Objetivo da Programação Inteira
|
|
|
- João Pedro Geovane Malheiro Affonso
- 7 Há anos
- Visualizações:
Transcrição
1 Universidade Federal de Itajubá Instituto de Engenharia de Produção e Gestão Pesquisa Operacional Programação inteira Prof. Dr. José Arnaldo Barra Montevechi Objetivo da Programação Inteira Max Z = 20X1 + 10X2 ST: X1 + 0,45X2 5 X1 + 1,7X2 12 X1, X2 0 Resultado (solução ótima) X1 = 2,48 X2 = 5,60 Z = 105,60 2 1
2 Objetivo da Programação Inteira Resultado (solução ótima) X1 = 2,48 X2 = 5,60 Z = 105,60 Valores contínuos - variáveis contínuas Variáveis contínuas variáveis inteiras 3 Objetivo da Programação Inteira Resultado (solução ótima)? X1 = 2,48 X2 = 5,60 Z = 105,60 4 2
3 Objetivo da Programação Inteira Resultado (solução ótima) 3? X1 = 2,48 X2 = 5,60 Z = 105,60 O arredondamento pode não levar a solução ótima! 6? 5 Objetivo da Programação Inteira O problema resolvido por técnica de Programação Inteira, pode levar a resultados bastante diferentes do arredondamento. Se o resultado implicar em valores grandes, o arredondamento normalmente pode ser utilizado. 6 3
4 Objetivo da Programação Inteira A Programação Inteira possui uma técnica particular de solução, chamada de Método Branch and Bound, que se baseia na montagem de um diagrama tipo árvore, em que cada ramo é uma opção de solução inteira. Apenas alguns ramos são testados e para cada tentativa, o Método Simplex é utilizado. O computador é indispensável! 7 Solução de um problema Max Z = 20X1 + 10X2 ST: X1 + 0,45X2 5 X1 + 1,7X2 12 X1, X2 0 X1 = 2,48 X2 = 5,60 Z = 105,60 8 4
5 Solução de um problema X1 = 2,48 X2 = 5,6 Região de solução 12 X X1 = 3 X2 = 6 Fora da Região de solução Restrição 1 Restrição X1 9 Solução de um problema Região de Solução 12 X Dentro deste polígono encontram-se os pontos candidatos a solução do problema X1 10 5
6 Solução do problema pela Programação Inteira Max Z = 20X1 + 10X2 ST: X1 + 0,45X2 5 X1 + 1,7X2 12 X1, X2 0 X1 = 3 X2 = 4 Z = Solução de um problema Região de Solução X X1 = 3 X2 = 4 Dentro da Região de solução X1 12 6
7 Por que programação inteira? Vantagem de restringir variáveis para obter valores inteiros: Mais realista Desvantagens: Mais difícil de modelar Pode ser bem mais difícil de solucionar 13 O mistério da programação inteira Alguns programas de inteiros são fáceis (é possível resolver os problemas com milhões de variáveis); Alguns programas de inteiros são difíceis (até mesmo 100 variáveis podem ser difíceis); Expertise e experiência são essenciais para saber o que é o que! É uma área de pesquisa ativa em várias Universidades. 14 7
8 Tipos de programação inteira Todos os programas de inteiros possuem igualdades e desigualdades lineares e algumas ou todas as variáveis devem ser inteiras. Se todas as variáveis devem ser inteiras, então pode-se esse programa pode ser chamado de programa puro de inteiros. Se todas as variáveis devem ser 0 ou 1, o programa é chamado de programa binário de inteiros ou um programa de inteiros 0-1. Se algumas variáveis forem números fracionários e outras números inteiros, então o problema é chamado programação inteira mista (PIM). 15 Como modelar restrições lógicas Exemplos: São selecionados exatamente 3 estoques. Se o estoque 2 for selecionado, o estoque 1 também o será. Se o estoque 1 for selecionado, então o estoque 3 não será selecionado. O estoque 4 ou 5 é selecionado, mas não os dois. 16 8
9 São selecionados exatamente 3 estoques Imaginando um exemplo com 6 variáveis de decisão, e todas binárias, a restrição pode ser a seguinte: x 1 + x2 + x3 + x4 + x5 + x6 = 3 17 Se o estoque 2 for selecionado, o estoque 1 também o será A restrição da programação inteira: x1 x 2 Estoque 2 Uma representação bidimensional Estoque
