Pesquisa Operacional. Prof. José Luiz

Tamanho: px
Começar a partir da página:

Download "Pesquisa Operacional. Prof. José Luiz"

Transcrição

1 Pesquisa Operacional Prof. José Luiz

2 Prof. José Luiz

3 Função Linear - Introdução O conceito de função é encontrado em diversos setores da economia, por exemplo, nos valores pagos em um determinado período de um curso. O valor a ser pago vai depender da quantidade de disciplinas que o aluno está matriculado. Imagine x o valor por disciplina e y o valor total a ser pago no período. Então, temos: y = f(x) y = número de disciplinas. x

4 Função do 1 Grau Denominamos função do primeiro grau a qualquer função f: R R, tal que: f(x) = ax + b (com a 0) O gráfico de uma função do 1 grau é sempre uma reta inclinada que encontra o eixo vertical quando y = b. O valor constante b da expressão ax + b é chamado coeficiente linear. O coeficiente a da expressão ax + b é chamado coeficiente angular e está associado ao grau de inclinação que a reta do gráfico terá (na verdade o valor de a é igual à tangente de um certo ângulo que a reta do gráfico forma com o eixo horizontal).

5 Função Linear - Exemplos f(x) = 5x 3, onde a = 5 e b = -3 f(x) = -2x 7, onde a = -2 e b = 7 f(x) = x/3 + 2/5, onde a = 1/3 e b = 2/5 f(x) = 11x, onde a = 11 e b = 0

6 Representação no Plano Cartesiano Uma reta real é orientada a um eixo, e cada ponto está associado a um único número real. O ponto zero é chamado origem, portanto, qualquer ponto á direita de 0, o número será positivo; à esquerda, será negativo. E quando coincidir com o zero, será nulo. origem

7 Plano Cartesiano Vamos imaginar um número P = - 3. Teremos OP = - 3. Agora vamos praticar: Para P = -1 teremos OP = -1 Para P = +2 teremos OP = +2 origem P =

8 Plano Cartesiano Consideremos num plano α de dois eixos, x e y, perpendiculares em 0, um ponto A pertencente a α, existem apenas duas retas, r e s, que passam por A de modo que r // y e s // x. Eixos: X = eixo das abscissas y = eixo das ordenadas α = plano cartesiano

9 Plano Cartesiano O plano cartesiano está dividido em quatro quadrantes:

10 Plano Cartesiano - Exemplos Podemos então localizar os pontos A(2,3), B(-3,2), C(-2,-1), D(3,-2), E(3,0) e F(0,2):

11 Funções crescentes e decrescentes O gráfico de uma função de 1 grau y = ax + b, com a 0 é uma reta oblíqua aos eixos Ox e Oy. Exemplo 1: Construir o gráfico da função y = 3x - 1 X Y = 3x /3 0

12 Funções Crescentes Quando aumentamos o valor de x, os correspondentes valores de y também aumentam. Dizemos, então, que a função y = 3x 1 é crescente.

13 Funções Decrescentes Exemplo 2: Construir o gráfico da função y = - 2x + 3 X Y = -2x /2 0

14 Funções Decrescentes Quando aumentamos o valor de x, os correspondentes valores de y diminuem. Dizemos, então, que a função y = -2x + 3 é decrescente.

15 INEQUAÇÕES DO 1º GRAU

16 INEQUAÇÕES DO 1º GRAU

17 PESQUISA OPERACIONAL TÉCNICAS DE SOLUÇÃO PARA MODELOS DE PROGRAMAÇÃO LINEAR MÉTODO GRÁFICO

18 TÉCNICAS DE SOLUÇÃO PARA MODELOS DE PROGRAMAÇÃO LINEAR MÉTODO GRÁFICO Conceito: Consiste em representar num sistema de eixos ortogonais o conjunto das possíveis soluções do problema, ou seja, o conjunto de pontos (x1, x2) que obedecem ao grupo de restrições impostas pelo sistema em estudo. O desempenho do modelo é avaliado através da representação gráfica da função objetivo. As soluções são classificadas de acordo com sua posição no gráfico. Gráfico: A representação gráfica de uma equação linear com duas variáveis é uma reta. A representação gráfica de uma inequação linear com duas variáveis é um dos semiplanos definidos pela reta correspondente à equação. Exemplo 1: Representar graficamente a inequação: x1 + 2x2 10 a) Construir a reta correspondente à equação x1 + 2x2 = 10 Precisamos de dois pontos: Fazendo x1 = 0, teremos 2x2 = 10 x2 = 5 Fazendo x2 = 0, teremos x1 = 10

19 TÉCNICAS DE SOLUÇÃO PARA MODELOS DE PROGRAMAÇÃO LINEAR MÉTODO GRÁFICO b. Testar a inequação: x1 + 2x2 10 Tomamos um ponto qualquer de uma das regiões limitadas pela reta, por exemplo o ponto (x1 = 10, x2 = 5). Substituindo na inequação: ou 20 10, o que é verdadeiro, portanto a região das soluções da inequação é aquela que contém o ponto testado.

20 MÉTODO GRÁFICO x2 0 x1

21 TÉCNICAS DE SOLUÇÃO PARA MODELOS DE PROGRAMAÇÃO LINEAR MÉTODO GRÁFICO Exemplo 2: Representar graficamente a solução do sistema: x1 + 3x2 12 2x1 + x2 16 x1 0 x2 0 Solução: Vamos representar cada uma das retas correspondentes: 1. x1 + 3x2 = 12; se x1 = 0 x2 = 4; se x2 = 0 x1 = 12; A = (0; 4) e B = (12; 0) 2. 2x1 + x2 16; se x1 = 0 x2 = 16; se x2 = 0 x1 = 8; C = (0; 16) e D = (8; 0) As restrições de não negatividade x1 0 e x2 0 representam o primeiro quadrante do gráfico das soluções.

22 TÉCNICAS DE SOLUÇÃO PARA MODELOS DE PROGRAMAÇÃO LINEAR MÉTODO GRÁFICO Verificar para cada reta qual a região que corresponde à solução da inequação. Para isso, escolhe-se um ponto fora das retas, por exemplo o ponto (8, 16). 1. x1 + 3x2 12; 1substituindo x1 = 8, x2 = 16, obtém-se: , ou 56 12; a desigualdade é falsa. Solução: região oposta. (Verificar flecha indicativa) 2. 2x1 + x2 16; substituindo x1 = 8, x2 = 18, obtém-se: , ou 32 16; a desigualdade é verdadeira (Flecha indicativa da solução na região do ponto testado.) A região de soluções aparece sombreada no gráfico.

23 TÉCNICAS DE SOLUÇÃO PARA MODELOS DE PROGRAMAÇÃO LINEAR MÉTODO GRÁFICO

24 TÉCNICAS DE SOLUÇÃO PARA MODELOS DE PROGRAMAÇÃO LINEAR MÉTODO GRÁFICO Avaliação do objetivo Devemos agora avaliar o desempenho da função objetivo: Maximizar L = 2x1 + 5x2 na região de soluções do gráfico a seguir.

