Distribuição de Erlang
|
|
|
- Vinícius Henriques Morais
- 10 Há anos
- Visualizações:
Transcrição
1 Distribuição de Erlang Uma variável aleatória exponencial descreve a distância até que a primeira contagem é obtida em um processo de Poisson. Generalização da distribuição exponencial : O comprimento até r contagens ocorrem em um processo de Poisson. Variável aleatória de Erlang
2 Exemplo. As falhas de grandes unidades processadoras de grandes sistemas computacionais são frequentemente modeladas como um processo de Poisson. Tipicamente falhas não são causadas por desgaste de componentes e sim por falhas aleatória de um grande número de circuitos semicondutores nas unidades. Suponha que as unidades que falham são imediatamente consertadas. o número médio de falhas por hora é X : tempo até que 4 falhas ocorram. Determine PX> ( 40000)
3 Seja N o número de falhas em h de operação. O tempo até 4 falhas excede h se e somente se o número de falhas in h é 3 ou menos. PX ( > 40000) = PN ( 3) A suposição de que as falhas seguem um processo de Poisson implica que N term uma distribuição de Poisson com λ = EN ( ) = Np= 40000(0.0001) = 4 falhas por 4000h Dist. Poisson: fx ( ) = e λ x λ x!
4 Portanto, 3 4 k e 4 Px ( > 40000) = PN ( 3) = = k! k = 0 Definição. A variável aleatória X que é igual ao intervalo de comprimento até que r contagens ocorram em um processo de Poisson com média λ>0, tem uma variável aleatória X de Erlang com parâmetros, e, e densidade de probabilidade dada por λ r r r 1 λx λ x e f( x) =, x> 0, r = 1,2, ( r 1)!
5
6 > f:=(x,r,lambda)->lambda^r*x^(r-1)*exp(-lambda*x)/(r-1)!; f := ( x, r, λ ) λ r x ( r 1 ) ( λ x ) e ( r 1 )! > plot([f(x,1,1),f(x,5,1),f(x,5,2)],x=0..13,color=[red, green, blue]);
7 Notemos que onde r r 1 λx 0 λ x e Γ() r dx = ( r 1)! ( r 1)! 1 ( ) t z z e t dt, Re( z) 0 0 Γ = > parte real de z Éa função gama que é tabelada. Se z = n é inteiro, Como r é inteiro, Γ ( n) = ( n 1)! r r 1 λx 0 λ x e ( r 1)! dx = 1
8 Comprovamos os resultados anteriores no Maple: > f:=(x,r,lambda)->lambda^r*x^(r-1)*exp(-lambda*x)/(r-1)!; f := ( x, r, λ ) λ r x ( r 1 ) ( λ x ) e ( r 1 )! > assume(lambda>0); > I1:=int(f(x,r,lambda),x=0..infinity); > assume(r::integer); > simplify(i1,gamma); 1 I1 := Γ( r) ( r 1)!
9 Notemos ainda que r r 1 λx x 0 λ x e Γ(, r λx0 ) dx = ( r 1)! ( r 1)! onde t ( a 1) az e t dt Γ (, ) = z é denomindada função gama incompleta. Tal função também é tabelada.
10 No Maple, > f:=(x,r,lambda)->lambda^r*x^(r-1)*exp(-lambda*x)/(r-1)!; f := ( x, r, λ ) λ r x ( r 1 ) ( λ x ) e ( r 1 )! > assume(lambda>0); > assume(x0>0); >int(f(x,r,lambda),x=x0..infinity); Γ ( r, λ x0~ ) ( r 1)!