10 Se o estoque 1 for selecionado, então o estoque 3 não será selecionado A restrição da programação inteira: Uma representação bidimensional x 1 + x3 1 Estoque 3 Estoque 1 19 O estoque 4 ou 5 é selecionado, mas não os dois A restrição da programação inteira: Uma representação bidimensional x 4 + x5 = 1 Estoque 5 Estoque
11 Solução pelo Lindo 21 Solução pelo Lindo Comando apropriado 22 11
12 Solução pelo Solver 23 Solução pelo Solver 24 12
13 Solução pelo Solver Restrição adicional 25 Exercício Resolver o exemplo da apostila; Usar o Lindo e o solver; Inicialmente resolver admitindo as variáveis contínuas. Arredondar a resposta. Resolver usando a Programação Inteira e comparar o resultado com o arredondamento
14 Formulação min Z = X1 + X2 + X3 + X4 + X5 + X6 + X7 sujeito a: X1 + X4 + X5 + X6 + X7 17 (SEG) X1 + X2 + X5 + X6 + X7 13 (TER) X1 + X2 + X3 + X6 + X7 15 (QUAR) X1 + X2 + X3 + X4 + X7 19 (QUIN) X1 + X2 + X3 + X4 + X5 14 (SEX) X2 + X3 + X4 + X5 + X6 16 (SAB) X3 + X4 + X5 + X6 + X7 11 (DOM) Xi 0 (i = 1; 2;...; 7) 27 Solução anterior do problema X1 = 4/3 X2 = 10/3 X3 = 2 X4 = 22/3 X5 = 0 X6 = 10/3 X7 = 5 Z = 67/3 X1 = 2 X2 = 4 X3 = 2 X4 = 8 X5 = 0 X6 = 4 X7 = 5 Z = 25 Arredondamento a partir da solução real
15 Solução do problema programação inteira X1 X2 X3 X4 X5 X6 X7 MIN Restrições segunda terça quarta quinta sexta sábado domingo Resultado Solução Solução do problema programação inteira Acrescentar esta restrição! 30 15
Programação Linear (PL) Solução algébrica - método simplex
Universidade Federal de Itajubá Instituto de Engenharia de Produção e Gestão Pesquisa Operacional Simplex Prof. Dr. José Arnaldo Barra Montevechi Programação Linear (PL) Solução algébrica - método simplex
Universidade Federal de Itajubá. Pesquisa Operacional. Aula 04 Formulação de Problemas Interessantes. Exemplo 07 Modelo de trabalho multi período
Universidade Federal de Itajubá Pesquisa Operacional Aula 04 Formulação de Problemas Interessantes Exemplo 07 Modelo de trabalho multi período 28/2/2007 Prof. José Arnaldo B. Montevechi 1 Exercício Em
PCC173 - Otimização em Redes
PCC173 - Otimização em Redes Marco Antonio M. Carvalho Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal de Ouro Preto 15 de maio de 2017 Marco Antonio M. Carvalho
Aula 19: Lifting e matrizes ideais
Aula 19: Lifting e matrizes ideais Otimização Linear e Inteira Túlio A. M. Toffolo http://www.toffolo.com.br BCC464/PCC174 2018/2 Departamento de Computação UFOP Previously... Branch-and-bound Formulações
Aula 13: Branch-and-bound
Aula 13: Branch-and-bound Otimização Linear e Inteira Túlio A. M. Toffolo http://www.toffolo.com.br BCC464/PCC174 2018/2 Departamento de Computação UFOP Previously... Modelagem em PI / Problemas Combinatórios
Aula 20: Revisão Otimização Linear e Inteira Túlio A. M. Toffolo
Aula 20: Revisão Otimização Linear e Inteira Túlio A. M. Toffolo http://www.toffolo.com.br BCC464 / PCC174 Departamento de Computação - UFOP Breve Revisão Programação Linear vs Programação Inteira Modelagem
Otimização Combinatória - Parte 4
Graduação em Matemática Industrial Otimização Combinatória - Parte 4 Prof. Thiago Alves de Queiroz Departamento de Matemática - CAC/UFG 2/2014 Thiago Queiroz (DM) Parte 4 2/2014 1 / 33 Complexidade Computacional
Resolver os problemas do item 4.5 pelo simplex
Universidade Federal de Itajubá Instituto de Engenharia de Produção e Gestão Pesquisa Operacional Exemplo 4.6.4 Uso de softwares Prof. Dr. José Arnaldo Barra Montevechi Resolver os problemas do item 4.5
Programação Inteira Resolução por Branch and Bound
Programação Inteira Resolução por Branch and Bound Transparências de apoio à lecionação de aulas teóricas Versão 2.3 c 2012, 2010, 2009, 2001 Maria Antónia Carravilla José Fernando Oliveira FEUP Técnicas
Lista de Exercícios Programação Inteira. x 2 0 e inteiros.