25 Solução: Escolhemos um valor arbitrário para L, por exemplo, o valor 10. A equação: 10 = 2x1 + 5x2 fornece o conjunto de pontos (x1, x2) que dão para L o valor 10. Vamos representar esses pontos: 2x1 + 5x2 = 10 Se x1 = 0, então x2 = 10. Portanto, x2 = 10/5 ou x2 = 2 Se x2 = 0, então 2.x = 10, Portanto, x1 = 10/2 ou x1 = 5 Escolhemos um segundo valor para L, por exemplo, o valor 15, então: 2x1 + 5x2 = 15 Se x1 = 0, então x2 = 15. Portanto, x2 = 15/5 ou x2 = 3 Graficamente teremos: Se x2 = 0, então 2.x = 15, Portanto, x1 = 15/2 ou x1 = 7,5

26 2. Afastamento da origem 1. Retas Paralelas Verificamos do gráfico que: 1. À medida que atribuirmos valores a L, obtemos retas paralelas. 2. À medida que os valor de L aumenta, a reta se afasta da origem do sistema de eixos. Podemos concluir que pelo ponto P do gráfico, teremos a paralela de maior valor que ainda apresenta um ponto na região de soluções. Portanto, o ponto P é a solução que maximiza L na região de soluções dadas. Como P = (0, 6) e L = 2x1 + 5x2, substituindo x1 = 0 e x2 = 6, teremos: L = ou L máximo = 30

27 PESQUISA OPERACIONAL Exercícios Propostos 1 Um sapateiro faz 6 sapatos por hora, se fizer somente sapatos e 5 cintos por hora, se fizer somente cintos. Ele gasta 2 unidades de couro para fabricar 1 unidade de sapato e 1 unidade de couro para fabricar 1 unidade de cinto. Sabendo-se que o total disponível de couro é de 6 unidades e que o lucro unitário por sapato é de 15 unidades monetárias e o do cinto é de 10 unidades monetárias, pede-se: O modelo do sistema de produção do sapateiro, se o objetivo é maximizar seu lucro por hora. Prof. José Luiz

28 PESQUISA OPERACIONAL 2 Certa empresa fabrica 2 produtos P1 e P2. O lucro por unidade de P1 é de R$ 25,00 e o lucro unitário de P2 é de R$ 35,00. A empresa necessita de 5 horas para fabricar uma unidade de P1 e 8 horas para fabricar uma unidade de P2. O tempo mensal disponível para essas atividades é de 240 horas. A MP em peças utilizada para P1 é de 12 peças e para P2 é de 18 peças. A quantidade total de peças para os dois produtos é de 432 peças. As demandas esperadas para os 2 produtos levaram a empresa a decidir que os montantes produzidos de P1 e P2 não devem ultrapassar 50 unidades de P1 e 80 unidades de P2 por mês. Construa o modelo do sistema de produção mensal com o objetivo de maximizar o lucro da empresa. Prof. José Luiz

29 PESQUISA OPERACIONAL 6 Uma empresa, após um processo de racionalização de produção, ficou com disponibilidade de 3 recursos produtivos, R1, R2 e R3. Um estudo sobre o uso desses recursos indicou a possibilidade de se fabricar 2 produtos P1 e P2. Levantando os custos e consultando o departamento de vendas sobre o preço de colocação no mercado, verificouse que P1 daria um lucro de R$ 120,00 por unidade e P2, R$ 150,00 por unidade. O departamento de produção forneceu a seguinte tabela de uso de recursos. Produto Recurso R1 por unidade Recurso R2 por unidade Recurso R3 por unidade Lucro P R$120,00 P R$150,00 Disponibilidade de recursos por mês Que produção mensal de P1 e P2 traz o maior lucro para a empresa? Prof. José Luiz

30 Exemplo 1 Resolver o problema de programação linear: Minimizar Z = 2x1 + 3x2 Sujeito às restrições: x1 + x2 5 5x1 + x2 10 x1 8 x1 0 x2 0

31 Exemplo 1 Resolver o problema de programação linear: Minimizar Z = 2x1 + 3x2 Sujeito às restrições: x1 + x2 5 5x1 + x2 10 x1 8 x1 0 x2 0 Solução: a. Construir a região de soluções das restrições: 1. x1 + x2 = 5 Se x1 = 0, então 0 + x2 = 5 ou x2 = 5 Se x2 = 0, então x1 + 0 = 5 ou x1 = x1 + x2 = 10 Se x1 = 0, então x2 = 10 ou x2 = 10 Se x2 = 0, então 5.x = 5 ou x1 = 10/5 ou x1 = 2 3. x1 = 8 A representação gráfica é uma reta paralela ao eixo x2 pelo ponto x1 = 8

32 REGIÃO DE SOLUÇÕES DAS RESTRIÇÕES Tomando-se o ponto (5, 5) para o teste da região de solução de cada uma das inequações, temos, substituindo os valores x1 = 5 e x2 = 5: 1. x1 + x2 5, então ou 10 5 A desigualdade é verdadeira, flecha em 1 para a região do ponto testado. 2. 5x1 + x2 10, então ou A desigualdade é verdadeira, flecha em 2 para a região do ponto testado. A região resultante está sombreada na figura. 3. x1 8 substituindo x1 = 5, teremos 5 8. A desigualdade é verdadeira, flecha em 3 para a região do ponto (5, 5). b. Avaliar o desempenho da função objetivo. Arbitraremos dois valores para Z, por exemplo: Z = 12 e Z = 18 Para Z = 12, teremos: 2x1 + 3x2 = 12 Se x1 = 0, então x2 = 12 ou x2 = 4 Se x2 = 0, então 2.x = 12 ou x1 = 6

33 Para Z = 18, teremos: 2x1 + 3x2 = 18 Conclusão: Se x1 = 0, então x2 = 18 ou x2 = 6 Se x2 = 0, então 2.x = 18 ou x1 = 9 À medida que diminuímos o valor de Z, obteremos retas paralelas mais próximas da origem. Portanto, o ponto da região de soluções com o menor valor de Z é o ponto (5, 0). (Verificação no gráfico). Resposta: Ponto de Mínimo: x1 = 5; x2 = 0. Valor mínimo = = 10 Ponto (5, 0)

34 Exemplo 2 Resolver o problema de programação linear: MAX L = 2x1 + 3x2 Sujeito às restrições: 4x1 + 6x2 60 x1 + x2 12 x1 0 x2 0

35 Exemplo 2 Resolver o problema de programação linear: MAX L = 2x1 + 3x2 Sujeito às restrições: 4x1 + 6x2 60 x1 + x2 12 x1 0 x2 0 Solução: a. Construir a região de soluções das restrições: 1. 4x1 + 6x2 = 60 Se x1 = 0, então 0 + 6x2 = 60 ou x2 = 10 Se x2 = 0, então 4x1 + 0 = 60 ou x1 = x1 + x2 = 12 Se x1 = 0, então 0 + x2 = 12 ou x2 = 12 Se x2 = 0, então x1 + 0 = 12 ou x1 = 12

36 REGIÃO DE SOLUÇÕES DAS RESTRIÇÕES Tomando-se o ponto (15, 12) para o teste da região de solução de cada uma das inequações, temos, substituindo os valores x1 = 15 e x2 = 12: 1. 4x1 + 6x2 60, então ou A desigualdade é falsa, implica que a solução é oposta ao ponto testado. Flecha em 1. A região resultante está sombreada na figura. 2. x1 + x2 12, então ou A desigualdade é verdadeira. A solução é a região do ponto testado. Flecha em 2 b. Avaliar o objetivo na região de soluções: Arbitraremos dois valores para L, por exemplo: L = 24 e L = 45 Para L = 24, teremos: 2x1 + 3x2 = 24 Se x1 = 0, então x2 = 24 ou x2 = 8 Se x2 = 0, então 2.x = 24 ou x1 = 12

