Lista de Exercícios Programação Inteira. x 2 0 e inteiros.
|
|
|
- Simone Bandeira Palma
- 9 Há anos
- Visualizações:
Transcrição
1 Lista de Exercícios Programação Inteira ) Resolva os problemas a seguir usando o método B&B a) Max z = 5 x + 2 y s.a x + y 2 x + y 5 x, y 0, x e y inteiros b) Max z = 2 x + y s.a x + 2y 0 x + y 25 x, y 0, x e y inteiros c) Max z = x + y s.a x + 9y 26 8 x + 5 y 7 x, y 0, x e y inteiros d) Max z = 2x + x2 sujeito a : x + 2x 2 x + x2 6 x + x 2 9 x 0, x 2 0 e inteiros. e) min z = x + 5x2 sujeito a : x + x 2 5 x + 2x2 7 x 0, x 2 0 e inteiros. 2) Considere o problema da mochila abaixo: Usando o método Branch-and-bound determina a solução ótima do problema. ) Considere o problema abaixo: Usando o método Branch-and-bound determinar a solução ótima do problema. ) Considere o problema inteiro abaixo e sua respectiva resolução por relaxação linear: Usando o método Branch-and-bound determina a solução ótima do problema.
2 5)Resolva o problema de programação inteira: Max x + 2x2 sujeito a: x + x2 5 x + x2 0 6x + 2x2 2 x 0 x 2 0 e inteiros a) De forma gráfica. b) Pelo Método branch-and-bound, utilizando a estratégia de escolha de nó: Maior limitante superior (no nó raiz, ramifique na variável x ). Escreva detalhadamente cada sub-problema que está resolvendo e a árvore parcial do B&B a cada nó resolvido. ATENÇÃO: O nó (a primeira relaxação linear) deve ser resolvido usando o algoritmo simplex (pode ser tabela), os demais nós devem ser resolvidos pelo método gráfica. 6) Exercícios de modelagem. Considere o problema de localização de armazéns cujo objetivo é escolher os armazéns que devem ser instalados para servir um conjunto de clientes. Neste modelo existem uma capacidade associada a cada local possível e uma procura associada a cada cliente. A procura dos clientes associados a um certo armazém não pode exceder a sua capacidade. O objetivo do problema é ainda satisfazer os pedidos a um custo global mínimo, que envolve os custos mensais da renda dos armazéns e os custos de transporte da mercadoria entre os armazéns e os clientes. Considere possíveis armazéns (A,B,C e D) com capacidades de 5, 28, 22 e 28 respectivamente e com as rendas mensais indicadas na tabela. Existe um conjunto de 5 clientes (a,b,c,d, e e) que representam as procuras de, 2, 0, 2 e 8, respectivamente. Os custos de transporte unitários entre cada possível armazém e cada cliente são indicados na tabela. Formule um modelo de programação inteira que lhe permita determinar qual o conjunto ótimo de armazéns a selecionar. Considere as variáveis a quantidade a ser transportada do armazém i até o cliente j. As variáveis binárias y i assumem o valor se o armazém i é selecionado e 0, caso contrário. Resolva o problema utilizando o Excel. 7)Considere o problema de localização apresentado no exercício 6 em que é necessário respeitar as seguintes restrições: a) Dos locais C e D, exatamente deve ser selecionado b) A seleção do local A ou do local B implica na exclusão do local C. c) A seleção do local A ou do local B implica a seleção do local D. Formule um modelo de programação inteiro apropriado para a resolução deste problema. Resolva o problema utilizando o excel. x ij
3 8) Exercícios (Disciplina: Programação Linear, Prof. Manoel Campelo Colaboração: Heider Augusto)Um grafo G é um par ordenado G = (V,E), onde V é um conjunto não vazio de pontos e E um conjunto de pares não ordenados de V. Cada elemento de V é chamado vértice, e de E aresta. Denotaremos por n a cardinalidade de V e por m a cardinalidade de E. Um grafo pode ser descrito graficamente representando cada vértice por um ponto e cada aresta por uma linha ligando os pontos correspondentes. Por exemplo: G = (V,E) onde V = {,2,,} 2 E = {(,2),(2,),(2,),(,)} Dois vértices u,v V são adjacentes se (u,v) E. Para cada v V, definimos E (v) como o conjunto de vértices adjacentes a v, i. e. E (v) = { u : (u,v) E}. Uma aresta (u,v) E é dita incidente a u e a v. Duas arestas são adjacentes se incidem a um vértice comum. Questão: Para os problemas de 8. ao 8.5 elabore um modelo para o exemplo proposto e, depois, generalize o modelo para um grafo qualquer G=(V,E). 8.) Dado um grafo G = (V,E), um subconjunto de vértices S V é um conjunto independente em G se quaisquer dois vértices em S não são adjacentes em G. Se a cada vértice v i V está associado um peso w i R, define-se um conjunto independente de peso máximo em G como aquele cujo vértices totalizam a maior soma de pesos, entre todos os conjuntos independentes de G. Por exemplo, no grafo abaixo, o conjunto S={,} é um conjunto independente de peso 20. Sendo assim, modele o problema do conjunto independente de peso máximo. Determine uma solução heurística para o problema (similar ao problema da programação de exames material- heurística). (5) () () 5 2 (8) Pesos dos vértices (5) Vértice 8.2) Dado um grafo G = (V,E), um subconjunto de arestas M E é um emparelhamento em G se quaisquer duas arestas em M não são adjacentes em G. Um