Lista de Exercícios Programação Inteira ) Resolva os problemas a seguir usando o método B&B a) Max z = 5 x + y s.a x + y x + y 5 b) Max z = x + y s.a x + y 0 x + y 5 c) Max z = x + y s.a x + 9y 6 8 x +
Lista de Exercícios Programação Inteira. x 2 0 e inteiros.
Lista de Exercícios Programação Inteira ) Resolva os problemas a seguir usando o método B&B a) Max z = 5 x + 2 y s.a x + y 2 x + y 5 x, y 0, x e y inteiros b) Max z = 2 x + y s.a x + 2y 0 x + y 25 x, y
COMPARAÇÃO ENTRE FROTA HOMOGÊNEA E HETEROGÊNEA EM PROBLEMAS DE ROTEAMENTO DE VEÍCULOS CAPACITADOS
COMPARAÇÃO ENTRE FROTA HOMOGÊNEA E HETEROGÊNEA EM PROBLEMAS DE ROTEAMENTO DE VEÍCULOS CAPACITADOS Rosiana da Silva Lopes Danilo César Rodrigues Azevedo [email protected] [email protected]
Lindo e Solver (Tutorial)
UNIVERSIDADE FEDERAL FLUMINENSE TEP Departamento de Engenharia de Produção TPP Programa de Mestrado e Doutorado em Engenharia de Produção Lindo e Solver (Tutorial) Professor: Marcos Roboredo email: [email protected]
UNIVERSIDADE DE ÉVORA UNIVERSIDADE DO ALGARVE
CURSO DE MESTRADO EM ENGENHARIA CIVIL FUNDAMENTOS DE INVESTIGAÇÃO OPERACIONAL 2010/2011 1º SEMESTRE 1º ANO Exame época normal Parte I: PROGRAMAÇÃO LINEAR 9 de Fevereiro de 2011 Observações Duração desta
Programação Inteira. Solução com o método Branch-and-Bound
Programação Inteira Solução com o método Branch-and-Bound Conceitos gerais Um conceito fundamental nos métodos de resolução de programação inteira é a relaxação linear p Consiste em substituir PIM Ζ +
Universidade Federal de Itajubá. Instituto de Engenharia de Produção e Gestão. Pesquisa Operacional. Redes. Prof. Dr. José Arnaldo Barra Montevechi
Universidade Federal de Itajubá Instituto de Engenharia de Produção e Gestão Pesquisa Operacional Redes Prof. Dr. José Arnaldo Barra Montevechi Problemas de rede Casos especiais de problemas de programação
Programação Linear Inteira. C. Requejo (UA) Métodos de Investigação Operacional MIO / 30
Programação Linear Inteira Programação Linear Inteira C. Requejo (UA) Métodos de Investigação Operacional MIO 2016 1 / 30 Programação Linear Inteira Programação Linear Inteira Resolução de problemas de
Professor: Rodrigo A. Scarpel
Professor: Rodrigo A. Scarpel [email protected] www.mec.ita.br/~rodrigo Programa do curso: Semana 1: Apresentação da disciplina Introdução à Programação Linear Resolução de problemas de PL pelo Método Gráfico
Universidade Federal de Itajubá
Universidade Federal de Itajubá Pesquisa Operacional Aula 01 Informações iniciais 05/06/2013 Prof. José Arnaldo B. Montevechi 1 Contato José Arnaldo Barra Montevechi e-mail: [email protected] www.iepg.unifei.edu.br/arnaldo
CAPÍTULO 2 Visão Geral da Abordagem de Modelagem da Pesquisa Operacional 7
SUMÁRIO CAPÍTULO 1 Introdução 1 1.1 A origem da pesquisa operacional 1 1.2 A natureza da pesquisa operacional 2 1.3 O impacto da pesquisa operacional 3 1.4 Algoritmos e/ou courseware 3 Referências selecionadas