37 Para L = 45, teremos: 2x1 + 3x2 = 45 Se x1 = 0, então x2 = 45 ou x2 = 15 Se x2 = 0, então 2.x = 45 ou x1 = 22,5 Conclusão: Examinando o gráfico, concluímos que L atinge o maior valor na região de soluções sobre a reta 1. Portanto, todos os pontos do segmento PQ são soluções ótimas do modelo. Por exemplo: O Ponto Q: x1 = 15; x2 = 0. L = = 30 Ponto (15, 0)

38 Exercícios Propostos Resolver Graficamente o modelo de Programação Linear 1 MAXIMIZAR LUCRO = 2x1 + 3x2 Sujeito a: -x1 + 2x2 4 x1 + 2x2 6 x1 + 3x2 9 x1 0; x2 0

39 TÉCNICAS DE SOLUÇÃO PARA MODELOS DE PROGRAMAÇÃO LINEAR MÉTODO GRÁFICO X2 1 MAXIMIZAR LUCRO = 2x1 + 3x X1

40 Exercícios Propostos Resolver Graficamente o modelo de Programação Linear 2 MAXIMIZAR RECEITA = 0,3x1 + 0,5x2 Sujeito a: 2x1 + x2 2 x1 + 3x2 3 x1 0; x2 0

41 TÉCNICAS DE SOLUÇÃO PARA MODELOS DE PROGRAMAÇÃO LINEAR MÉTODO GRÁFICO X2 2 MAXIMIZAR RECEITA = 0,3x1 + 0,5x X1

42 Exercícios Propostos Resolver Graficamente o modelo de Programação Linear 3 MAXIMIZAR LUCRO = 2x1 + 3x2 Sujeito a: x1 + 3x2 9 -x1 + 2x2 4 x1 + x2 6 x1 0; x2 0

43 TÉCNICAS DE SOLUÇÃO PARA MODELOS DE PROGRAMAÇÃO LINEAR MÉTODO GRÁFICO X2 3 MAXIMIZAR LUCRO = 2x1 + 3x X1

44 Exercícios Propostos Resolver Graficamente o modelo de Programação Linear 4 MINIMIZAR CUSTO = 10x1 + 12x2 Sujeito a: x1 + x2 20 x1 + x2 10 5x1 + 6x2 54 x1 0; x2 0

45 TÉCNICAS DE SOLUÇÃO PARA MODELOS DE PROGRAMAÇÃO LINEAR MÉTODO GRÁFICO X2 4 MINIMIZAR CUSTO = 10x1 + 12x X1

46 Exercícios Propostos Resolver Graficamente o modelo de Programação Linear 5 MINIMIZAR Z = 7x1 + 9x2 Sujeito a: -x1 + x2 2 x1 5 x2 6 3x1 + 5x2 15 5x1 + 4x2 20 x1 0; x2 0

47 TÉCNICAS DE SOLUÇÃO PARA MODELOS DE PROGRAMAÇÃO LINEAR MÉTODO GRÁFICO X2 5 MINIMIZAR Z = 7x1 + 9x X1

48 Exercícios Propostos Resolver Graficamente o modelo de Programação Linear 6 Resolver o problema 1 da lista 1. MÁXIMO LUCRO = 5x1 + 2x2; Sujeito a: 10x1 + 12x2 60 2x1 + x2 6 x1 0; x2 0

49 TÉCNICAS DE SOLUÇÃO PARA MODELOS DE PROGRAMAÇÃO LINEAR MÉTODO GRÁFICO X2 MÁXIMO LUCRO = 5x1 + 2x X1

50 Exercícios Propostos Resolver Graficamente o modelo de Programação Linear 7 - MÁX L = 2x1 + 3x2 Sujeito a: 5X1 + 4X2 20-4X1 + 4X2 8 6X1 2X2 6 X1 0; X2 0

51 x2 x1

52 Exercícios Propostos Resolver Graficamente o modelo de Programação Linear 8 MÁX L = 6x1 + 4x2; Sujeito a: 4X1 + 5X2 20-6X1 + 6X2 12 9X1 3X2 9 X1 0; X2 0

53 x2 x1

54 Exercícios Propostos Resolver Graficamente o modelo de Programação Linear 9 MÁX L = 2x1 + 4x2; Sujeito a: 4X1-6X2 12 7X1 + 5X2 35 X2 4 X1 0; X2 0

55

Pesquisa Operacional. Função Linear - Introdução. Função do 1 Grau. Função Linear - Exemplos Representação no Plano Cartesiano. Prof.

Pesquisa Operacional. Função Linear - Introdução. Função do 1 Grau. Função Linear - Exemplos Representação no Plano Cartesiano. Prof. Pesquisa Operacional Prof. José Luiz Prof. José Luiz Função Linear - Introdução O conceito de função é encontrado em diversos setores da economia, por exemplo, nos valores pagos em um determinado período

Leia mais

Esboço de Plano de Aula. Conteúdo específico: O uso do software WXMaxima nas equações do 1º Grau.

Esboço de Plano de Aula. Conteúdo específico: O uso do software WXMaxima nas equações do 1º Grau. Esboço de Plano de Aula Bolsista: Rafael de Oliveira. Duração: 120 minutos. Conteúdo: Equações do 1º Grau. Conteúdo específico: O uso do software WXMaxima nas equações do 1º Grau. Objetivo geral: Permitir

Leia mais

Função Afim. Definição. Gráfico

Função Afim. Definição. Gráfico Função Afim Definição Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b são números reais dados e a 0. Na função

Leia mais

Pesquisa Operacional (PO)

Pesquisa Operacional (PO) Pesquisa Operacional (PO) 1) Um sapateiro faz 6 sapatos por hora, se fizer somente sapatos, e 5 cintos por hora, se fizer somente cintos. Ele gasta 2 unidades de couro para fabricar 1 unidade de sapato

Leia mais

ALUNO(A): Prof.: André Luiz Acesse: 02/05/2012

ALUNO(A): Prof.: André Luiz Acesse:  02/05/2012 1. FUNÇÃO 1.1. DEFINIÇÃO Uma função é um conjunto de pares ordenados de números (x,y) no qual duas duplas ordenadas distintas não podem ter o mesmo primeiro número, ou seja, garante que y seja único para

Leia mais

x = 3 1 = 2 y = 5 2 = 3 Aula Teórica 3 ATIVIDADE 1 Professor Responsável: Profa. Maria Helena S. S. Bizelli

x = 3 1 = 2 y = 5 2 = 3 Aula Teórica 3 ATIVIDADE 1 Professor Responsável: Profa. Maria Helena S. S. Bizelli Aula Teórica 3 ATIVIDADE. Represente, no plano cartesiano xy descrito abaixo, os dois pontos (x 0,y 0) = (,) e (x,y ) = (3,5).. Trace a reta r que passa pelos pontos e, no plano cartesiano acima. 3. Determine

Leia mais

Pesquisa Operacional. 4x1+3x2 <=1 0 6x1 -x2 >= 20 X1 >= 0 X2 >= 0 PESQUISA OPERACIONAL PESQUISA OPERACIONAL PESQUISA OPERACIONAL PESQUISA OPERACIONAL

