponto de máximo ou de mínimo, temos: Se a > 0, a concavidade está voltada para cima logo, o vértice é um ponto mínimo e o conjunto imagem será dado por: Im( f ) = { y R / y y V }, onde y V é a ordenada do vértice. + 4ac

Se a < 0, a concavidade está voltada para baixo, logo o vértice é um ponto máximo e o conjunto imagem será dado por: Im( f ) = { y R / y y V }, onde y V é a ordenada do vértice. 1.7.6 Eixo de Simetria O gráfico da função quadrática admite um eixo de simetria e esse eixo de simetria é uma reta perpendicular ao eixo das abscissas que passa pelo vértice; logo, todos os pontos desse eixo de simetria obedecem à equação x + b a = 0. Exemplos: 1) Seja a função f ( x ) = x 6 x + 5, pede-se: a) analisar a sua concavidade; b) os zeros ou raízes; c) a coordenada do ponto de intersecção com o eixo das ordenadas; d) as coordenadas do vértice; e) um esboço do gráfico; f) o conjunto imagem. Soluções: a) Como o valor de a é positivo, a concavidade está voltada para cima b) Fazendo x 6x + 5 = 0, obtemos : x1 = 5 e x = 1 c) (0,5) d) V(3, 4) e) x V b ± = a 0 x V b =. a f) Im( f ) = { y R / y 4} ) Determinar uma função quadrática f tal que f (0) = 3, f (1) = 0 e f () = 1: Solução: Seja f ( x) = ax + bx + c, então: f (0) = 3 c = 3 f (1) = 0 a + b + c = 0 a + b = 3 f () = 1 4a + b + c = 1 4a + b = 4 a + b = a + b = 3 a = 1 e a + b = b = 4 Portanto, se: a = 1, b = 4 e c = 3, temos: f ( x) = x 4x + 3.

3) Mostre que, na equação do º grau ax + bx + c = 0, de raízes x1 e x, temos para a soma das b raízes S = x1 + x = ; a Solução: a) Se as raízes x1 e x são tais que x1 = x, temos: No caso para b b x1 = ± 0 a b b x = x1 + x = + x1 + x a b a a x = a b) Se as raízes x1 e x são tais que x1 x, temos : No caso para x, temos 0, logo : x1 > b b = = a a 4) Resolva a inequação x 6x + 5 < 0 : Considerando f x) = x 6x + 5, a = 1 > 0 e = 16 > 0, e raízes x = 5 e x = 1. Então, como queremos ( 1 os valores de x para os quais a função é menor que zero, temos S = { x R / 1 < x < 5}. Exercícios de Fixação 1) Construir o gráfico das seguintes funções: a) f ( x) = x b) f ( x) = x c) f ( x) = x d) f ( x) = x 1 + 1 4x + 4 + 4x ) Dada a função f ( x) = x + 8x + 9, pede-se: a) analisar a sua concavidade; b) as coordenadas dos pontos de intersecção com o eixo das abscissas; c) as coordenadas do ponto de intersecção com o eixo das ordenadas; d) as coordenadas do vértice; e) um esboço do gráfico; f) o conjunto imagem; g) os valores de x para os quais a função é crescente.

3) Seja a função f ( x) = ( m 1). x + (m + 3). x + m determine os valores de m de modo que a função tenha duas raízes reais e diferentes: 3 4) Mostre que, na equação do º grau ax + bx + c = 0, de raízes x 1 e x, temos para o produto da raízes, P = x1. x c = a 5) (PUC/CAMP SP) Considerando todos os números reais x, y de soma igual a 8, determine aqueles cujo produto é máximo. 6) (CESGRANRIO RJ) Um dia na praia, às 10 horas, a temperatura era de 36 C e, às 14 horas, atingiu a máxima de 39, C. Supondo que, nesse dia a temperatura f( t) em graus era em função do tempo t medido em horas, dada por f ( t) = at + bt + c, quando 8 t 0, então, pode-se afirmar que: (a) b = 0 (b) a = b (c) b < 0 (d) a.b < 0 (e) a > 0 7) (PUC CAMP SP) Uma bola é largada do alto de um prédio e cai em direção ao solo. Sua altura h, em relação ao solo, t segundos após o lançamento, é dada pela expressão h = -5t + 65.Após quantos segundos do lançamento a bola atingirá o solo? (a),5 (b) 5 (c) 7 (d) 10 (e) 5 8) Resolver as inequações em R: x x, se x 0 = x,se x < 0 a) x b) x c) x d) x e) x 3x + 0 + x + 10 < 0 + 5x 6 > 0 3x + 15 0 10x + 5 0.8 Funções Modulares Para cada valor x real podemos associar um único valor. Uma função f : R R recebe o nome de função modular quando para todo x R associa sempre o elemento. Utilizando a definição de módulo, temos: A imagem da função é Im = R+