4 emparelhamento é assim um conjunto independente de arestas. Formule um modelo para o problema de emparelhamento de peso máximo, onde é atribuído um peso a cada aresta e procura-se um subconjunto M que totalize a maior soma possível. Por exemplo, no grafo abaixo, M={(,),(2,6),(,5)} é um emparelhamento de peso 9. 2 (2) () () () () () 5 () (2) (2) 6 8.) Dado um grafo G = (V,E), um subconjunto de vértices K V é uma cobertura (de arestas por vértices) em G se toda aresta de E for incidente a algum vértice em K. Atribuindo-se um peso w i R a cada v i V, uma cobertura de peso mínimo é aquela cujos vértices totalizem a menor soma de pesos, em relação a todas as possíveis coberturas em G. Elabore um modelo para encontrar uma cobertura de peso mínimo. Considere inicialmente o exemplo do problema 8., onde K={,,5} é uma cobertura com peso 9. 8.) O problema de coloração de nós (ou vértices) é um problema bastante conhecido em teoria de grafos, que tem muitas aplicações, particularmente, em quadro de horários (time-tabling) e programação. O problema de coloração de nós trata de alocar uma cor para cada nó de forma que nós adjacentes não apresentem a mesma cor. O objetivo é encontrar, para um determinado grafo, uma alocação que use o menor número possível de cores. Sendo assim, elabore um modelo para o problema de coloração considerando o grafo abaixo e posteriormente 6 um grafo geral
5 8.5) O problema das p-medianas pode ser definido como segue: Em um grafo G = (V,E) devese encontrar um subconjunto de vértices V p V (conjunto de medianas) com cardinalidade p, tal que a soma das distâncias de cada vértice restante em {V V p } (conjunto de demandas) até seu vértice mais próximo em V p seja a mínima possível. O objetivo do problema das p- medianas é determinar p instalações em um conjunto pré-definido com n (n > p) instalações candidatas que deverão atender a um conjunto existente de demandas, de forma que a soma total das distâncias percorridas de cada ponto de demanda até a instalação mais próxima seja a mínima possível. Considerando d ij a distância entre i V e j V, elabore um modelo para o problema das p-medianas. Considere o seguinte exemplo inicialmente. 2 9) (Anais XXXI SPBO, 999 A. Ignacio, V. Ferreira-Filho e R. Galvão) O problema de localização de concentradores (PLC) é um problema clássico no projeto de redes de computadores. Concentradores são dispositivos que facilitam o compartilhamento de linhas de alta capacidade, e mais eficientes, entre vários usuários. O PLC pode ser esquematizado como segue. Dado um conjunto de possíveis localizações para os concentradores bem como suas capacidades, procura-se determinar quantos concentradores devem ser usados, onde localizá-los e quais usuários alocar a cada um dos concentradores sem violar sua capacidade, de modo a minimizar o custo total. Especificamente, sejam: n o número de usuários, m o número de possíveis localizações de concentradores, c ij (i=,2,...,n, j=,2,...,m) o custo de ligar o usuário i ao concentrador localizado em j, d j (j=,2,...,m) o custo de se usar uma unidade da capacidade do concentrador localizado em j e v j (j=,2,...,m) o custo fixo de se estabelecer um concentrador no local j. Limitações nas estações instaladas nos concentradores, tais como número de portas de entrada, espaço disponível em memória, estrutura de endereçamento e esquemas de compartilhamento de recursos, determinam uma quantidade máxima de usuários que podem ser conectados a cada um desses nós. É assumido que a ij (i=,2,...,n, j=,2,...,m) é a quantidade da capacidade do concentrador j necessária para atender ao usuário i, se este é alocado a j, e que b j (j=,2,...,m) é a capacidade máxima do concentrador que pode ser instalado no local j. Elabore um modelo para o PLC. 9) Um caixeiro viajante tem que percorrer um conjunto de cidades de tal modo que percorra todas as cidades sem passar duas vezes pela mesma cidade. Pretende-se minimizar a distância (ou custo) percorrido. Apresenta-se de seguida um exemplo de um mapa.