Complementos de Investigação Operacional. Folha nº 1 Programação Inteira 2006/07
Complementos de Investigação Operacional Folha nº Programação Inteira 2006/07 - A Eva e o Adão pretendem dividir entre eles as tarefas domésticas (cozinhar, lavar a louça, lavar a roupa, fazer as compras)
Complementos de Investigação Operacional. Folha nº 1 Programação Inteira 2007/08
Complementos de Investigação Operacional Folha nº Programação Inteira 2007/08 - A Eva e o Adão pretendem dividir entre eles as tarefas domésticas (cozinhar, lavar a louça, lavar a roupa, fazer as compras)
Programação do Serviço Atende para o mês de dezembro/2013
Programação do Serviço Atende para o mês de dezembro/2013 Credencial Dia da Viagem Hora ida Van ida Hora volta Van volta 2 Quarta 6:15 24120 13:00 11921 2 Total 17 Quarta 12:40 82016 16:10 82016 17 Total
Otimização Linear. Profª : Adriana Departamento de Matemática. wwwp.fc.unesp.br/~adriana
Otimização Linear Profª : Adriana Departamento de Matemática [email protected] wwwp.fc.unesp.br/~adriana Forma geral de um problema Em vários problemas que formulamos, obtivemos: Um objetivo de otimização
MAXIMIZAÇÃO DO FATURAMENTO DE UMA EMPRESA DO SETOR ENERGÉTICO COM BASE NA PROGRAMAÇÃO LINEAR
MAXIMIZAÇÃO DO FATURAMENTO DE UMA EMPRESA DO SETOR ENERGÉTICO COM BASE NA PROGRAMAÇÃO LINEAR Claudio Ismael de Assis Giulia Oliveira Santos Medeiros Seminário de Pesquisa Operacional Universidade Federal
CAPÍTULO IV PROGRAMAÇÃO LINEAR INTEIRA (PLI)
CAPÍTULO IV PROGRAMAÇÃO LINEAR INTEIRA (PLI) Prof. Gilson Fernandes da Silva Departamento de Ciências Florestais e da Madeira (DCFM) Programa de Pós-graduação em Ciências Florestais (PPGCF) Universidade
Graduação em Engenharia Elétrica MÉTODOS DE OTIMIZAÇÃO ENE081. PROF. IVO CHAVES DA SILVA JUNIOR
UNIVERSIDADE FEDERAL DE JUIZ DE FORA Graduação em Engenharia Elétrica MÉTODOS DE OTIMIZAÇÃO ENE081 PROF. IVO CHAVES DA SILVA JUNIOR E-mail: [email protected] Aula Número: 07 Programação Linear Últimas
DATA DIA DIAS DO FRAÇÃO DATA DATA HORA DA INÍCIO DO ANO JULIANA SIDERAL T.U. SEMANA DO ANO TRÓPICO 2450000+ 2460000+
CALENDÁRIO, 2015 7 A JAN. 0 QUARTA -1-0.0018 7022.5 3750.3 1 QUINTA 0 +0.0009 7023.5 3751.3 2 SEXTA 1 +0.0037 7024.5 3752.3 3 SÁBADO 2 +0.0064 7025.5 3753.3 4 DOMINGO 3 +0.0091 7026.5 3754.3 5 SEGUNDA
Programação Inteira. Algoritmo Branch-and-Bound (ou enumeração implícita)
Programação Inteira Algoritmo Branch-and-Bound (ou enumeração implícita) Métodos de Solução: Branch-and-Bound O método Branch-and-Bound (B&B) baseia-se na idéia de desenvolver uma enumeração inteligente
ENGENHARIA ELÉTRICA 1o Período
1o Período Introdução à Engenharia / Elétrica (2) - 13001 /Geometria às Descritiva (2) - 70049 50015 50001 Álgebra Linear e Geometria Analítica (4) - 70002 50003 Integral I (4) - 70006 50016 Integral I
OTIMIZAÇÃO. O processo de otimização normalmente involve a procura de pontos de máximos e mínimos de uma função.