Pesquisa Operacional. 4x1+3x2 <=1 0 6x1 -x2 >= 20 X1 >= 0 X2 >= 0 PESQUISA OPERACIONAL PESQUISA OPERACIONAL PESQUISA OPERACIONAL PESQUISA OPERACIONAL Modelo em Programação Linear Pesquisa Operacional A programação linear é utilizada como uma das principais técnicas na abordagem de problemas em Pesquisa Operacional. O modelo matemático de programação

Leia mais

PROFESSOR: ALEXSANDRO DE SOUSA

PROFESSOR: ALEXSANDRO DE SOUSA E.E. Dona Antônia Valadares MATEMÁTICA ENSINO MÉDIO - 1º ANO Função Polinomial do 1º Grau (FUNÇÃO AFIM) PROFESSOR: ALEXSANDRO DE SOUSA Definição: Toda função do tipo: f(x) = ax + b (x ϵ IR) São funções

Leia mais

RESUMO - GRÁFICOS. O coeficiente de x, a, é chamado coeficiente angular da reta e está ligado à inclinação da reta

RESUMO - GRÁFICOS. O coeficiente de x, a, é chamado coeficiente angular da reta e está ligado à inclinação da reta RESUMO - GRÁFICOS Função do Primeiro Grau - f(x) = ax + b O gráfico de uma função do 1 o grau, y = ax + b, é uma reta. O coeficiente de x, a, é chamado coeficiente angular da reta e está ligado à inclinação

Leia mais

Capítulo 2. Retas no plano. 1. Retas verticais e não-verticais. Definição 1

Capítulo 2. Retas no plano. 1. Retas verticais e não-verticais. Definição 1 Capítulo 2 Retas no plano O objetivo desta aula é determinar a equação algébrica que representa uma reta no plano. Para isso, vamos analisar separadamente dois tipos de reta: reta vertical e reta não-vertical.

Leia mais

Plano Cartesiano. Relação Binária

Plano Cartesiano. Relação Binária Plano Cartesiano O plano cartesiano ortogonal é constituído por dois eixos x e y perpendiculares entre si que se cruzam na origem. O eixo horizontal é o eixo das abscissas (eixo OX) e o eixo vertical é

Leia mais

Programação Linear (PL)

Programação Linear (PL) Programação Linear (PL) Prof. Paulo Cesar F. De Oliveira, BSc, PhD 07/08/15 P C F de Oliveira 2014 1 Características Técnicas mais utilizadas na abordagem de problemas em PO Técnica de solução programável

Leia mais

Geometria Analítica. Geometria Analítica 28/08/2012

Geometria Analítica. Geometria Analítica 28/08/2012 Prof. Luiz Antonio do Nascimento luiz.anascimento@sp.senac.br www.lnascimento.com.br Conjuntos Propriedades das operações de adição e multiplicação: Propriedade comutativa: Adição a + b = b + a Multiplicação

Leia mais

UNIDADE IV FUNÇÃO AFIM OU POLINOMIAL do 1 o. GRAU

UNIDADE IV FUNÇÃO AFIM OU POLINOMIAL do 1 o. GRAU UNIDADE IV FUNÇÃO AFIM OU POLINOMIAL do 1 o. GRAU 1. MOTIVAÇÃO/INTRODUÇÃO. FUNÇÃO AFIM DO DE PRIMEIRO GRAU 3. GRÁFICO DE UMA FUNÇÃO AFIM 4. RAIZ DA FUNÇÃO AFIM 5. INTERSECÇÃO DO GRÁFICO DE UMA FUNÇÃO AFIM

Leia mais

FUNÇÕES Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro. Autoria: Prof. Denise Candal

FUNÇÕES Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro. Autoria: Prof. Denise Candal FUNÇÕES Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro Autoria: Prof. Denise Candal Plano Cartesiano Fixando em um plano dois eixos reais Ox e Oy, perpendiculares entre si no ponto O, podemos determinar

Leia mais

Plano Cartesiano e Retas. Vitor Bruno Engenharia Civil

Plano Cartesiano e Retas. Vitor Bruno Engenharia Civil Plano Cartesiano e Retas Vitor Bruno Engenharia Civil Sistema cartesiano ortogonal O sistema cartesiano ortogonal é formado por dois eixos ortogonais(eixo x e eixo y). A intersecção dos eixos x e y é o

Leia mais

Ponto 1) Representação do Ponto

Ponto 1) Representação do Ponto Ponto 1) Representação do Ponto Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Plano Cartesiano, sistemas de coordenadas: pontos e retas Na geometria

Leia mais

Professor Mascena Cordeiro

Professor Mascena Cordeiro www.mascenacordeiro.com Professor Mascena Cordeiro º Ano Ensino Médio M A T E M Á T I C A. Determine os valores de m pertencentes ao conjunto dos números reais, tal que os pontos (0, -), (, m) e (-, -)

Leia mais

TEORIA CONSTRUINDO E ANALISANDO GRÁFICOS 812EE 1 INTRODUÇÃO

TEORIA CONSTRUINDO E ANALISANDO GRÁFICOS 812EE 1 INTRODUÇÃO CONSTRUINDO E ANALISANDO GRÁFICOS 81EE 1 TEORIA 1 INTRODUÇÃO Os assuntos tratados a seguir são de importância fundamental não somente na Matemática, mas também na Física, Química, Geografia, Estatística

Leia mais

Campos dos Goytacazes/RJ Maio 2015

Campos dos Goytacazes/RJ Maio 2015 Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE) Apostila organizada por: Vanderlane Andrade Florindo Silvia Cristina Freitas Batista Carmem Lúcia Vieira

Leia mais

Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que Capítulo 11 1. Equações da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que AP = t AB Fig. 1: Reta r passando por A e B. Como o ponto

Leia mais

MATEMÁTICA A - 11o Ano Funções - Derivada (extremos, monotonia e retas tangentes) Propostas de resolução

MATEMÁTICA A - 11o Ano Funções - Derivada (extremos, monotonia e retas tangentes) Propostas de resolução MATEMÁTICA A - o Ano Funções - Derivada extremos, monotonia e retas tangentes) Propostas de resolução Exercícios de exames e testes intermédios. Temos que, pela definição de derivada num ponto, f ) fx)

Leia mais

Construir o modelo matemático de programação linear dos sistemas descritos a seguir:

Construir o modelo matemático de programação linear dos sistemas descritos a seguir: Lista 1 qualquer erro, favor enviar e-mail para fernando.nogueira@ufjf.edu.br Construir o modelo matemático de programação linear dos sistemas descritos a seguir: 1) Um sapateiro faz 6 sapatos por hora,

Leia mais

Posição relativa entre retas e círculos e distâncias

Posição relativa entre retas e círculos e distâncias 4 Posição relativa entre retas e círculos e distâncias Sumário 4.1 Distância de um ponto a uma reta.......... 2 4.2 Posição relativa de uma reta e um círculo no plano 4 4.3 Distância entre duas retas no

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros

Leia mais

Função de Proporcionalidade Direta

Função de Proporcionalidade Direta Função de Proporcionalidade Direta Recorda Dadas duas grandezas x e y, diz-se que y é diretamente proporcional a x: y se x 0 e y 0 e o quociente entre dois quaisquer valores correspondentes for constante.