6 Resolva o problema do caixeiro viajante usando as seguintes heurísticas: O algoritmo do vizinho mais próximo, a heurística da inserção mais afastada, a heurística da inserção mais barata e a heurística das economias. Compare as soluções obtidas. Atenção: Todos os problemas de programação inteira do livro ou do material on-line pode ser utilizado para a elaboração da prova, portanto, estudem...
Lista de Exercícios Programação Inteira. x 2 0 e inteiros.
Lista de Exercícios Programação Inteira ) Resolva os problemas a seguir usando o método B&B a) Max z = 5 x + y s.a x + y x + y 5 b) Max z = x + y s.a x + y 0 x + y 5 c) Max z = x + y s.a x + 9y 6 8 x +
Pesquisa Operacional / Programação Matemática
Pesquisa Operacional / Programação Matemática Otimização discreta Modelagem com variáveis binárias: problemas clássicos Breve Comentários (aula anterior) Em geral, não faz sentido resolver a relaxação
Otimização discreta Modelagem com variáveis binárias: problemas clássicos
Otimização discreta Modelagem com variáveis binárias: problemas clássicos Importância histórica...... e prática. Usados para modelar problemas reais e como subproblemas em problemas maiores (e mais freqüentes
INSTITUTO SUPERIOR TÉCNICO Análise e Síntese de Algoritmos. RESOLUÇÃO DO 2 o TESTE
INSTITUTO SUPERIOR TÉCNICO Análise e Síntese de Algoritmos Ano Lectivo de 2006/2007 2 o Semestre RESOLUÇÃO DO 2 o TESTE I. (2,0+2,0+2,0 = 6,0 val.) 1) Calcule o valor óptimo da função objectivo e o respectivo
Cap. 2 Conceitos Básicos em Teoria dos Grafos
Teoria dos Grafos e Aplicações 8 Cap. 2 Conceitos Básicos em Teoria dos Grafos 2.1 Grafo É uma noção simples, abstrata e intuitiva, usada para representar a idéia de alguma espécie de relação entre os
Aula 19: Lifting e matrizes ideais
Aula 19: Lifting e matrizes ideais Otimização Linear e Inteira Túlio A. M. Toffolo http://www.toffolo.com.br BCC464/PCC174 2018/2 Departamento de Computação UFOP Previously... Branch-and-bound Formulações
Aula 12: Programação Inteira
Aula 12: Programação Inteira Otimização Linear e Inteira Túlio A. M. Toffolo http://www.toffolo.com.br BCC464/PCC174 2018/2 Departamento de Computação UFOP Aula de Hoje 1 Programação Inteira: A Formulação
Aula 13: Branch-and-bound
Aula 13: Branch-and-bound Otimização Linear e Inteira Túlio A. M. Toffolo http://www.toffolo.com.br BCC464/PCC174 2018/2 Departamento de Computação UFOP Previously... Modelagem em PI / Problemas Combinatórios
Volmir Eugênio Wilhelm Departamento de Engenharia de Produção UFPR 21
Volmir Eugênio Wilhelm Departamento de Engenharia de Produção UFPR 21 Três objetivos i. Redução de custos (custos variáveis) ii. iii. Redução de capital (investimento, custos fixos) Melhoria do serviço
Departamento de Engenharia de Produção UFPR 22
Departamento de Engenharia de Produção UFPR 22 Geralmente, temos três objetivos i. Redução de custos (custos variáveis) Redução de capital (investimento, custos fixos) i Melhoria do serviço (pode conflitar
Pesquisa Operacional Programação em Redes
Pesquisa Operacional Programação em Redes Profa. Alessandra Martins Coelho outubro/2013 Seminários Datas Temas Problema do Caminho mais curto programação em redes Data 07/11/13 Problema do Fluxo máximo
Volmir Eugênio Wilhelm Departamento de Engenharia de Produção UFPR 45