OTIMIZAÇÃO O processo de otimização normalmente involve a procura de pontos de máximos e mínimos de uma função. Pontos de máximos e mínimos de uma função são pontos onde a derivada da função é nula. A
Representação Digital da Informação I
Representação Digital da Informação I José Costa Introdução à Arquitetura de Computadores Departamento de Engenharia Informática (DEI) Instituto Superior Técnico 2013-09-25 José Costa (DEI/IST) Representação
Métodos de Pesquisa Operacional
Métodos de Pesquisa Operacional Programação Linear é a parte da Pesquisa Operacional que trata da modelagem e resolução de problemas formulados com funções lineares. Programação Linear } Métodos de Resolução
Pesquisa Operacional Introdução. Profa. Alessandra Martins Coelho
Pesquisa Operacional Introdução Profa. Alessandra Martins Coelho agosto/2013 Operational Research Pesquisa Operacional - (Investigação operacional, investigación operativa) Termo ligado à invenção do radar
SERVIÇO PUBLICO FEDERAL UNIVERSIDADE FEDERAL DO RIO GRANDE - FURG ESCOLA DE ENGENHARIA - EE
INSCRIÇÕES HOMOLOGADAS FICHA IDENTIDADE NOME 00103 9074845323 RICARDO GONÇALVES DE FARIA CORRÊA CRONOGRAMA DAS ATIVIDADES Relação de atividades por dia de concurso: - Dia 11 de dezembro de 2017 (segunda-feira):
Programação Linear Aplicada em Redes de Telecomunicações. Prof. Rodrigo de Souza Couto
Programação Linear Aplicada em Redes de Telecomunicações Prof. Rodrigo de Souza Couto Informações Gerais Prof. Rodrigo de Souza Couto E-mail: [email protected] Página da disciplina: http://www.lee.eng.uerj.br/~rodrigo/proglin
Referências: Notas de aulas do Prof. Silvio Alexandre de Araujo
Programação Inteira Referências: Notas de aulas do Prof Silvio Aleandre de Araujo http://wwwdcceibilceunespbr/~saraujo/ Material da Professora Gladys Castillo do Departamento de Matemática da Universidade
Pesquisa Operacional aplicada ao Planejamento e Controle da Produção e de Materiais Programação Linear
Pesquisa Operacional aplicada ao Planejamento e Controle da Produção e de Materiais Programação Linear Introdução à Pesquisa Operacional Origens militares Segunda guerra mundial Aplicada na alocação de
ENG-418 OTIMIZAÇÃO DE PROCESSOS QUÍMICOS
Universidade Federal da Bahia - UFBA Escola Politécnica EP Departamento de Engenharia Química - DEQ Laboratório de Controle e Otimização de Processos Industriais - LACOI Disciplina: Otimização de Processos
OUTUBRO NOVEMBRO. Divulgação da Aprovação, Recuperação Semestral II e Recuperação Final (em sala). 29- QUARTA-FEIRA Aula de Revisão 30- QUINTA-FEIRA
FUNDAMENTAL I 1º AO 5º 05 QUINTA-FEIRA Simulado Ensino Fundamental I Prova 2 TRAZER CANETA PRETA 15 - QUARTA-FEIRA Proclamação da República - Feriado 30- QUINTA-FEIRA Matutino - 07h30 às 09h55 Vespertino
Definir e resolver um problema usando o Solver
Página 1 de 5 Excel > Analisando dados > Teste de hipóteses Definir e resolver um problema usando o Solver Mostrar tudo O Solver faz parte de um pacote de programas algumas vezes chamado de ferramentas
Aula 17: Planos de Corte
Aula 17: Planos de Corte Otimização Linear e Inteira Túlio A. M. Toffolo http://www.toffolo.com.br BCC464/PCC174 2018/2 Departamento de Computação UFOP Previously... Branch-and-bound em programação inteira
LISTA SOBRE MÉTODO SIMPLEX
LISTA SOBRE MÉTODO SIMPLEX. Resolva pelo Método Simple o problema Maimizar Z = + Sujeito a + 5 + 8 4 0, 0 Para entender Faça a solução gráica e acompanhe passo a passo como o método do Simple pula de um
max z = 10x 1 + 4x 2 s.a x 1 + x x 1 + 4x x 1 + 6x 2 300
Escola Superior de Tecnologia de Tomar Área de Matemática Investigação Operacional / Técnicas de Optimização e Decisão Engenharia Química, Engenharia do Ambiente, Engenharia Informática e Engenharia Civil
INVESTIGAÇÃO OPERACIONAL. Programação Linear. Exercícios. Cap. IV Modelo Dual
INVESTIGAÇÃO OPERACIONAL Programação Linear Exercícios Cap. IV Modelo Dual António Carlos Morais da Silva Professor de I.O. i Cap. IV - Modelo Dual - Exercícios IV. Modelo Problema Dual 1. Apresente o
Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº3: Dualidade. Interpretação Económica.