11 Resolução do exemplo anterior: r r 1 λx λ x e P( X > 40000) = f ( x) dx = dx ( r 1)! x x e Γ(4,4) dx = = = = (4 1)! 3! 3! Variável aleatória de Erlang Variável aletória binomial negativa Soma de r variáveis aleatórias geométricas Soma de r variáveis aleatórias exponenciais
12 Valor esperado e variância da variável aletória de Erlang μ r λ 2 = EX ( ) =, σ = VX ( ) = r 2 λ > assume(lambda>0); > int(x*f(x,r,lambda),x=0..infinity); x f ( x, r, λ ) 0 dx Γ ( r + 1 ) λ ( r 1 )! > mu:=implify(%,gamma); μ := r λ
13 > int((x-mu)^2*f(x,r,lambda),x=0..infinity); ( x μ) 2 f ( x, r, λ ) 0 dx Γ ( 2 + r) λ 2 ( r 1)! 2 r Γ ( r + 1 ) + λ 2 ( r 1 )! r 2 Γ( r) λ 2 ( r 1)! > simplify(%,gamma); r λ 2
14 Distribuição Gama - Generalização da distribuição de Erlang para r não inteiro r r 1 λx λ x e f( x) =, x> 0, r = 1,2, ( r 1)! r r 1 λx λ x e f( x) =, Γ() r x> 0, r = 1,2, r > 0, λ > 0
15 r r 1 λx λ x e f( x) =, x> 0, r > 0, λ > 0 Γ() r função gama Propriedades: t r 1 () r e t dt, r 0 0 Γ = > 1 Γ = 2 Γ () r = ( r 1)( Γ r 1) ( ) π n inteiro Γ ( n) = ( n 1)! Γ (1) = 0! = 1
16 r r 1 λx λ x e f( x) =, x> 0, r = 1/2,1,3/2,, λ = 1/2 Γ() r Distribuição χ - quadrado
17 > plot([f(x,1,1),f(x,4,2),f(x,5,7)],x=0..6, color=[red,green,blue]);
18 > plot([f(x,1,1/2),f(x,3/2,1/2),f(x,2,1/2)],x=0..14, color=[red,green,blue]);
19 Distribuição de Weibull Distribuição usada para modelar o tempo até uma falha em diversos sistemas físicos. Número de falhas aumenta com o tempo Número de falhas decresce com o tempo (alguns semi-condutores) Número de falhas permanece constante (falhas por causas aleatórias)
20 Definição. A variável aleatória X com função densidade de probabilidade β ( x ) β 1 β ( x / δ) fx () = e, x> 0 δ δ é uma variável aleatória de Weibull, onde δ > 0 parâmetro de escala β > 0 parâmetro de forma
21 Função de distribuição cumulativa: Prova: x Fx ( ) = ftdt ( ) = 1 e 0 ( x / δ) > fwb:=(x,beta,delta)->(beta/delta)*(x/delta)^(beta-1)* exp(-(x/delta)^beta); fwb := ( x, β, δ) β x δ ( β 1 ) > assume(beta>0);assume(delta>0); > int(fwb(t,beta,delta),t=0..x); δ x δ e 1 e ( x β δ ( β ) ) β β
22 > plot([fwb(x,1,1),fwb(x,6.2,3.4),fwb(x,3.4,4.1)], x=0..7,color=[blue,red,black]);
23 Média e Variância μ 1 = EX ( ) = δγ 1+ β σ = VX ( ) = δ Γ 1 δ 1 + Γ + β β 2
24 > mu:=int(t*fwb(t,beta,delta),t=0..infinity); μ:= δ Γ 1 + β β > int((t-mu)^2*fwb(t,beta,delta),t=0..infinity); δ β Γ + β Γ 1 + β β 2
25 Exemplo. O tempo de falha de um mancal em um eixo mecânico é modelado por uma variável aleatória de Weibull com β = 1 2 δ = 5000h Determine tempo médio até a falha. > plot(fwb(x,1/2,5000));
26 EX ( ) = 5000 Γ (1 + 1/ 0.5) = 5000 Γ (3) = 5000(2!) = 10000h Determine a probabilidade de que o mancal dure pelo menos 6000h. Px ( > 6000) = 1 F(6000) = exp = e = ( 6000 ) 1/ Ou seja, 33.4% dos mancais duram pelo menos 6000h.