Volmir Eugênio Wilhelm Departamento de Engenharia de Produção UFPR 45 Introdução a Grafos Muitos problemas de otimização podem ser analisados utilizando-se uma estrutura denominada grafo ou rede. Problemas
NOTAS DE AULA 1 METAHEURÍSTICA 13/10/2016
NOTAS DE AULA 1 METAHEURÍSTICA 13/10/2016 Metaheurística: São técnicas de soluções que gerenciam uma interação entre técnicas de busca local e as estratégias de nível superior para criar um processo de
Gabriel Coutinho DCC035 - Pesquisa Operacional Lista 6
Lista 6 Exercício. O objetivo deste exercício é modelar o problema de emparelhamento em um grafo bipartido como um problema de fluxo, e verificar que o Teorema de Konig é essencialmente o Teorema de Fluxo
Aula 20: Revisão Otimização Linear e Inteira Túlio A. M. Toffolo
Aula 20: Revisão Otimização Linear e Inteira Túlio A. M. Toffolo http://www.toffolo.com.br BCC464 / PCC174 Departamento de Computação - UFOP Breve Revisão Programação Linear vs Programação Inteira Modelagem
Programação Inteira. Solução com o método Branch-and-Bound
Programação Inteira Solução com o método Branch-and-Bound Conceitos gerais Um conceito fundamental nos métodos de resolução de programação inteira é a relaxação linear p Consiste em substituir PIM Ζ +
Otimização Combinatória - Parte 4
Graduação em Matemática Industrial Otimização Combinatória - Parte 4 Prof. Thiago Alves de Queiroz Departamento de Matemática - CAC/UFG 2/2014 Thiago Queiroz (DM) Parte 4 2/2014 1 / 33 Complexidade Computacional
Teoria da Computação. Complexidade computacional classes de problemas
Teoria da Computação Complexidade computacional classes de problemas 1 Universo de problemas Problemas indecidíveis ou não-computáveis Não admitem algoritmos Problemas intratáveis Não admitem algoritmos
Programação Linear Binária. Prof. Fabrício Maciel Gomes Departamento de Engenharia Química Escola de Engenharia de Lorena EEL
Prof. Fabrício Maciel Gomes Departamento de Engenharia Química Escola de Engenharia de Lorena EEL Métodos de otimização da PLB: têm o inconvenientede o tempo de resolução crescer drasticamente com o aumento
Programação Inteira. Prof. Ricardo Santos
Programação Inteira Prof. Ricardo Santos Introdução Um problema com variáveis inteiras e reais é denominado problema de Programação Inteira Mista (PIM) quando tem a seguinte forma: PIM z=max cx+dy Ax+Dy
Teoria dos Grafos Aula 6
Teoria dos Grafos Aula 6 Aula passada Busca em grafos Busca em largura (BFS Breadth First Search) Propriedades Aula de hoje BFS implementação Complexidade Busca em profundidade (DFS) Conectividade, componentes
COMPARAÇÃO ENTRE FROTA HOMOGÊNEA E HETEROGÊNEA EM PROBLEMAS DE ROTEAMENTO DE VEÍCULOS CAPACITADOS
COMPARAÇÃO ENTRE FROTA HOMOGÊNEA E HETEROGÊNEA EM PROBLEMAS DE ROTEAMENTO DE VEÍCULOS CAPACITADOS Rosiana da Silva Lopes Danilo César Rodrigues Azevedo [email protected] [email protected]
ÁRVORES E ÁRVORE BINÁRIA DE BUSCA
ÁRVORES E ÁRVORE BINÁRIA DE BUSCA Prof. André Backes Definição 2 Diversas aplicações necessitam que se represente um conjunto de objetos e as suas relações hierárquicas Uma árvore é uma abstração matemática
ESTRUTURAS DE DADOS. prof. Alexandre César Muniz de Oliveira. 1. Introdução 2. Pilhas 3. Filas 4. Listas 5. Árvores 6. Ordenação 7. Busca 8.