Ano lectivo: 2008/2009; Universidade da Beira Interior Departamento de Matemática INVESTIGAÇÃO OPERACIONAL Ficha de exercícios nº3: Dualidade. Interpretação Económica. Cursos: Economia 1. Formule o problema
Universidade Federal de Itajubá. Instituto de Engenharia de Produção e Gestão. Pesquisa Operacional. Dualidade
Universidade Federal de Itajubá Instituto de Engenharia de Produção e Gestão Pesquisa Operacional Dualidade Prof. Dr. José Arnaldo Barra Montevechi Dualidade 2 1 Dualidade Em determinadas situações, a
NOTAS DE AULA 1 METAHEURÍSTICA 13/10/2016
NOTAS DE AULA 1 METAHEURÍSTICA 13/10/2016 Metaheurística: São técnicas de soluções que gerenciam uma interação entre técnicas de busca local e as estratégias de nível superior para criar um processo de
Pesquisa Operacional aula 3 Modelagem PL. Profa. Alessandra Martins Coelho
Pesquisa Operacional aula 3 Modelagem PL Profa. Alessandra Martins Coelho agosto/2013 Exercício Considerando que x j representa as variáveis de decisão, classificar os problemas a seguir em uma das categorias:
Aula 10: Revisão Otimização Linear e Inteira Túlio A. M. Toffolo
Aula 10: Revisão Otimização Linear e Inteira Túlio A. M. Toffolo http://www.toffolo.com.br 2018/2 - PCC174/BCC464 Aula Prática - Laboratório COM30!1 Breve Revisão Modelagem Método gráfico O Algoritmo Simplex
Cálculo Diferencial e Integral I Topografia I Cálculo Diferencial e Integral I Desenho Técnico Civil Física I
1CVAN Cálculo Diferencial e Integral I Topografia I Cálculo Diferencial e Integral I Desenho Técnico Civil Física I Cálculo Diferencial e Integral I Topografia I Cálculo Diferencial e Integral I Desenho
GE-814: Introdução à Avaliação Operacional
GE-814: Introdução à Avaliação Operacional Objetivo Que a audiência se familiarize com o conceito de Programação Matemática. Desafio Construir com os Legos TM o número ótimo de cadeiras e mesas. 1ª Lição
Controladoria e Pesquisa Operacional na Tomada de Decisões. Conteúdos. Caso ACR Motores Ltda. Caso ACR Motores Ltda. Caso ACR Motores Ltda.
Controladoria e esquisa Operacional na Tomada de Decisões Aplicações Reais Caso ACR revidência rivada. Caso ACR Malotes Ltda. Caso ACR Tintas S/A Conteúdos Almir Carvalho dos Reis, 00 A ACR Motores Ltda.
Escola de Engenharia de Lorena EEL/USP Curso de Engenharia de Produção. Resolução Gráfica. Prof. Fabrício Maciel Gomes
Escola de Engenharia de Lorena EEL/USP Curso de Engenharia de Produção Resolução Gráfica Prof. Fabrício Maciel Gomes Aplicável para modelos com 02 variáveis de decisão Útil para a ilustração de alguns
Programação Linear. Dual Simplex: Viabilidade Dual Método Dual Simplex
Programação Linear Dual Simplex: Viabilidade Dual Viabilidade Dual Considere o par de problemas primal (P) dual (D). Agora já sabemos como encontrar a solução de um desses PPL a partir da solução do outro.