Leia mais

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... }

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... } Conjuntos Numéricos I) Números Naturais N = { 0, 1, 2, 3,... } II) Números Inteiros Z = {..., -2, -1, 0, 1, 2,... } Todo número natural é inteiro, isto é, N é um subconjunto de Z III) Números Racionais

Leia mais

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3 01 Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b a) a = 3, b, b R b) a = 3 e b = 1 c) a = 3 e b 1 d) a 3 1 0 y = 3x + 1 m = 3 A equação que apresenta uma reta com o mesmo coeficiente angular

Leia mais

3º. EM Prof a. Valéria Rojas Assunto: Determinante, Área do Triângulo, Equação da reta, Eq. Reduzida da Reta

3º. EM Prof a. Valéria Rojas Assunto: Determinante, Área do Triângulo, Equação da reta, Eq. Reduzida da Reta 1 - O uso do Determinante de terceira ordem na Geometria Analítica 1.1 - Área de um triângulo Seja o triângulo ABC de vértices A(x a, y a ), B(x b, x c ) e C(x c, y c ). A área S desse triângulo é dada

Leia mais

No exemplo há duas variáveis básicas: ST e LX. Serão agora representadas, em um gráfico bidirecional, tanto as restrições como a função objetivo.

No exemplo há duas variáveis básicas: ST e LX. Serão agora representadas, em um gráfico bidirecional, tanto as restrições como a função objetivo. RESOLUÇÃO PELO MÉTODO GRÁFICO No exemplo há duas variáveis básicas: ST e. Serão agora representadas, em um gráfico bidirecional, tanto as restrições como a função objetivo. O modelo é: Maximizar: Sujeito

Leia mais

Escola de Engenharia de Lorena EEL/USP Curso de Engenharia de Produção. Resolução Gráfica. Prof. Fabrício Maciel Gomes

Escola de Engenharia de Lorena EEL/USP Curso de Engenharia de Produção. Resolução Gráfica. Prof. Fabrício Maciel Gomes Escola de Engenharia de Lorena EEL/USP Curso de Engenharia de Produção Resolução Gráfica Prof. Fabrício Maciel Gomes Aplicável para modelos com 02 variáveis de decisão Útil para a ilustração de alguns

Leia mais

Programação Linear. Rosa Canelas 2010

Programação Linear. Rosa Canelas 2010 Programação Linear Rosa Canelas 2010 Problemas de Optimização São problemas em que se procura a melhor solução (a que dá menor prejuízo, maior lucro, a que é mais eficiente, etc.) Alguns destes problemas

Leia mais

Pesquisa Operacional Aula 3 Modelagem em PL

Pesquisa Operacional Aula 3 Modelagem em PL Pesquisa Operacional Aula 3 Modelagem em PL Prof. Marcelo Musci aula@musci.info www.musci.info Programação Linear Programação Linear: Preocupação em encontrar a melhor solução para problemas associados

Leia mais

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PAMPA - UNIPAMPA - BAGÉ PROGRAMA INSTITUCIONAL DE INICIAÇÃO À DOCÊNCIA SUBPROJETO DE MATEMÁTICA PIBID

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PAMPA - UNIPAMPA - BAGÉ PROGRAMA INSTITUCIONAL DE INICIAÇÃO À DOCÊNCIA SUBPROJETO DE MATEMÁTICA PIBID MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PAMPA - UNIPAMPA - BAGÉ PROGRAMA INSTITUCIONAL DE INICIAÇÃO À DOCÊNCIA SUBPROJETO DE MATEMÁTICA PIBID Atividade nº 2 Oficina de Geometria Analítica com uso

Leia mais

Pesquisa Operacional Aula 4 Solução Gráfica em Programação Linear

Pesquisa Operacional Aula 4 Solução Gráfica em Programação Linear Pesquisa Operacional Aula 4 Solução Gráfica em Programação Linear Prof. Marcelo Musci aula@musci.info www.musci.info Aplicável para modelos com 02 variáveis de decisão Útil para a ilustração de alguns

Leia mais

MATEMÁTICA I FUNÇÕES REAIS DE UMA VARIÁVEL REAL MATEMÁTICA I - PROF. EDÉZIO 1

MATEMÁTICA I FUNÇÕES REAIS DE UMA VARIÁVEL REAL MATEMÁTICA I - PROF. EDÉZIO 1 MATEMÁTICA I FUNÇÕES REAIS DE UMA VARIÁVEL REAL MATEMÁTICA I - PROF. EDÉZIO 1 EMENTA Funções Reais de uma Variável Real Principais Funções Elementares e suas Aplicações Matrizes Livro Teto: Leithold, Louis.

Leia mais

APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS FUNÇÃO DO 1º GRAU

APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS FUNÇÃO DO 1º GRAU FUNÇÃO DO 1º GRAU DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f() = a b com a, b e a 0. Eemplos: f() = 3, onde a = e b = 3 (função afim) f() = 6, onde a = 6 e b = 0 (função linear)

Leia mais

Prof. Fabrício Maciel Gomes Departamento de Engenharia Química Escola de Engenharia de Lorena EEL

Prof. Fabrício Maciel Gomes Departamento de Engenharia Química Escola de Engenharia de Lorena EEL Prof. Fabrício Maciel Gomes Departamento de Engenharia Química Escola de Engenharia de Lorena EEL Aplicável para modelos com 02 variáveis de decisão Útil para a ilustração de alguns conceitos básicos utilizados

Leia mais

As funções do 1º grau estão presentes em

As funções do 1º grau estão presentes em Postado em 01 / 04 / 13 FUNÇÃO DO 1º GRAU Aluno(: 1.1.2 TURMA: 1- FUNÇÃO DO PRIMEIRO GRAU As funções do 1º grau estão presentes em diversas situações do cotidiano. Vejamos um exemplo: Uma loja de eletrodomésticos

Leia mais

3.º Teste de Matemática A Versão 1 11.º Ano de escolaridade 9 fevereiro 2012

3.º Teste de Matemática A Versão 1 11.º Ano de escolaridade 9 fevereiro 2012 3.º Teste de Matemática A Versão 1 11.º Ano de escolaridade 9 fevereiro 01 1.ª Parte Para cada uma das cinco questões desta primeira parte seleciona a resposta correta de entre as quatro alternativas que

Leia mais

1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0.

1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0. MATEMÁTICA ENSINO MÉDIO FUNÇÃO - DEFINIÇÃO FUNÇÃO - DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0. EXEMPLOS: f(x) = 5x 3, onde a = 5 e b = 3 (função afim)

Leia mais

Plano cartesiano, Retas e. Alex Oliveira. Circunferência

Plano cartesiano, Retas e. Alex Oliveira. Circunferência Plano cartesiano, Retas e Alex Oliveira Circunferência Sistema cartesiano ortogonal O sistema cartesiano ortogonal é formado por dois eixos ortogonais(eixo x e eixo y). A intersecção dos eixos x e y é

Leia mais

Aulas particulares. Conteúdo

Aulas particulares. Conteúdo Conteúdo Capítulo 3...2 Funções...2 Função de 1º grau...2 Exercícios...6 Gabarito... 13 Função quadrática ou função do 2º grau... 15 Exercícios... 22 Gabarito... 29 Capítulo 3 Funções Função de 1º grau

Leia mais

Matemática Aplicada à Informática

Matemática Aplicada à Informática Matemática Aplicada à Informática Unidade 9.0 Construindo Gráfico de uma Função Curso Técnico em Informática Aline Maciel Zenker SUMÁRIO SUMÁRIO... 2 GRÁFICOS DE FUNÇÃO DE 1º GRAU... 3 1 CARACTERÍSTICAS