ESTRUTURAS DE DADOS prof. Alexandre César Muniz de Oliveira 1. Introdução 2. Pilhas 3. Filas 4. Listas 5. Árvores 6. Ordenação 7. Busca 8. Grafos Sugestão bibliográfica: ESTRUTURAS DE DADOS USANDO C Aaron
Grafos: caminhos mínimos
quando o grafo é sem pesos, a determinação de um caminho mais curto pode ser feita através de uma busca em largura caminho mais curto é aquele que apresenta o menor número de arestas quando o grafo tem
Otimização Combinatória - Parte 3
Graduação em Matemática Industrial Otimização Combinatória - Parte 3 Prof. Thiago Alves de Queiroz Unidade de Matemática e Tecnologia - CAC/UFG 2/2016 Thiago Queiroz (DM) Parte 3 2/2016 1 / 23 Problemas
Grafos: Busca. Algoritmos e Estruturas de Dados 2. Graça Nunes
Grafos: Busca Algoritmos e Estruturas de Dados Graça Nunes Percorrendo um grafo Percorrendo um Grafo Percorrer um grafo é uma tarefa fundamental Pense no caso de se procurar uma certa informação associada
Localização de Instalações. Projeto de Redes Logísticas. Escola Politécnica. Prof. Dr. Claudio Barbieri da Cunha.
Localização de Instalações Projeto de Redes Logísticas Prof. Dr. Claudio Barbieri da Cunha Escola Politécnica [email protected] Objetivo Definir a configuração de uma rede logística / supply chain em termos
Árvores. SCC-214 Projeto de Algoritmos. Thiago A. S. Pardo. Um nó após o outro, adjacentes Sem relações hierárquicas entre os nós, em geral
SCC-214 Projeto de Algoritmos Thiago A. S. Pardo Listas e árvores Listas lineares Um nó após o outro, adjacentes Sem relações hierárquicas entre os nós, em geral Diversas aplicações necessitam de estruturas
Complementos de Investigação Operacional. Folha nº 1 Programação Inteira 2006/07
Complementos de Investigação Operacional Folha nº Programação Inteira 2006/07 - A Eva e o Adão pretendem dividir entre eles as tarefas domésticas (cozinhar, lavar a louça, lavar a roupa, fazer as compras)
Grafos Hamiltonianos e o Problema do Caixeiro Viajante. Prof. Ademir Constantino Departamento de Informática Universidade Estadual de Maringá
Grafos Hamiltonianos e o Problema do Caixeiro Viajante Prof. Ademir Constantino Departamento de Informática Universidade Estadual de Maringá Grafo Hamiltoniano Definição: Um circuito hamiltoniano em um
2. Desenhe o grafo orientado G = (X, Γ) para: 3. Em cada alínea dois grafos são iguais. Identifique-os. (a) (b) (c)
1. Desenhe o grafo não orientado G = (X, Γ) para: (a) X = {a, b, c, d} e Γ = {{a, b}, {b, c}, {c, d}}. (b) X = {a, b, c, d} e Γ = φ. (c) X = {1, 2, 3, 4, 5, 6, 7, 8} e Γ = {{1, 2}, {2, 2}, {2, 3}, {3,
Complementos de Investigação Operacional. Folha nº 1 Programação Inteira 2007/08
Complementos de Investigação Operacional Folha nº Programação Inteira 2007/08 - A Eva e o Adão pretendem dividir entre eles as tarefas domésticas (cozinhar, lavar a louça, lavar a roupa, fazer as compras)
Programação Inteira Resolução por Branch and Bound
Programação Inteira Resolução por Branch and Bound Transparências de apoio à lecionação de aulas teóricas Versão 2.3 c 2012, 2010, 2009, 2001 Maria Antónia Carravilla José Fernando Oliveira FEUP Técnicas
Objetivo da Programação Inteira
Universidade Federal de Itajubá Instituto de Engenharia de Produção e Gestão Pesquisa Operacional Programação inteira Prof. Dr. José Arnaldo Barra Montevechi Objetivo da Programação Inteira Max Z = 20X1
Problema da Árvore Geradora Mínima (The Minimum Spanning Tree Problem-MST)