Aula 1. Utilização de Planilhas Eletrônicas em Processos. Prof. M.Sc. Aécio Flávio de Paula Filho
Aula 1. Utilização de Planilhas Eletrônicas em Processos Prof. M.Sc. Aécio Flávio de Paula Filho [email protected] Agricultura et qualitas Entre no site, acesse o post destinado a turma e faça
USO DO SOLVER PARA MAXIMIZAR O LUCRO EM UMA PRODUÇÃO DE GASOLINA
USO DO SOLVER PARA MAXIMIZAR O LUCRO EM UMA PRODUÇÃO DE GASOLINA A. C. B. SILVA 1, A. P. SILVA 2 1 Universidade de Uberaba, Departamento de Engenharia Química 2 Universidade Federal de Uberlândia, Departamento
FMU Administração de Empresas Pesquisa Operacional Prof. Marcos José Traldi
Com a finalidade de mostrar como decisões do dia-a-dia das empresas poderiam ser facilitadas com a utilização de modelos simulados em uma planilha eletrônica. Uma forma de facilitar o processo de modelagem
Programação Linear. Dualidade
Programação Linear Dualidade Dualidade Já vimos em sala que para cada PPL existe um outro PL chamado dual, que consiste em modelar um problema que utiliza os mesmos dados que o original, mas alterando
7 ALOCAÇÃO PELO MÉTODO DO NUCLEOLUS
ALOCAÇÃO PELO MÉTODO NUCLEOLUS 76 7 ALOCAÇÃO PELO MÉTODO DO NUCLEOLUS O quarto método abordado nesta monografia é o método do nucleolus [44]. Este método, diferentemente da alocação por Última Adição,
Denições. Exemplo. Notas. Programação Linear Inteira Modelagem com Variáveis Inteiras. Notas
Programação Linear Inteira Modelagem com Variáveis Inteiras Haroldo Gambini Santos Universidade Federal de Ouro Preto - UFOP 30 de agosto de 2011 1 / 16 Denições PI: Problema de Programação Inteira Puro
Métodos e Medidas II
Métodos e Medidas II Disciplina: 1 Prof. Álvaro José Periotto [email protected] 3. Método Gráfico (conjunto de soluções/ponto ótimo) 1. Entendimento do Enunciado 2 Início Entendimento do Enunciado do P.P.L.
Programação Linear M É T O D O S : E S T A T Í S T I C A E M A T E M Á T I C A A P L I C A D A S D e 1 1 d e m a r ç o a 2 9 d e a b r i l d e
Programação Linear A otimização é o processo de encontrar a melhor solução (ou solução ótima) para um problema. Existe um conjunto particular de problemas nos quais é decisivo a aplicação de um procedimento
Resolução de problemas difíceis de programação linear através da relaxação Lagrangeana
problemas difíceis de programação linear através da relaxação Lagrangeana Ana Maria A.C. Rocha Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho [email protected] http://www.norg.uminho.pt/arocha
Investigação Operacional
Modelos de Programação Linear (Mestrado) Engenharia Industrial http://dps.uminho.pt/pessoais/zan - Escola de Engenharia Departamento de Produção e Sistemas 1 Modelação Matemática As técnicas e algoritmos
EAD 350 Pesquisa Operacional Aula 06 Parte 2 Programação Inteira Programação Binária
EAD 350 Pesquisa Operacional Aula 06 Parte 2 Programação Inteira Programação Binária Profa. Adriana Backx Noronha Viana (Adapt. Material Prof. Cesar Alexandre de Souza) [email protected] FEA/USP Aula 06 - Agenda
Pesquisa Operacional
Pesquisa Operacional Teoria da Dualidade Profa. Sheila Morais de Almeida DAINF-UTFPR-PG outubro - 2015 Problema Dual Cada problema de Programa de Programação Linear está associado a um outro problema de
Vânio Correia Domingos Massala
Optimização e Decisão 06/0/008 Método do Simplex Vânio Correia - 5567 Domingos Massala - 58849 INSTITUTO SUPERIOR TÉCNICO Generalidades do Método do Simplex Procedimento algébrico iterativo para resolver
Resolvendo algebricamente um PPL
Capítulo 6 Resolvendo algebricamente um PPL 6.1 O método algébrico para solução de um modelo linear A solução de problemas de programação linear com mais de duas variáveis, não pode ser obtida utilizando-se
Domingo Segunda- feira Terça- feira Quarta- feira Quinta- feira Sexta- feira Sábado
Domingo Segunda- feira Terça- feira Quarta- feira Quinta- feira Sexta- feira Sábado 1-jan 2-mar 09:00AM - 11:00PM 09:00AM - 11:00PM 03:00PM 03:00PM 10:15PM 10:15PM Lotação MK 10 9 09:00AM - 09:00AM - Lotação
Fluxo de Potência Ótimo
Fluxo de Potência Ótimo Djalma M. Falcão Programa de Engenharia Elétrica COPPE/UFRJ Parte 1 Abril 2008 1 / 26 Definição O Fluxo de Potência Ótimo (FPO) tem como objetivo a otimização da condição estática
Modelos de planeamento e gestão de recursos hídricos. 19 de Novembro
Modelos de planeamento e gestão de recursos hídricos 19 de Novembro Metodologias de análise Sistema real vs sistema simplificado Modelação Matemática; Física; Análise de sistemas: Simulação; Optimização:
CARDÁPIO EDUCAÇÃO INFANTIL 1ª SEMANA DO MÊS SEGUNDA TERÇA QUARTA 31/07 QUINTA 01 SEXTA 02 SUCO IOGURTE FRUTA PÃO C/ RECHEIO
AGOSTO SEGUNDA TERÇA QUARTA 31/07 QUINTA 01 SEXTA 02 PÃO C/ SEGUNDA 05 TERÇA 06 QUARTA 07 QUINTA 08 SEXTA 09 (SEM ) / ) / PÃO C/ SEGUNDA 12 TERÇA 13 QUARTA 14 QUINTA 15 SEXTA 16 PÃO COM SEGUNDA 19 TERÇA
PROGRAMAÇÃO INTEIRA. Prof. Gustavo Peixoto Silva Departamento de Computação Univ. Federal de Ouro Preto 5 modelos
PROGRAMAÇÃO INTEIRA Prof. Gustavo Peixoto Silva Departamento de Computação Univ. Federal de Ouro Preto 5 modelos M9.1 - Problema de Seleção de Projetos ver Taha Capítulo 9 Cinco projetos estão sob avaliação
MODELO DE PROGRAMAÇÃO LINEAR INTEIRA MISTA PARA MINIMIZAÇÃO DOS ADIANTAMENTOS E ATRASOS EM FLOW SHOP COM SETUP DEPENDENDE DA SEQUÊNCIA
MODELO DE PROGRAMAÇÃO LINEAR INTEIRA MISTA PARA MINIMIZAÇÃO DOS ADIANTAMENTOS E ATRASOS EM FLOW SHOP COM SETUP DEPENDENDE DA SEQUÊNCIA Cristiano Marinho Vaz, [email protected] Vinícius Ferreira da Silva
Aplicações de PL possíveis até o momento
Universidade Federal de Itajubá Instituto de Engenharia de Produção e Gestão Pesquisa Operacional Síntese Problemas Interessantes Prof. Dr. José Arnaldo Barra Montevechi Aplicações de PL possíveis até
PESQUISA OPERACIONAL
PESQUISA OPERACIONAL Uma breve introdução. Prof. Cleber Almeida de Oliveira Apostila para auxiliar os estudos da disciplina de Pesquisa Operacional por meio da compilação de diversas fontes. Esta apostila
semana 03/05/2014 a 09/05/2014 semana 10/05/2014 a 16/05/2014 semana 17/05/2014 a 23/05/ e 25/05/2014
semana 03/05/2014 a 09/05/2014 semana 10/05/2014 a 16/05/2014 semana 17/05/2014 a 23/05/2014 24 e 25/05/2014 PROGRAMAÇÃO DE 03/05/2014 a 09/05/2014 PROGRAMAÇÃO DE 03/05/2014 a 09/05/2014 PROGRAMAÇÃO DE
Alguns problemas só podem ser resolvidos apenas se as variáveis tiverem valores inteiros.
Volmir Eugênio Wilhelm Departamento de Engenharia de Produção UFPR 2 Alguns problemas só podem ser resolvidos apenas se as variáveis tiverem valores inteiros. Variáveis inteiras podem ser necessárias quando
Pesquisa Operacional / Programação Matemática
Pesquisa Operacional / Programação Matemática Otimização discreta Modelagem com variáveis binárias: problemas clássicos Breve Comentários (aula anterior) Em geral, não faz sentido resolver a relaxação