4 Glossário Abscissa - Numa reta, a distância de um ponto a outro, tomado como origem; coordenada de um ponto sobre uma reta. Em um sistema cartesiano, coordenada referente ao eixo do x. Cartesiano - Doutrina de René Descartes, filósofo, matemático e físico francês (1596-1650), e de seus seguidores, caracterizada pelo racionalismo, pela consideração do problema do método como garantia da obtenção da verdade e pelo dualismo metafísico. Em Matemática, eixos cartesianos, são retas ortogonais, cuja intersecção é a origem. Coeficiente - Parte numérica em um produto de fatores numéricos e literais. Domínio - Em uma função, conjunto dos valores que a variável independente pode tomar. Contradomínio - Em uma função, conjunto dos valores que a variável dependente pode tomar. Ordenada - Coordenada cartesiana correspondente a um dos eixos. Ortogonal - Que forma ângulos retos. Parábola - Lugar geométrico plano dos pontos eqüidistantes de um ponto fixo e de uma reta fixa de um plano. Paridade - Propriedade de ser par ou ímpar. Uma função pode ser par, ímpar ou nenhuma delas. Ela é par quando f (x) = f (-x) e ímpar quando f (x) = - f (-x). Perímetro - Medida do contorno de uma figura.

Gabarito 5 Respostas dos Exercícios de Fixação Unidade I - 1.1 a 1.3 1) ) a) A x B = {(,0), (,), ( 1, 0), ( 1, ), (0,0),.(0,),(1,0), (1,)} b) B x A = {(0, ), (0, 1), (0,0), (0,1), (, ), (, 1), (,0), (,1)} c)a² = {(, ), (, 1), (,0), (,1), ( 1, ), ( 1, 1), ( 1,0), ( 1,1), (0, ), (0, 1), (0,0), (0,1), (1, ), (1, 1), (1,0), (1,1)} d) B² = {(0, 0), (0, ), (, 0), (, )} 3) Observe que em cada par (x, y), x A e y B, logo: A = {0, 1, 5} e B = {, 3} 4) O A também pode ter 5 elementos, logo A x B pode ter até 5 elementos (5 x 5 = 5); 5) a) y = x² b) y = x +1 X = - (-)² = 4 x= - y=. (-) + 1= -3 Β X = -1 (-1)² = 1 x= -1 y=. ( 1) + 1 = 1 Β X = 0 (0)² = 0 x= 0 y=. 0 + 1 = 1 X = 1 (1)² = 1 x= 1 y=. 1 + 1 = 3 X = ()² = 4 x= y=. + 1= 5 Β R = {(, 4), ( 1, 1), (0, 0), (1, 1), (, 4)} R= {(0,1), (1,3)} 6) Observando que o domínio é formado pelos valores de x tais que (x, y) que (x, y) R, temos: R e a imagem pelos valores y, tais a) D(R) = {, 1, 0, 1, } e Im(R) = {0, 1, 4} b) D(R) = {0, 1} e Im(R) = {1, 3}

6 7) R = {(0, ), (0, 3), (1, ), (1, 3), (, 3)} 8) 9) Só é função a relação do exercício Nº 5 item a, pois, o item b do nº 5 não é função, pois temos elementos de A que não tem correspondente em B. O nº 7 não é função pois temos elementos de A associados a mais de um correspondente em B. Unidade II.1 e. 1) a) b) Im = { 1, 1, 3, 5, 7} ) a) f (-) = (-)² - 3. (-) + 4 = = 4 + 6 + = 14 b) f 1 9 + 1+ 4 = 1 9 + 5 = 46 4 = = c) f ( 3) ( 3) 3. 3 + 4 = 3-3 3 + 4 = 7 3 3 x 3 3 3 3) = 8x 1 = -15 8x = -15 + 1 8x = - 3 x = 5 4 8 4) f ( 0) = 1, f ( 1) = 0 e f (1) = 3 f (0) + f ( 1) + f (1) = 1 + 0 + 3 = 5)a) D = {1,, 3,..., n} b) Na 3ª tentativa, n = 3 t(3) = 3 + c) n =? 1 3 + = 4 3n + 1 = 4n n = 1, n 1 t(3) = 3 + 4 = 7 minutos. 3 Logo, 1ª na tentativa o rato gastou 4 minutos.