Variáveis Aleatórias Contínuas e Distribuição de Probabilidad
Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte IV 2012/02 Distribuição Exponencial Vamos relembrar a definição de uma variável com Distribuição Poisson. Número de falhas ao longo
Probabilidade. Distribuição Exponencial
Probabilidade Distribuição Exponencial Aplicação Aplicada nos casos onde queremos analisar o espaço ou intervalo de acontecimento de um evento; Na distribuição de Poisson estimativa da quantidade de eventos
Probabilidade. Distribuição Exponencial
Probabilidade Distribuição Exponencial Aplicação Aplicada nos casos onde queremos analisar o espaço ou intervalo de acontecimento de um evento; Na distribuição de Poisson estimativa da quantidade de eventos
DISTRIBUIÇÕES DE PROBABILIDADE
DISTRIBUIÇÕES DE PROBABILIDADE i1 Introdução Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Há dois tipos
Descreve de uma forma adequada o
EST029 Cálculo de Probabilidade I Cap. 8 - Variáveis Aleatórias Contínuas Prof. Clécio da Silva Ferreira Depto Estatística - UFJF 1 Variável Aleatória Normal Caraterização: Descreve de uma forma adequada
Aproximação normal para as distribuições binomial e Poisson
Aproximação normal para as distribuições binomial e Poisson Distribuição normal: aproximação para uma variável aleatória com um grande número de amostras. Distribuição binomial n Distribuição normal Difícil
Exercícios Resolvidos da Distribuição de Poisson
. a. Qual é a diferença entre as distribuições de Poisson e inomial? b. Dê alguns exemplos de quando podemos aplicar a distribuição de Poisson. c. Dê a fórmula da distribuição de Poisson e o significado
Logo, para estar entre os 1% mais caros, o preço do carro deve ser IGUAL OU SUPERIOR A:
MQI 00 ESTATÍSTICA PARA METROLOGIA - SEMESTRE 008.0 Teste 6/05/008 GABARITO PROBLEMA O preço de um certo carro usado é uma variável Normal com média R$ 5 mil e desvio padrão R$ 400,00. a) Você está interessado
Utilizando-se as relações entre as funções básicas é possível obter as demais funções de sobrevivência.
MÉTODOS PARAMÉTRICOS PARA A ANÁLISE DE DADOS DE SOBREVIVÊNCIA Nesta abordagem paramétrica, para estimar as funções básicas da análise de sobrevida, assume-se que o tempo de falha T segue uma distribuição
PE-MEEC 1S 09/10 118. Capítulo 4 - Variáveis aleatórias e. 4.1 Variáveis. densidade de probabilidade 4.2 Valor esperado,
Capítulo 4 - Variáveis aleatórias e distribuições contínuas 4.1 Variáveis aleatórias contínuas. Função densidade de probabilidade 4.2 Valor esperado, variância e algumas das suas propriedades. Moda e quantis
Aula 2: Variáveis Aleatórias Discretas e Contínuas e suas Principais Distribuições.
Aula 2: Variáveis Aleatórias Discretas e Contínuas e suas Principais Distribuições. Prof. Leandro Chaves Rêgo Programa de Pós-Graduação em Engenharia de Produção - UFPE Recife, 14 de Março de 2012 Tipos
Tipos de variáveis aleatórias
Tipos de variáveis aleatórias Variáveis aleatórias discretas se assumem um conjunto finito ou infinito numerável de valores. Exemplos: número de pintas que sai no lançamento de um dado; registo, a intervalos
Probabilidade e Estatística 2009/1 Prof. Fernando Deeke Sasse CCT-UDESC Exercícios 2
Distribuição exponencial Solução. (a) f := (lambda, x) -> lambda*exp(-lambda*x); f := l, x /l e Kl x Probabilidade e Estatística 009/ Prof. Fernando Deeke Sasse CCT-UDESC Exercícios A distância entre os
Variáveis Aleatórias Discretas e Distribuições de Probabilidade
Variáveis Aleatórias Discretas e Distribuições de Probabilidade Objetivos do aprendizado a.determinar probabilidades a partir de funções de probabilidade b.determinar probabilidades a partir de funções
Modelos de Filas de Espera
Departamento de Informática Modelos de Filas de Espera Métodos Quantitativos LEI 2006/2007 Susana Nascimento ([email protected]) Advertência Autores João Moura Pires ([email protected]) Susana Nascimento
Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência.
Professor: Leandro Zvirtes UDESC/CCT Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Há dois tipos de
Métodos de Monte Carlo
Departamento de Estatística - UFJF Outubro e Novembro de 2014 são métodos de simulação São utilizados quando não temos uma forma fechada para resolver o problema Muito populares em Estatística, Matemática,
Variáveis Aleatórias Discretas e Distribuição de Probabilidade
Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte IV 2012/02 1 Distribuição Poisson Objetivos Ao final deste capítulo você deve ser capaz de: Ententer suposições para cada uma das
Por que aparecem as filas? Não é eficiente, nem racional, que cada um disponha de todos os recursos individualmente. Por exemplo:
Por que aparecem as filas? Não é eficiente, nem racional, que cada um disponha de todos os recursos individualmente. Por exemplo: que cada pessoa disponha do uso exclusivo de uma rua para se movimentar;
Variáveis Aleatórias Contínuas
Variáveis aleatórias contínuas: vamos considerar agora uma lista de quantidades as quais não é possível associar uma tabela de probabilidades pontuais ou frequências tempo de duração de uma chamada telefônica
Teoria das filas. Clientes. Fila
Teoria das filas 1 - Elementos de uma fila: População Clientes Fila Servidores 1 3 Atendimento Características de uma fila:.1 Clientes e tamanho da população População infinita > Chegadas independentes
DISTRIBUIÇÃO NORMAL 1
DISTRIBUIÇÃO NORMAL 1 D ensid ade Introdução Exemplo : Observamos o peso, em kg, de 1500 pessoas adultas selecionadas ao acaso em uma população. O histograma por densidade é o seguinte: 0.04 0.03 0.02
Geração de Variáveis Aleatórias Contínuas. Mat02274 Estatística Computacional. A Normal. A Normal. Normal Log-Normal Gama Erlang Beta.