Leia mais

Otimização Linear. Profª : Adriana Departamento de Matemática. wwwp.fc.unesp.br/~adriana

Otimização Linear. Profª : Adriana Departamento de Matemática. wwwp.fc.unesp.br/~adriana Otimização Linear Profª : Adriana Departamento de Matemática adriana@fc.unesp.br wwwp.fc.unesp.br/~adriana Forma geral de um problema Em vários problemas que formulamos, obtivemos: Um objetivo de otimização

Leia mais

GEOMETRIA ANALI TICA PONTO MEDIANA E BARICENTRO PLANO CARTESIANO DISTÂNCIA ENTRE DOIS PONTOS CONDIÇÃO DE ALINHAMENTO DE TRÊS PONTOS

GEOMETRIA ANALI TICA PONTO MEDIANA E BARICENTRO PLANO CARTESIANO DISTÂNCIA ENTRE DOIS PONTOS CONDIÇÃO DE ALINHAMENTO DE TRÊS PONTOS GEOMETRIA ANALI TICA PONTO PLANO CARTESIANO Vamos representar os pontos A (-2, 3) e B (4, -3) num plano cartesiano. MEDIANA E BARICENTRO A mediana é o segmento que une o ponto médio de um dos lados do

Leia mais

Coordenadas e distância na reta e no plano

Coordenadas e distância na reta e no plano Capítulo 1 Coordenadas e distância na reta e no plano 1. Introdução A Geometria Analítica nos permite representar pontos da reta por números reais, pontos do plano por pares ordenados de números reais

Leia mais

1 Geometria Analítica Plana

1 Geometria Analítica Plana UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria

Leia mais

Pesquisa Operacional. Introdução à Pesquisa Operacional Programação Linear

Pesquisa Operacional. Introdução à Pesquisa Operacional Programação Linear Pesquisa Operacional Introdução à Pesquisa Operacional Programação Linear 1 Sumário Modelagem e limitações da Programação Linear. Resolução Gráfica. Forma padrão de um modelo de Programação Linear. Definições

Leia mais

GEOMETRIA ANALÍTICA 2017

GEOMETRIA ANALÍTICA 2017 GEOMETRIA ANALÍTICA 2017 Tópicos a serem estudados 1) O ponto (Noções iniciais - Reta orientada ou eixo Razão de segmentos Noções Simetria Plano Cartesiano Abcissas e Ordenadas Ponto Médio Baricentro -

Leia mais

Equação de 1º Grau. ax = -b

Equação de 1º Grau. ax = -b Introdução Equação é toda sentença matemática aberta que exprime uma relação de igualdade. A palavra equação tem o prefixo equa, que em latim quer dizer "igual". Exemplos: 2x + 8 = 0 5x - 4 = 6x + 8 3a

Leia mais

MATEMÁTICA. ENSINO MÉDIO - 1º ANO Função Polinomial do 1º Grau (FUNÇÃO AFIM) PROFESSOR: ALEXSANDRO DE SOUSA

MATEMÁTICA. ENSINO MÉDIO - 1º ANO Função Polinomial do 1º Grau (FUNÇÃO AFIM) PROFESSOR: ALEXSANDRO DE SOUSA E.E. Dona Antônia Valadares MATEMÁTICA ENSINO MÉDIO - 1º ANO Função Polinomial do 1º Grau (FUNÇÃO AFIM) PROFESSOR: ALEXSANDRO DE SOUSA http://donaantoniavaladares.comunidades.net Definição: Uma função

Leia mais

1. Considere os conjuntos A = {0; 2} e B = {1; 2; 3}. A respeito de produto cartesiano entre dois conjuntos, assinale a alternativa correta:

1. Considere os conjuntos A = {0; 2} e B = {1; 2; 3}. A respeito de produto cartesiano entre dois conjuntos, assinale a alternativa correta: . Considere os conjuntos A = {0; 2} e B = {; 2; 3}. A respeito de produto cartesiano entre dois conjuntos, assinale a alternativa correta: a. AxB = {(0; ); (0; 2); (0; 3); (2; ); (2; 2); (2; 3)} b. BxA

Leia mais

Aula 06: Funções e seus Gráficos

Aula 06: Funções e seus Gráficos GST1073 Fundamentos de Matemática Aula 06: Funções e seus Gráficos Fundamentos de Matemática Aula 6 Funções e seus Gráficos Objetivos Gerais: Modelar e solucionar vários tipos de problemas com o uso do

Leia mais

Retas e círculos, posições relativas e distância de um ponto a uma reta

Retas e círculos, posições relativas e distância de um ponto a uma reta Capítulo 3 Retas e círculos, posições relativas e distância de um ponto a uma reta Nesta aula vamos caracterizar de forma algébrica a posição relativa de duas retas no plano e de uma reta e de um círculo

Leia mais

FORMAÇÃO CONTINUADA EM MATEMÁTICA

FORMAÇÃO CONTINUADA EM MATEMÁTICA FORMAÇÃO CONTINUADA EM MATEMÁTICA MATEMÁTICA 1 ANO/ 2 BIMESTRE/ 2013 (grupo 5) PLANO DE TRABALHO 1 FUNÇÃO POLINOMIAL DO 1 GRAU TAREFA: 1 CURSISTA: Cátia Pereira da Silva Souza TUTORA: Leziete Cubeiro da

Leia mais

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega 1 TECNÓLOGO EM CONSTRUÇÃO CIVIL Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma

Leia mais

Curvas Planas em Coordenadas Polares

Curvas Planas em Coordenadas Polares Curvas Planas em Coordenadas Polares Sumário. Coordenadas Polares.................... Relações entre coordenadas polares e coordenadas cartesianas...................... 6. Exercícios........................

Leia mais

Aula Exemplos diversos. Exemplo 1

Aula Exemplos diversos. Exemplo 1 Aula 3 1. Exemplos diversos Exemplo 1 Determine a equação da hipérbole equilátera, H, que passa pelo ponto Q = ( 1, ) e tem os eixos coordenados como assíntotas. Como as assíntotas da hipérbole são os

Leia mais

Aula Elipse. Definição 1. Nosso objetivo agora é estudar a equação geral do segundo grau em duas variáveis:

Aula Elipse. Definição 1. Nosso objetivo agora é estudar a equação geral do segundo grau em duas variáveis: Aula 18 Nosso objetivo agora é estudar a equação geral do segundo grau em duas variáveis: Ax + Bxy + Cy + Dx + Ey + F = 0, onde A 0 ou B 0 ou C 0 Vamos considerar primeiro os casos em que B = 0. Isto é,

Leia mais

SIMULADO DE MATEMÁTICA 2 COLÉGIO ANCHIETA-BA - SETEMBRO DE ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ.

SIMULADO DE MATEMÁTICA 2 COLÉGIO ANCHIETA-BA - SETEMBRO DE ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. SIMULADO DE MATEMÁTICA TURMAS DO 3 O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - SETEMBRO DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES DE 0

Leia mais

Geometria Analítica - Sistemas de Coordenadas no Plano

Geometria Analítica - Sistemas de Coordenadas no Plano Geometria Analítica - Sistemas de Coordenadas no Plano Cleide Martins DMat - UFPE Turmas E1 e E3 Cleide Martins (DMat - UFPE) Retas e Elipses Turmas E1 e E3 1 / 1 Para denir um sistema de coordenadas no

Leia mais

A(500, 500) B( 600, 600) C(715, 715) D( 1002, 1002) E(0, 0) F (711, 0) (c) ao terceiro quadrante? (d) ao quarto quadrante?