6) a) Às 10 horas, se passaram horas, logo p() = 8. b) Às 11 horas, se passaram 3 horas, logo p(3) = 15. c) Entre 10 e 11 horas, 15 8 = 7 pares. 7 7) x Y y x x + y = 36 como: A x = x. y x + y = 18 temos: A x = x. (18 x) logo: y = 18 x A x = 18x x² 8) a) Como o denominador não pode ser nulo, temos D b) D = ou R {-5,5} c) D = R d) D = R { x R / x ± 5} - 3x + 1 0 x 4 D = { x R / x 4} ou (- ; 4] f) 3x + > 0 x > logo : 3 D = x R / x > ou ou ;+ ;+ 3 3 3 Unidade II.3 a.6 = { x R / x 1} ou R {1} e) Como, nos Reais, não existe raiz com índice par de número negativo, temos f ( x) = x + 18x 1) a) Im={ -4} b) Im = R c)im = R d) Im = R e) Im = R

8 ) Como o coeficiente angular é igual a 1, o ângulo é de 45, pois tg 45 = 1. 3) Analiticamente, temos: Se y = x + 3 e y = x + 3 4 3 x + 3 = x + 3 4 3 3x + 9 = x + 4 5x = 5 x = 1 Se x = 1 e y = x + 3 y = 1 + 3 y = O ponto de intersecção das duas funções é ( 1, ). Graficamente, temos: 4) f (x) = (3K 6)x + 5 é crescente se a > 0. Logo, 3K 6 > 0 K >, lembrando que f(x) = ax + b. 5) y = ax + b; ( 0,1) ( 1, ) a.0 + b = 1 b = 1 a.1+ b = a + b = a + 1 = a = 3 Logo : y = 3x + 1. 6) Se forma um ângulo de 45 com o eixo das abscissas, o coeficiente angular é igual a tg45 = 1. Então: y = x + b. Como o ponto ( 3,1) pertence a função, temos: Unidade II.7 1) a) b) c) d)

) a) Como a < 0, concavidade voltada para baixo. b) Os pontos de intersecção com o eixo das abscissas (eixo x) são aqueles pontos onde a ordenada é zero ( y = 0). Então, temos: - x² + 8x + 9 = 0 ou x² - 8x- 9 = 0 9 Temos: x = Logo: 8 ± 10 x= a = 1 b = -8 c = -9 Pontos: (9, 0) e ( 1, 0) = b² - 4 c = (-8)² - 4.1.(-9) = 64 + 36 = 100 8 + 10 18 x = = = 9 8 10 x = = = 1 a b ± a c) O ponto de intersecção com o eixo das ordenadas (eixo y) é o ponto onde a abscissas é zero (x = 0). Então, temos: f (0) = 0² + 8. 0 + 9 = 9 (0, 9) b d) As coordenadas do vértice são dadas por, a 4a, logo: 8 100 x v = = 4 e yv = = 5 ; V(4, - 5) 4 e) f) Im = { y R / y 5} g) x < 4

30 Referências Bibliográficas IEZZI, Gelson e outros.coleção Fundamentos da Matemática Elementar. São Paulo: Editora Atual, 1985. Volumes 1, e 3. LIMA, Elon Lages e outros. A Matemática do Ensino Médio. Rio de Janeiro: SBM, 1996. Volume 1. BOULOS, Paulo. Pré-Cálculo. São Paulo: MAKRON Books, 1999. GIOVANNI, José Ruy e BONJORNO, José Roberto. Matemática 1: conjuntos, funções, progressões. São Paulo: FTD, 199.. Matemática : trigonometria, matrizes, análise combinatória, geometria. São Paulo: FTD, 199. MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO. Parâmetros Curriculares nacionais Matemática, 1998.