Volmir Eugênio Wilhelm Departamento de Engenharia de Produção UFPR 45 Problema da Árvore Geradora Mínima (The Minimum Spanning Tree Problem-MST) Alguns problemas de otimização combinatória podem ser formulados
Pesquisa Operacional aplicada ao Planejamento e Controle da Produção e de Materiais Programação Linear
Pesquisa Operacional aplicada ao Planejamento e Controle da Produção e de Materiais Programação Linear Introdução à Pesquisa Operacional Origens militares Segunda guerra mundial Aplicada na alocação de
Grafos: Busca. SCE-183 Algoritmos e Estruturas de Dados 2. Thiago A. S. Pardo Maria Cristina
Grafos: Busca SCE-183 Algoritmos e Estruturas de Dados 2 Thiago A. S. Pardo Maria Cristina Percorrendo um grafo Percorrendo um Grafo Percorrer um grafo é um problema fundamental Deve-se ter uma forma sistemática
Teoria dos Grafos Aula 3
Teoria dos Grafos Aula 3 Aula passada Exemplo (mapas) Definições Algumas propriedades Aula de hoje Representando grafos Matriz e lista Comparando tempos de acesso Grafo G=(V, E) Grafo V = conjunto de vértices
PROGRAMAÇÃO INTEIRA. Prof. Gustavo Peixoto Silva Departamento de Computação Univ. Federal de Ouro Preto 5 modelos
PROGRAMAÇÃO INTEIRA Prof. Gustavo Peixoto Silva Departamento de Computação Univ. Federal de Ouro Preto 5 modelos M9.1 - Problema de Seleção de Projetos ver Taha Capítulo 9 Cinco projetos estão sob avaliação
Ciclos hamiltonianos e o problema do caixeiro viajante
Ciclos hamiltonianos e o problema do caixeiro viajante Algoritmos em Grafos Marco A L Barbosa cba Este trabalho está licenciado com uma Licença Creative Commons - Atribuição-CompartilhaIgual 4.0 Internacional.
3 Extensões dos modelos matemáticos
3 Extensões dos modelos matemáticos Os modelos matemáticos definidos por (2-1) (2-6) e (2-7) (2-13), propostos por Achuthan e Caccetta e apresentados no Capítulo 2, são reforçados neste trabalho através
Problema do Caminho Mínimo
Departamento de Engenharia de Produção UFPR 63 Problema do Caminho Mínimo O problema do caminho mínimo ou caminho mais curto, shortest path problem, consiste em encontrar o melhor caminho entre dois nós.
Optimização em Redes e Não Linear
Departamento de Matemática da Universidade de Aveiro Optimização em Redes e Não Linear Ano Lectivo 005/006, o semestre Folha - Optimização em Redes - Árvores de Suporte. Suponha que uma dada companhia
Algoritmos de aproximação
Algoritmos de aproximação prof Marcio Delamaro ICC II Um pouco de teoria Existem algoritmos que podem ser executados em tempo polinomial Dado problema de tamanho n, temo O(n k ) A maioria dos algoritmos
a) Formule este problema em Programação Linear inteira. b) Considere os seguintes dados Matriz das distâncias (em Km) entre as comunidades
Universidade de Lisboa, Faculdade de Ciências Mestrado em Matemática Aplicada à Economia e Gestão Logística e Gestão de Operações Módulo de Logística Exercícios Localização 1. Num distrito do Centro de
ANÁLISE DE ALGORITMOS (INF 1721)
PUC-Rio Departamento de Informática Prof. Marcus Vinicius S. Poggi de Aragão (3WA) Horário: 2as. e 4as. 9-11hs (3WA) 3 de dezembro de 2016 Período: 2016.2 ANÁLISE DE ALGORITMOS (INF 1721) 3 a Lista de
Estrutura de Dados e Algoritmos e Programação e Computadores II. Aula 10: Introdução aos Grafos
Estrutura de Dados e Algoritmos e Programação e Computadores II Aula 10: Introdução aos Grafos História O assunto que se constitui no marco inicial da teoria de grafos é na realidade um problema algorítmico.