A(500, 500) B( 600, 600) C(715, 715) D( 1002, 1002) E(0, 0) F (711, 0) (c) ao terceiro quadrante? (d) ao quarto quadrante? Universidade Federal de Ouro Preto Departamento de Matemática MTM131 - Geometria Analítica e Cálculo Vetorial Professora: Monique Rafaella Anunciação de Oliveira Lista de Exercícios 1 1. Dados os pontos:

Leia mais

6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES

6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES 47 6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES Na figura abaixo, seja a reta r e o ponto F de um determinado plano, tal que F não pertence a r. Consideremos as seguintes questões: Podemos obter,

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 ESTUDO DA CIRCUNFERÊNCIA

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 ESTUDO DA CIRCUNFERÊNCIA DEFINIÇÃO... EQUAÇÃO REDUZIDA... EQUAÇÃO GERAL DA CIRCUNFERÊNCIA... 3 RECONHECIMENTO... 3 POSIÇÃO RELATIVA ENTRE PONTO E CIRCUNFERÊNCIA... 1 POSIÇÃO RELATIVA ENTRE RETA E CIRCUNFERÊNCIA... 17 PROBLEMAS

Leia mais

FUNÇÕES I- PRÉ-REQUISITOS PARA O ESTUDO DAS FUNÇÕES

FUNÇÕES I- PRÉ-REQUISITOS PARA O ESTUDO DAS FUNÇÕES FUNÇÕES I- PRÉ-REQUISITOS PARA O ESTUDO DAS FUNÇÕES 1- PRODUTO CARTESIANO 1.1- Par Ordenado - Ao par de números reais a e b, dispostos em uma certa ordem, denominamos par ordenado e indicamos por: (a,

Leia mais

Fundamentos de Matemática Curso: Informática Biomédica

Fundamentos de Matemática Curso: Informática Biomédica Fundamentos de Matemática Curso: Informática Biomédica Profa. Vanessa Rolnik Artioli Assunto: Funções 10/04/14 e 11/04/14 Definição de função Dados dois conjuntos A e B não vazios, uma relação f de A em

Leia mais

Coordenadas Cartesianas

Coordenadas Cartesianas 1 Coordenadas Cartesianas 1.1 O produto cartesiano Para compreender algumas notações utilizadas ao longo deste texto, é necessário entender o conceito de produto cartesiano, um produto entre conjuntos

Leia mais

Programação Linear. (2ª parte) Informática de Gestão Maria do Rosário Matos Bernardo 2016

Programação Linear. (2ª parte) Informática de Gestão Maria do Rosário Matos Bernardo 2016 Programação Linear (2ª parte) Informática de Gestão 61020 Maria do Rosário Matos Bernardo 2016 Conteúdos Representação e resolução gráfica dos problemas de programação linear Problema de minimização Problema

Leia mais

Aula 04 Funções. Professor Marcel Merlin dos Santos Página 1

Aula 04 Funções. Professor Marcel Merlin dos Santos Página 1 PARIDADE Define-se como paridade o estudo das características do que é igual ou semelhante, ou seja, é uma comparação para provar que uma coisa pode ser igual ou semelhante à outra. Função Par Define-se

Leia mais

Coordenadas Cartesianas

Coordenadas Cartesianas GEOMETRIA ANALÍTICA Coordenadas Cartesianas EIXO DAS ORDENADAS OU EIXO DOS Y EIXO DAS ABSCISSAS OU EIXO DOS X EIXO DAS ORDENADAS OU EIXO DOS Y ORIGEM EIXO DAS ABSCISSAS OU EIXO DOS X COORDENADAS DE UM

Leia mais

Matemática - 3ª série Roteiro 04 Caderno do Aluno. Estudo da Reta

Matemática - 3ª série Roteiro 04 Caderno do Aluno. Estudo da Reta Matemática - 3ª série Roteiro 04 Caderno do Aluno Estudo da Reta I - Inclinação de uma reta () direção É a medida do ângulo que a reta forma com o semieixo das abscissas (positivo) no sentido anti-horário.

Leia mais

RETA E CIRCUNFERÊNCIA

RETA E CIRCUNFERÊNCIA RETA E CIRCUNFERÊNCIA - 016 1. (Unifesp 016) Na figura, as retas r, s e t estão em um mesmo plano cartesiano. Sabe-se que r e t passam pela origem desse sistema, e que PQRS é um trapézio. a) Determine

Leia mais

Equações da reta no plano

Equações da reta no plano 3 Equações da reta no plano Sumário 3.1 Introdução....................... 2 3.2 Equação paramétrica da reta............. 2 3.3 Equação cartesiana da reta.............. 7 3.4 Equação am ou reduzida da reta..........

Leia mais

Notas de Aula Disciplina Matemática Tópico 05 Licenciatura em Matemática Osasco -2010

Notas de Aula Disciplina Matemática Tópico 05 Licenciatura em Matemática Osasco -2010 1. Função Afim Uma função f: R R definida por uma expressão do tipo f x = a. x + b com a e b números reais constantes é denominada função afim ou função polinomial do primeiro grau. A função afim está

Leia mais

Título do Livro. Capítulo 5

Título do Livro. Capítulo 5 Capítulo 5 5. Geometria Analítica A Geometria Analítica tornou possível o estudo da Geometria através da Álgebra. Além de proporcionar a interpretação geométrica de diversas equações algébricas. 5.1. Sistema

Leia mais

GAAL /1 - Simulado - 2 produto escalar, produto vetorial, retas e planos. Exercício 1: Determine a equação do plano em cada situação descrita.

GAAL /1 - Simulado - 2 produto escalar, produto vetorial, retas e planos. Exercício 1: Determine a equação do plano em cada situação descrita. GAAL - 2013/1 - Simulado - 2 produto escalar, produto vetorial, retas e planos SOLUÇÕES Exercício 1: Determine a equação do plano em cada situação descrita. (a) O plano passa pelo ponto A = (2, 0, 2) e

Leia mais

1 Vetores no Plano e no Espaço

1 Vetores no Plano e no Espaço 1 Vetores no Plano e no Espaço Definimos as componentes de um vetor no espaço de forma análoga a que fizemos com vetores no plano. Vamos inicialmente introduzir um sistema de coordenadas retangulares no

Leia mais

Capítulo 1-Sistemas de Coordenadas, Intervalos e Inequações

Capítulo 1-Sistemas de Coordenadas, Intervalos e Inequações Capítulo 1-Sistemas de Coordenadas, Intervalos e Inequações 1 Sistema Unidimensional de Coordenadas Cartesianas Conceito: Neste sistema, também chamado de Sistema Linear, um ponto pode se mover livremente

Leia mais

Pesquisa Operacional

Pesquisa Operacional Faculdade de Engenharia - Campus de Guaratinguetá Pesquisa Operacional Fabrício Maciel fabricio@feg.unesp.br Departamento de Produção 1 Programação linear Sumário Modelagem e limitações da Programação

Leia mais

Engenharia de Produção Pesquisa Operacional em Sistemas I - Notas de aula. Universidade Salgado de Oliveira UNIVERSO BH

Engenharia de Produção Pesquisa Operacional em Sistemas I - Notas de aula. Universidade Salgado de Oliveira UNIVERSO BH Universidade Salgado de Oliveira UNIVERSO BH Engenharia de Produção Análise de Sistemas/Sistemas de Informação Pesquisa Operacional em Sistemas I Os conceitos e desenvolvimentos apresentados neste arquivo

Leia mais

FUNDAMENTOS DA MATEMÁTICA A

FUNDAMENTOS DA MATEMÁTICA A VICE-REITORIA DE ENSINO DE GRADUAÇÃO E CORPO DISCENTE COORDENAÇÃO DE EDUCAÇÃO A DISTÂNCIA FUNDAMENTOS DA MATEMÁTICA A Rio de Janeiro / 007 TODOS OS DIREITOS RESERVADOS À UNIVERSIDADE CASTELO BRANCO SUMÁRIO

Leia mais

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA - 015 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0),

Leia mais

α ( u 1 - u 2 ) = u 3 - u 2.