Estatística Computacional Geração de Variáveis Aleatórias Contínuas 6 Prof. Lorí Viali, Dr. [email protected] http://www.mat.ufrgs.br/~viali/ Normal Log-Normal Gama Erlang Beta Weibull Student (t) Qui-Quadrado
Módulo III: Processos de Poisson, Gaussiano e Wiener
Módulo III: Processos de Poisson, Gaussiano e Wiener Wamberto J. L. Queiroz Universidade Federal de Campina Grande-UFCG Departamento de Engenharia Elétrica Processos Estocásticos Campina Grande - PB Módulo
Simulação Estocástica
Simulação Estocástica O que é Simulação Estocástica? Simulação: ato ou efeito de simular Disfarce, fingimento,... Experiência ou ensaio realizado com o auxílio de modelos. Aleatório: dependente de circunstâncias
CAP4: Distribuições Contínuas Parte 1 Distribuição Normal
CAP4: Distribuições Contínuas Parte 1 Distribuição Normal Quando a variável sendo medida é expressa em uma escala contínua, sua distribuição de probabilidade é chamada distribuição contínua. Exemplo 4.1
Estatística stica para Metrologia
Aula 5 Estatística stica para Metrologia Aula 5 Variáveis Contínuas Uniforme Exponencial Normal Lognormal Mônica Barros, D.Sc. Maio de 008 1 Distribuição Uniforme A probabilidade de ocorrência em dois
DISTRIBUIÇÃO DE WEIBULL CONCEITOS BÁSICOS APLICAÇÕES
LUIZ CLAUDIO BENCK KEVIN WONG TAMARA CANDIDO DISTRIBUIÇÃO DE WEIBULL CONCEITOS BÁSICOS APLICAÇÕES Trabalho apresentado para avaliação na disciplina de Estatística e Métodos Numéricos do Curso de Administração
CAPÍTULO 4 Exercícios Resolvidos
CAPÍTULO 4 Exercícios Resolvidos R4.1) Condição para concretização de uma venda Um certo tipo de componente é vendido em lotes de 1000 itens. O preço de venda do lote é usualmente de 60 u.m. Um determinado
INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA BACHARELADO EM SISTEMAS DE INFORMAÇÃO LISTA DE EXERCÍCIOS (VARIÁVEIS ALEATÓRIAS) ALUNO(A):
INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA BACHARELADO EM SISTEMAS DE INFORMAÇÃO LISTA DE EXERCÍCIOS (VARIÁVEIS ALEATÓRIAS) ALUNO(A): 1) A demanda quotidiana por um determinado produto no mercadinho
rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aleatórias nuas
ITA - Laboratório rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aula 04: Variáveis Aleatórias Contínuas nuas Função densidade de probabilidade contínua nua f(x) a b f(x) 0 para
Momentos de uma variável aleatória
Momentos de uma variável aleatória O cálculo de E[X] (valor médio de X) e E[X 2 ] (que intervém na variância), pode ser generalizado pensando em E[X k ] com k IN. Definição: Dada uma v.a. X, chama-se momento
Processos Estocásticos
Processos Estocásticos Terceira Lista de Exercícios 22 de julho de 20 Seja X uma VA contínua com função densidade de probabilidade f dada por Calcule P ( < X < 2. f(x = 2 e x x R. A fdp dada tem o seguinte
Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal
Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:
Distribuição Uniforme Discreta. Modelos de distribuições discretas. Distribuição de Bernoulli. Distribuição Uniforme Discreta
Distribuição Uniforme Discreta Modelos de distribuições discretas Notas de Aula da Profa. Verónica González-López e do Prof. Jesús Enrique García, digitadas por Beatriz Cuyabano. Acréscimos e modicações:
2 Modelo Clássico de Cramér-Lundberg
2 Modelo Clássico de Cramér-Lundberg 2.1 Conceitos fundamentais Nesta sessão introduziremos alguns conceitos fundamentais que serão utilizados na descrição do modelo de ruína. A lei de probabilidade que
Distribuições de Probabilidade Distribuição Binomial
PROBABILIDADES Distribuições de Probabilidade Distribuição Binomial BERTOLO PRELIMINARES Quando aplicamos a Estatística na resolução de situações-problema, verificamos que muitas delas apresentam as mesmas
LISTA DE EXERCÍCIOS VARIÁVEIS ALEATÓRIAS
LISTA DE EXERCÍCIOS VARIÁVEIS ALEATÓRIAS 1. Construir um quadro e o gráfico de uma distribuição de probabilidade para a variável aleatória X: número de coroas obtidas no lançamento de duas moedas. 2. Fazer
Probabilidade e Modelos Probabilísticos
Probabilidade e Modelos Probabilísticos 2ª Parte: modelos probabilísticos para variáveis aleatórias contínuas, modelo uniforme, modelo exponencial, modelo normal 1 Distribuição de Probabilidades A distribuição
Versão 1.0 09/Set/2013. www.wedocenter.com.br. WeDo Soluções para Contact Center Consultorias
Verificação do Modelo de Erlang Ponto de Análise: Processo de chegada de contatos Operações de Contact Center Receptivo Por: Daniel Lima e Juliano Nascimento Versão 1.0 09/Set/2013 Ponto de Análise Processo
Modelo Binomial. 1º semestre de 2009- Gabarito 2. Distribuição Binomial ME323
Exercício 01 Acredita-se que 20% dos moradores das proximidades de uma grande indústria siderúrgica tem alergia aos poluentes lançados ao ar. Admitindo que este percentual de alérgicos é real (correto),
MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS
MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS Definições Variáveis Aleatórias Uma variável aleatória representa um valor numérico possível de um evento incerto. Variáveis aleatórias
PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS. Aula 7 11 e 12 abril MOQ-12 Probabilidades e Int. a Processos Estocásticos
PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS Aula 7 11 e 12 abril 2007 1 Distribuições Discretas 1. Distribuição Bernoulli 2. Distribuição Binomial 3. Distribuição Geométrica 4. Distribuição Pascal
Distribuições de Probabilidade Distribuição Normal
PROBABILIDADES Distribuições de Probabilidade Distribuição Normal BERTOLO PRELIMINARES Quando aplicamos a Estatística na resolução de situações-problema, verificamos que muitas delas apresentam as mesmas
Exercício de Revisao 1
Exercício de Revisao 1 Considere que seu trabalho é comparar o desempenho de dois algoritmos (A e B) de computação gráfica, que usam métodos diferentes para geração de faces humanas realistas. São sistema
Sumário. 2 Índice Remissivo 11
i Sumário 1 Principais Distribuições Contínuas 1 1.1 Distribuição Uniforme................................. 1 1.2 A Distribuição Normal................................. 2 1.2.1 Padronização e Tabulação
Primeira Lista de Exercícios de Estatística
Primeira Lista de Exercícios de Estatística Professor Marcelo Fernandes Monitor: Márcio Salvato 1. Suponha que o universo seja formado pelos naturais de 1 a 10. Sejam A = {2, 3, 4}, B = {3, 4, 5}, C =
(b) Qual a probabilidade de ter sido transmitido um zero, sabendo que foi recebido um (1.0) zero?
Grupo I 5.0 valores 1. Um sistema de comunicação binária transmite zeros e uns com probabilidade 0.5 em qualquer dos casos. Devido ao ruído existente no canal de comunicação há erros na recepção: transmitido
Avaliação de Desempenho de Sistemas
Avaliação de Desempenho de Sistemas Modelo de Filas M/M/1 e M/M/m Prof. Othon Batista [email protected] Modelo de Filas Nas aulas anteriores vimos a necessidade de se utilizar uma distribuição para representar
ESCOLA SECUNDÁRIA/3 RAINHA SANTA ISABEL- ESTREMOZ MATEMÁTICA A 12ºANO ANO LETIVO 2015/2016 OBJECTIVOS ESPECÍFICOS
PROBABILIDADES E COMBINATÓRIA ESCOLA SECUNDÁRIA/3 RAINHA SANTA ISABEL- ESTREMOZ MATEMÁTICA A 12ºANO ANO LETIVO 2015/2016 Introdução ao cálculo Conhecer terminologia das probabilidades de Probabilidades
Tiago Viana Flor de Santana
ESTATÍSTICA BÁSICA DISTRIBUIÇÃO NORMAL DE PROBABILIDADE (MODELO NORMAL) Tiago Viana Flor de Santana www.uel.br/pessoal/tiagodesantana/ [email protected] sala 07 Curso: MATEMÁTICA Universidade Estadual
Geração de Números Aleatórios e Simulação
Departamento de Informática Geração de Números Aleatórios e imulação Métodos Quantitativos LEI 26/27 usana Nascimento ([email protected]) Advertência Autores João Moura Pires ([email protected]) usana
Simulação de Evento Discreto
Simulação de Evento Discreto Simulação de evento discreto As variáveis de estado modificam-se apenas pela ocorrência de eventos Os eventos ocorrem instantaneamente em pontos separados no tempo São simulados
Processos Estocásticos
Processos Estocásticos Segunda Lista de Exercícios 01 de julho de 2013 1 Uma indústria fabrica peças, das quais 1 5 são defeituosas. Dois compradores, A e B, classificam os lotes de peças adquiridos em
Distribuições de Probabilidade
Distribuições de Probabilidade 7 6 5 4 3 2 1 0 Normal 1 2 3 4 5 6 7 8 9 10 11 Exemplos: Temperatura do ar 20 18 16 14 12 10 8 6 4 2 0 Assimetrica Positiva 1 2 3 4 5 6 7 8 9 10 11 Exemplos: Precipitação
Problemas Resolvidos. 1. Distr. Uniforme Contínua. (a) f X (x; a, b) = 1 1 (x µ) 2. (b) µ = E(x) = a+b. e V ar(x) = (b a)2. 2. Distr.
Distribuições Contínuas - Problemas Resolvidos. Distr. Uniforme Contínua (a) f X (x; a, b) = b a (b) µ = E(x) = a+b e V ar(x) = (b a). Distr. Gaussiana (a) f X (x; a, b) = (x µ) π e (b) µ = E(x) = µ e
Modelagem e Análise Aula 9
Modelagem e Análise Aula 9 Aula passada Equações de fluxo Tempo contínuo Aula de hoje Parâmetros de uma fila Medidas de desempenho Cálculo do tempo de espera Resultado de Little Parâmetros da Fila chegada
Premium até 10 S.M. 180 60 30 20 10 a 20 S.M. 80 40 40 40 20 a 30 S.M. 60 30 60 70 mais de 30 S.M. 40 20 70 160
1 MQI 2003 Estatística para Metrologia semestre 2008.01 LISTA DE EXERCÍCIOS # 1 PROBLEMA 1 Uma empresa de TV a cabo toma uma amostra de 1000 clientes, com o objetivo de verificar a relação entre a renda
CAPÍTULO 5 - Exercícios
CAPÍTULO 5 - Exercícios Distibuições de variáveis aleatórias discretas: Binomial 1. Se 20% dos parafusos produzidos por uma máquina são defeituosos, determinar a probabilidade de, entre 4 parafusos escolhidos
Occurrence and quantity of precipitation can be modelled simultaneously. Peter K. Dunn Autor Braga Junior e Eduardo Gomes Apresentação
Occurrence and quantity of precipitation can be modelled simultaneously Peter K. Dunn Autor Apresentação Introdução Introdução Estudos sobre modelagem da precipitação de chuvas são importantes, pois permitem
Exercícios Resolvidos da Distribuição Binomial
. a. Estabeleça as condições exigidas para se aplicar a distribuição binomial? b. Qual é a probabilidade de caras em lançamentos de uma moeda honesta? c. Qual é a probabilidade de menos que caras em lançamentos
Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. Professora: Denise Beatriz T. P. do Areal Ferrari
Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica Professora: Denise Beatriz T. P. do Areal Ferrari [email protected] Distribuições Discretas Uniforme Bernoulli Binomial Poisson
Lista de Exercícios #2 Assunto: Variáveis Aleatórias Discretas
1. ANPEC 2018 Questão 3 Considere um indivíduo procurando emprego. Para cada entrevista de emprego (X) esse indivíduo tem um custo linear (C) de 10,00 Reais. Suponha que a probabilidade de sucesso em uma
Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF)
Métodos Estatísticos II 1 o. Semestre de 010 ExercíciosProgramados1e VersãoparaoTutor Profa. Ana Maria Farias (UFF) Esses exercícios abrangem a matéria das primeiras semanas de aula (Aula 1) Os alunos
Lista 4. 2 de junho de 2014
Lista 4 2 de junho de 24 Seção 5.. (a) Estime a área do gráfico de f(x) = cos x de x = até x = π/2 usando quatro retângulos aproximantes e extremidades direitas. Esboce os gráficos e os retângulos. Sua
Teorema do Limite Central
Teorema do Limite Central Bacharelado em Economia - FEA - Noturno 1 o Semestre 2014 MAE0219 (IME-USP) Teorema do Limite Central 1 o Semestre 2014 1 / 47 Objetivos da Aula Sumário 1 Objetivos da Aula 2
Distribuição de Probabilidade. Prof. Ademilson
Distribuição de Probabilidade Prof. Ademilson Distribuição de Probabilidade Em Estatística, uma distribuição de probabilidade descreve a chance que uma variável pode assumir ao longo de um espaço de valores.
Avaliação e Desempenho Aula 5
Avaliação e Desempenho Aula 5 Aula passada Revisão de probabilidade Eventos e probabilidade Independência Prob. condicional Aula de hoje Variáveis aleatórias discretas e contínuas PMF, CDF e função densidade
A distribuição Weibull-Poisson
A distribuição Weibull-Poisson Estela Maris P. Bereta - DEs/UFSCar Francisco Louzada-Neto - DEs/UFSCar Maria Aparecida de Paiva Franco - DEs/UFSCar Resumo Neste trabalho é proposta uma distribuição de
Tipos de Modelos. Exemplos. Modelo determinístico. Exemplos. Modelo probabilístico. Causas Efeito. Determinístico. Sistema Real.
Tipos de Modelos Sistema Real Determinístico Prof. Lorí Viali, Dr. [email protected] http://www.mat.ufrgs.br/~viali/ Probabilístico Modelo determinístico Exemplos Gravitação F GM M /r Causas Efeito Aceleração
Geração de variáveis aleatórias
Geração de variáveis aleatórias Danilo Oliveira, Matheus Torquato Centro de Informática Universidade Federal de Pernambuco 5 de setembro de 2012 Danilo Oliveira, Matheus Torquato () 5 de setembro de 2012
TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C
Questão TIPO DE PROVA: A Se a circunferência de um círculo tiver o seu comprimento aumentado de 00%, a área do círculo ficará aumentada de: a) 00% d) 00% b) 400% e) 00% c) 50% Aumentando o comprimento
Método Monte-Carlo. Alexandre Rosas. 23 de Março de 2009. Departamento de Física Universidade Federal da Paraíba
Departamento de Física Universidade Federal da Paraíba 23 de Março de 2009 O que são os métodos de Monte-Carlo? Métodos numéricos que utilizam amostragem estatística (em contraposição a métodos determinísticos)
Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística
Universidade Federal do Paraná Departamento de Informática Reconhecimento de Padrões Revisão de Probabilidade e Estatística Luiz Eduardo S. Oliveira, Ph.D. http://lesoliveira.net Conceitos Básicos Estamos
Escola Básica e Secundária de Velas
Escola Básica e Secundária de Velas Planificação Anual do 12º Ano Matemática A Ano letivo 2015 /2016 1º Período 2º Período 3º Período Nº DE BLOCOS PREVISTOS 39 32 24 Apresentação 0,5 1º Período 2º Período
Estatística e Probabilidade Aula 06 Distribuições de Probabilidades. Prof. Gabriel Bádue
Estatística e Probabilidade Aula 06 Distribuições de Probabilidades Prof. Gabriel Bádue Teoria A distribuição de Poisson é uma distribuição discreta de probabilidade, aplicável a ocorrências de um evento
Conceitos de Confiabilidade Características da Distribuição Weibull
Página 1 de 7 WebSite Softwares Treinamentos Consultorias Recursos ReliaSoft Empresa ReliaSoft > Reliability Hotwire > Edição 3 > Conceitos Básicos de Confiabilidade Reliability HotWire Edição 3, Maio
Bacharelado em Ciência e Tecnologia Bacharelado em Ciências e Humanidades. Representação Gráfica de Funções
Bacharelado em Ciência e Tecnologia Bacharelado em Ciências e Humanidades BC 0005 Bases Computacionais da Ciência Representação Gráfica de Funções Prof a Maria das Graças Bruno Marietto [email protected]
Bioestatística Aula 3
Aula 3 Castro Soares de Oliveira Probabilidade Probabilidade é o ramo da matemática que estuda fenômenos aleatórios. Probabilidade é uma medida que quantifica a sua incerteza frente a um possível acontecimento
Variáveis Aleatórias Contínuas
Variáveis Aleatórias Contínuas Bacharelado em Administração - FEA - Noturno 2 o Semestre 2017 MAE0219 (IME-USP) Variáveis Aleatórias Contínuas 2 o Semestre 2017 1 / 35 Objetivos da Aula Sumário 1 Objetivos
Avaliação e Desempenho Aula 18
Avaliação e Desempenho Aula 18 Aula passada Fila com buffer finito Fila com buffer infinito Medidas de interesse: vazão, número médio de clientes na fila, taxa de perda. Aula de hoje Parâmetros de uma
A integral também é conhecida como antiderivada. Uma definição também conhecida para integral indefinida é:
Integral Origem: Wikipédia, a enciclopédia livre. No cálculo, a integral de uma função foi criada para originalmente determinar a área sob uma curva no plano cartesiano e também surge naturalmente em dezenas
ALGUNS TóPICOS DE CONTAGEM E PROBABILIDADE
ALGUNS TóPICOS DE CONTAGEM E PROBABILIDADE MAT30 200/ O objetivo destas notas é ilustrar como a ideia de fazer aproximações permite uma compreensão melhor de diversos problemas de combinatória e probabilidade..
Modelos de Distribuição PARA COMPUTAÇÃO
Modelos de Distribuição MONITORIA DE ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO Distribuições Discretas Bernoulli Binomial Geométrica Hipergeométrica Poisson ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO
29/Abril/2015 Aula 17
4/Abril/015 Aula 16 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda
UNIVERSIDADE SÃO JUDAS TADEU
UNIVERSIDADE SÃO JUDAS TADEU TEORIA DAS FILAS FERNANDO MORI [email protected] A teoria das filas iniciou com o trabalho de Erlang (1909) na indústria telefônica no inicio do século vinte. Ele fez estudos
Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09
Teoria das Filas aplicadas a Sistemas Computacionais Aula 09 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas
Modelos Estocásticos. Resolução de alguns exercícios da Colectânea de Exercícios 2005/06 PROCESSOS ESTOCÁSTICOS E FILAS DE ESPERA LEGI
Modelos Estocásticos Resolução de alguns exercícios da Colectânea de Exercícios 2005/06 LEGI Capítulo 7 PROCESSOS ESTOCÁSTICOS E FILAS DE ESPERA Nota: neste capítulo ilustram-se alguns dos conceitos de
BC-0005 Bases Computacionais da Ciência. Modelagem e simulação
BC-0005 Bases Computacionais da Ciência Aula 8 Modelagem e simulação Santo André, julho de 2010 Roteiro da Aula Modelagem O que é um modelo? Tipos de modelos Simulação O que é? Como pode ser feita? Exercício:
Prof. M. Sc. Jarbas Thaunahy Santos de Almeida 1
Prof. M. Sc. Jarbas Thaunahy Santos de Almeida 1 Aula 7 Covariância e suas aplicações Roteiro Introdução Covariância Valor esperado, Variância e Desvio-padrão da soma entre duas variáveis aleatórias Retorno
Simulação com Modelos Teóricos de Probabilidade
Simulação com Modelos Teóricos de Probabilidade p. 1/21 Algumas distribuições teóricas apresentam certas características que permitem uma descrição correta de variáveis muito comuns em processos de simulação.
4ª LISTA DE EXERCÍCIOS - LOB1012. Variáveis Aleatórias Contínuas, Aproximações e TLC
4ª LISTA DE EXERCÍCIOS - LOB1012 Variáveis Aleatórias Contínuas, Aproximações e TLC Assunto: Função Densidade de Probabilidade Prof. Mariana Pereira de Melo 1. Suponha que f(x) = x/8 para 3
Processos Estocásticos
Processos Estocásticos Luiz Affonso Guedes Sumário Modelos Probabilísticos Discretos Uniforme Bernoulli Binomial Hipergeométrico Geométrico Poisson Contínuos Uniforme Normal Tempo de Vida Exponencial Gama
Introdução à Teoria das Filas
Introdução à Teoria das Filas If the facts don't fit the theory, change the facts. --Albert Einstein Notação Processo de Chegada: Se os usuários chegam nos instantes t 1, t 2,..., t j, então as variáveis