Programação Linear/Inteira
Unidade de Matemática e Tecnologia - RC/UFG Programação Linear/Inteira Prof. Thiago Alves de Queiroz Aula 6 Thiago Queiroz (IMTec) Aula 6 Aula 6 1 / 45 Otimização Discreta A característica de otimização
Otimização. Otimização em Redes. Paulo Henrique Ribeiro Gabriel Faculdade de Computação Universidade Federal de Uberlândia 2016/2
Otimização Otimização em Redes Paulo Henrique Ribeiro Gabriel [email protected] Faculdade de Computação Universidade Federal de Uberlândia 2016/2 Paulo H. R. Gabriel (FACOM/UFU) GSI027 2016/2 1 / 51 Conteúdo
MÓDULO 3 - PROBLEMAS DE TRANSPORTE
UNESA Sistemas de Transportes Currículo 08 / 009- MÓDULO 3 - PROBLEMAS DE TRANSPORTE. PROBLEMA CLÁSSICO DE TRANSPORTE O Problema de Transporte constitui uma das principais aplicações da PL para auxiliar
Programação Inteira. Algoritmo Branch-and-Bound (ou enumeração implícita)
Programação Inteira Algoritmo Branch-and-Bound (ou enumeração implícita) Métodos de Solução: Branch-and-Bound O método Branch-and-Bound (B&B) baseia-se na idéia de desenvolver uma enumeração inteligente
3 Decisões de Localização de Instalações
3 Decisões de Localização de Instalações Historicamente, o estudo contemporâneo dos problemas de localização foi iniciado por Alfred Weber, que estudou a localização de uma fábrica com o objetivo de minimizar
Resolução de problemas difíceis de programação linear através da relaxação Lagrangeana
problemas difíceis de programação linear através da relaxação Lagrangeana Ana Maria A.C. Rocha Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho [email protected] http://www.norg.uminho.pt/arocha
Aula 08. Estruturas de dados Árvore e Grafo
Logo Aula 08 Estruturas de dados Árvore e Grafo 2 Árvore Estruturas estudadas até agora não são \ adequadas para representar dados que devem ser dispostos de maneira hierárquica Ex., hierarquia de pastas
Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu
Redes Aula 19: Modelos de Optimização de Redes O Problema do Caminho Mais Curto. O Problema do Fluxo Máximo. O Problema do Fluxo de Custo Mínimo. 2 Modelos de Optimização de Redes O que são redes em (IO)?
Circuitos Hamiltorianos
Circuitos Hamiltorianos Vimos que o teorema de euler resolve o problema de caracterizar grafos que tenham um circuito em que cada aresta apareça exatamente uma vez. Vamos estudar aqui uma questão relacionada.
Módulo 2 OTIMIZAÇÃO DE REDES
Módulo 2 OTIMIZAÇÃO DE REDES Grafos e Redes Está contida na área de Pesquisa Operacional. Pode ser considerada como uma teoria baseada na interligação de pontos e linhas, utilizada principalmente na solução
ANÁLISE DE ALGORITMOS (INF 1721)
PUC-Rio Departamento de Informática Prof. Marcus Vinicius S. Poggi de Aragão (3WA) Horário: 2as. e 4as. 9-11hs (3WA) 24 de novembro de 2015 Período: 2015.2 ANÁLISE DE ALGORITMOS (INF 1721) 3 a Lista de
Teoria da Complexidade Computacional
Teoria da Complexidade Computacional Letícia Rodrigues Bueno UFABC Motivação Motivação I can t find an efficient algorithm, I guess I m just too dumb. Fonte: GAREY, M. R. e JOHNSON, D. S. Computers and
Métodos de Pesquisa Operacional
Métodos de Pesquisa Operacional Programação Linear é a parte da Pesquisa Operacional que trata da modelagem e resolução de problemas formulados com funções lineares. Programação Linear } Métodos de Resolução
Noções da Teoria dos Grafos. André Arbex Hallack
Noções da Teoria dos Grafos André Arbex Hallack Junho/2015 Índice 1 Introdução e definições básicas. Passeios eulerianos 1 1.1 Introdução histórica..................................... 1 1.2 Passeios
Programação Dinâmica. Prof. Anderson Almeida Ferreira. Adaptado do material elaborado por Andrea Iabrudi Tavares
Programação Dinâmica Prof. Anderson Almeida Ferreira Adaptado do material elaborado por Andrea Iabrudi Tavares Programação Dinâmica 1950, Bellman Evitar recálculos dos subproblemas em comum Menor para
A resposta para este problema envolve a partição do conjunto de arestas de tal forma que arestas adjacentes não pertençam a um mesmo conjunto.
7 - Coloração de Arestas e Emparelhamentos Considere o seguinte problema: Problema - Ao final do ano acadêmico, cada estudante deve fazer um exame oral com seus professores. Suponha que existam 4 estudantes
3. Resolução de problemas por meio de busca
Inteligência Artificial - IBM1024 3. Resolução de problemas por meio de busca Prof. Renato Tinós Local: Depto. de Computação e Matemática (FFCLRP/USP) 1 Principais Tópicos 3. Resolução de problemas por
1 - A capacidade de fluxo que corresponde a capacidade máxima que pode passar pelo arco.