α ( u 1 - u 2 ) = u 3 - u 2. 2- NOÇÕES DE CONVEXIDADE E FORMULAÇÃO MATEMÁTICA DE PROBLEMAS DE PROGRAMAÇÃO LINEAR 21 Noções de Convexidade 211 - Combinação Convexa de pontos ponto b = αx 1 Considere C um conjunto contendo os pontos

Leia mais

Em Matemática existem situações em que há necessidade de distinguir dois pares pela ordem dos elementos. Por exemplo, no sistema de equações

Em Matemática existem situações em que há necessidade de distinguir dois pares pela ordem dos elementos. Por exemplo, no sistema de equações UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Relações Prof.: Rogério Dias

Leia mais

Capítulo 19. Coordenadas polares

Capítulo 19. Coordenadas polares Capítulo 19 Coordenadas polares Neste capítulo, veremos que há outra maneira de expressar a posição de um ponto no plano, distinta da forma cartesiana. Embora os sistemas cartesianos sejam muito utilizados,

Leia mais

PROGRAMAÇÃO LINEAR 11º ANO MATEMÁTICA A

PROGRAMAÇÃO LINEAR 11º ANO MATEMÁTICA A PROGRAMAÇÃO LINEAR 11º ANO MATEMÁTICA A Prof.ª: Maria João Mendes Vieira ESC 11MatA 2012/2013 PROGRAMAÇÃO LINEAR A programação linear é uma "ferramenta" matemática que permite encontrar a solução ótima

Leia mais

Quantos números pares, formados por algarismos distintos, existem entre 500 e 2000?

Quantos números pares, formados por algarismos distintos, existem entre 500 e 2000? PROVA DE MATEMÁTICA - TURMAS DO 3 O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - AGOSTO DE 011. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 01 Quantos

Leia mais

Fundação CECIERJ/ Consórcio CEDERJ. Matemática 3º Ano - 3º Bimestre / Plano de Trabalho. Geometria Analítica. Tarefa 2

Fundação CECIERJ/ Consórcio CEDERJ. Matemática 3º Ano - 3º Bimestre / Plano de Trabalho. Geometria Analítica. Tarefa 2 Fundação CECIERJ/ Consórcio CEDERJ Matemática 3º Ano - 3º Bimestre / 2014 Plano de Trabalho Geometria Analítica Tarefa 2 Cursista: Jocimar de Avila Tutora: Danúbia 1 S u m á r i o Introdução.....................................

Leia mais

Estudante: Circunferência: Equação reduzida da circunferência: Circunferência: Consideremos uma circunferência de centro C (a, b) e raio r.

Estudante: Circunferência: Equação reduzida da circunferência: Circunferência: Consideremos uma circunferência de centro C (a, b) e raio r. Gênesis Soares Jaboatão, de de 014. Estudante: Circunferência: Circunferência: A circunferência é o conjunto de todos os pontos de plano equidistantes de outro ponto C do mesmo plano chamado centro da

Leia mais

Apresentaremos as equações do plano: Equação vetorial e Equação geral do. = AB e v. C A u B. ) não-colineares do plano.

Apresentaremos as equações do plano: Equação vetorial e Equação geral do. = AB e v. C A u B. ) não-colineares do plano. CAPÍTULO VIII PLANO Consideremos em V 3 o sistema de referência (O, i, j, k ), onde E = ( i, j, k ) é base ortonormal positiva e O(0, 0, 0). 8.1. EQUAÇÕES DO PLANO plano. Apresentaremos as equações do

Leia mais

Prof. Denise Benino - UNINOVE

Prof. Denise Benino - UNINOVE Pequisa Operacional - Prof. Denise Benino denise.benino@uninove.br Introdução Pesquisa Operacional A Pesquisa Operacional é uma ciência aplicada voltada para a resolução de problemas reais. Tendo como

Leia mais

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial 76 Capítulo 4 Distâncias no plano e regiões no plano 1. Distância de um ponto a uma reta Dados um ponto P e uma reta r no plano, já sabemos calcular a distância de P a cada ponto P r. Definição 1 Definimos

Leia mais

EAD 350 Pesquisa Operacional Aula 03 Parte 1 Revisão Preço-Sombra e Análise de Sensibilidade

EAD 350 Pesquisa Operacional Aula 03 Parte 1 Revisão Preço-Sombra e Análise de Sensibilidade ED 30 Pesquisa Operacional ula 03 Parte Revisão Preço-Sombra e nálise de Sensibilidade Profa. driana ackx Noronha Viana (Participação Prof. Cesar lexandre de Souza) backx@usp.br FE/USP ibliografia para

Leia mais

Capítulo 3. Fig Fig. 3.2

Capítulo 3. Fig Fig. 3.2 Capítulo 3 3.1. Definição No estudo científico e na engenharia muitas vezes precisamos descrever como uma quantidade varia ou depende de outra. O termo função foi primeiramente usado por Leibniz justamente

Leia mais

Geometria Analítica - Aula

Geometria Analítica - Aula Geometria Analítica - Aula 18 228 IM-UFF K. Frensel - J. Delgado Aula 19 Continuamos com o nosso estudo da equação Ax 2 + Cy 2 + Dx + Ey + F = 0 1. Hipérbole Definição 1 Uma hipérbole, H, de focos F 1

Leia mais

Recursos críticos disponíveis: Madeira 300 metros Horas de trabalho 110 horas

Recursos críticos disponíveis: Madeira 300 metros Horas de trabalho 110 horas I. Programação Linear (PL) 1. Introdução A Programação Linear é, no campo mais vasto da Programação Matemática, uma das variantes de aplicação generalizada em apoio da Decisão. O termo "Programação" deve

Leia mais

P1 de Álgebra Linear I

P1 de Álgebra Linear I P1 de Álgebra Linear I 2008.1 Gabarito 1) Decida se cada afirmação a seguir é verdadeira ou falsa e marque COM CANETA sua resposta no quadro a seguir. Itens V F N 1.a x 1.b x 1.c x 1.d x 1.e x 1.a) Para

Leia mais

Referenciais Cartesianos

Referenciais Cartesianos Referenciais Cartesianos René Descartes (1596-1650) Filósofo e Matemático Francês. Do seu trabalho enquanto Matemático, destaca-se o estabelecimento da relação entre a Álgebra e a Geometria. Nasceu assim

Leia mais

Resposta: f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo 5, 5 5, 5 3, 3. f(g(x) = x 5.

Resposta: f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo 5, 5 5, 5 3, 3. f(g(x) = x 5. 1. (Espcex (Aman) 016) Considere as funções reais f e g, tais que f(x) = x + 4 e f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis

Leia mais