CONCEITOS DE REDE Uma rede é formada por um conjunto de nós, um conjunto de arcos e de parâmetros associados aos arcos. Nós Arcos Fluxo Interseções Rodovias Veículos Rodoviários Aeroportos Aerovia Aviões
AULA 11 PROJETO E ANÁLISE DE ALGORITMOS. Conceitos básicos e representação de grafos Karina Valdivia Delgado
AULA 11 PROJETO E ANÁLISE DE ALGORITMOS Conceitos básicos e representação de grafos Karina Valdivia Delgado Roteiro Motivação Conceitos básicos Representação Motivação Um grafo é uma abstração que permite
MÓDULO 3 - PROBLEMAS DE COBERTURAS DE ARCOS E NÓS
MÓULO 3 - PROBLEMAS E COBERTURAS E ARCOS E NÓS 1. CONCEITOS INICIAIS Área contida na Pesquisa Operacional. Pode ser considerada como uma teoria baseada na interligação de pontos e linhas, utilizada principalmente
Buscas Informadas ou Heurísticas - Parte II
Buscas Informadas ou Heurísticas - Parte II Prof. Cedric Luiz de Carvalho Instituto de Informática - UFG Graduação em Ciência da Computação / 2006 FUNÇÕES HEURÍSTICAS - 1/7 FUNÇÕES HEURÍSTICAS - 2/7 Solução
CES-11. Algoritmos e Estruturas de Dados. Carlos Alberto Alonso Sanches
CES-11 Algoritmos e Estruturas de Dados Carlos Alberto Alonso Sanches Juliana de Melo Bezerra CES-11 Grafos Conceitos gerais e representações Algoritmos em grafos Exploração sistemática em largura Caminhos
Problema do Caixeiro Viajante (The Travelling Salesman Problem-TSP) (Problema Del viajante)
Volmir Eugênio Wilhelm Departamento de Engenharia de Produção UFPR 78 Problema do Caixeiro Viajante (The Travelling Salesman Problem-TSP) (Problema Del viajante) Suponhamos que a qualquer momento em que
Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada.
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada [email protected], [email protected] Preparado a partir do texto: Rangel, Socorro. Teoria do Grafos,
Problemas de Fluxo em Redes
CAPÍTULO 7 1. Conceitos fundamentais de grafos Em muitos problemas que nos surgem, a forma mais simples de o descrever, é representá-lo em forma de grafo, uma vez que um grafo oferece uma representação
Noções da Teoria dos Grafos
Noções da Teoria dos Grafos André Arbex Hallack Índice 1 Introdução e definições básicas. Passeios eulerianos 1 2 Ciclos hamiltonianos 7 3 Árvores 11 4 Emparelhamento em grafos 15 5 Grafos planares: Colorindo
Otimização Aplicada à Engenharia de Processos
Otimização Aplicada à Engenharia de Processos Aula 4: Programação Linear Felipe Campelo http://www.cpdee.ufmg.br/~fcampelo Programa de Pós-Graduação em Engenharia Elétrica Belo Horizonte Março de 2013
Árvores: Conceitos Básicos e Árvore Geradora
Árvores: Conceitos Básicos e Árvore Geradora Grafos e Algoritmos Computacionais Prof. Flávio Humberto Cabral Nunes [email protected] 1 Introdução No dia a dia aparecem muitos problemas envolvendo árvores:
Estruturas de Dados 2
Estruturas de Dados 2 IF64C Estruturas de Dados 2 Engenharia da Computação Prof. João Alberto Fabro - Slide 1/34 Introdução Técnica de Projeto de Algoritmos utilizada para Problemas de Otimização; Idéia:
Problemas de otimização
Problemas de otimização Problemas de decisão: Existe uma solução satisfazendo certa propriedade? Resultado: sim ou não Problemas de otimização: Entre todas as soluções satisfazendo determinada propriedade,
Estruturas de Dados Grafos
Estruturas de Dados Grafos Prof. Eduardo Alchieri (introdução) Grafo é um conjunto de pontos e linhas que conectam vários pontos Formalmente, um grafo G(V,A) é definido pelo par de conjuntos V e A, onde:
