Programação Inteira. Algoritmo Branch-and-Bound (ou enumeração implícita)
|
|
|
- Davi Miranda Amorim
- 7 Há anos
- Visualizações:
Transcrição
1 Programação Inteira Algoritmo Branch-and-Bound (ou enumeração implícita)
2 Métodos de Solução: Branch-and-Bound O método Branch-and-Bound (B&B) baseia-se na idéia de desenvolver uma enumeração inteligente das soluções candidatas à solução ótima inteira de um problema. Apenas uma fração das soluções factíveis é realmente eaminada. O termo branch refere-se ao fato de que o método efetua partições no espaço das soluções e o termo bound ressalta que a prova da otimalidade da solução utiliza-se de limites calculados ao longo da enumeração.
3 Métodos de Solução: Branch-and-Bound Eemplo ma s. a. 7,, inteiros O problema é um problema de programação linear inteira, pois as variáveis devem ser inteiras.
4 Métodos de Solução: Branch-and-Bound Na Figura (a) têm-se os pontos que representam as soluções factíveis do problema (todos os pontos inteiros que satisfazem as restrições). O problema de programação linear (RL) obtido ao desconsiderarmos as restrições de integralidade das variáveis inteiras é conhecido como a relaação linear do PI (ver Figura (b)).
5 Métodos de Solução: Branch-and-Bound PI ma s. a. 7,, inteiros RL Ótimo = 39 (X=.897) (a) Ótimo = 33 (=3, =0) (b)
6 Métodos de Solução: Branch-and-Bound Como podemos observar a solução do problema linear (RL) é sempre maior ou igual a solução do PI, pois o problema relaado é composto por todas as soluções inteiras e também as soluções reais do problema, logo é formado por um conjunto de soluções factíveis mais abrangente. * Assim temos que, para um problema de maimização Z *, ou PPL Z PPI seja, a solução ótima da relaação linear de um problema inteiro ( Z * PPL ) é sempre maior ou igual a solução ótima do problema inteiro ( ). Z * PPI
7 Métodos de Solução: Branch-and-Bound (X=.897) Ótimo = 39 (a) Ótimo = 33 (b) Problema inteiro Problema relaado
8 Métodos de Solução: Branch-and-Bound Princípio básico: se a solução do RL relaado corresponde a uma solução do PI, pois possui todas as variáveis inteiras, então esta solução é a solução ótima do PI.
9 Métodos de Solução: Branch-and-Bound Idéia Geral: relaar o problema de programação inteira e dividir o problema relaado em vários problemas até encontrar soluções inteiras ou não factíveis, o ótimo é a melhor solução encontrada. O algoritmo B&B é baseado na idéia de dividir para conquistar, ou seja, trabalhamos em problemas menores e mais fáceis de resolver em busca da solução ótima.
10 Métodos de Solução: Branch-and-Bound A divisão do problema é interrompida quando uma das condições a seguir é satisfeita. Essas condições são chamadas de testes de sondagem ou Poda do nó. (I ou poda por infactibilidade) O problema relaado é infactível. (O ou poda por otimalidade) A solução ótima do problema relaado é inteira. (Q ou poda por qualidade) O valor de qualquer solução factível do problema relaado é pior que o valor da melhor solução factível atual (solução incumbente). Quando uma dessas três condições ocorre, o subproblema pode ser descartado (sondado ou podado), pois todas as suas soluções factíveis estão implicitamente enumeradas.
11 Eemplo: Branch-and-Bound ma s. a. 7,, inteiros Ótimo = 39 (a) Ótimo = 33 (b)
12 Eemplo: Branch-and-Bound Resolvendo o problema relaado tem-se que: Valor ótimo da solução: 39 Valores das variáveis =.86 e =0 Z=39 =.86 =0 Logo o valor de não é inteiro, então dividimos o problema em dois subproblemas: um onde consideramos o valor de, que vamos chamar de subproblema A outro consideramos, chamado de subproblema B.
13 Eemplo: Branch-and-Bound Ótimo = 37.5 Infactível A B Suproblema A Subproblema B 0, a s ma 0, a s ma
14 Eemplo: Branch-and-Bound Não encontramos solução factível ao resolver o problema A, então aplicando o o critério para poda podemos eliminá-lo ((I) O problema relaado é infactível). Resolvendo o subproblema B temos Z = 37.5, = e =.5 Agora não é inteiro, logo particionamos o problema em dois considerando o subproblema C com a variável e o subproblema D com. Z=39 =.86 =0 A I Z=37.5 = =.5 B
15 Eemplo: Branch-and-Bound Suproblema C Subproblema D 0, a s ma 0, a s ma Ótimo = 37 Ótimo = 3 C D
16 Eemplo: Branch-and-Bound (O - otimalidade) A solução ótima do problema relaado é inteira. Z=39 =.86 =0 A I Z=37.5 = =.5 B C O Z=3 = = Z=37 =0.7 = D
17 Eemplo: Branch-and-Bound A solução do subproblema C é igual a 3, = e =, as duas variáveis são inteiras, logo considerando o teste de sondagem (O) este problema pode ser sondado por otimalidade. Resolvendo o subproblema D temos Z = 37, =0.7 e = note que a variável novamente não é inteira, então particionamos o subproblema gerando dois novos subproblemas como mostramos a seguir
18 Eemplo: Branch-and-Bound Suproblema E Subproblema F 0, a s ma 0, a s ma Infactível Ótimo = 35,75 F E
19 Eemplo: Branch-and-Bound Z=39 =.86 =0 A I Z=37.5 = =.5 B C O Z=3 = = Z=37 =0.7 = D 0 E Z=35.75 =0 =3.5 F I
20 Eemplo: Branch-and-Bound O problema F é infactível, logo podemos usar I e eliminá-lo O subproblema E tem solução igual a e =0 e =3.5 Suproblema G Subproblema H 0, a s ma 0, a s ma
21 Eemplo: Branch-and-Bound Z=39 =.86 =0 A I Z=37.5 = =.5 B C O Z=3 = = Z=37 =0.7 = D 0 E Z=35.75 =0 =3.5 F I 3 G O solução ótima Z=33 =0 =3 H I 4
22 Eemplo: Branch-and-Bound Resolvendo o subproblema G obtemos Z = 33, =0 e =3, logo a solução é inteira, portanto aplicando o (O) este problema pode ser sondado. O subproblema H não tem solução factível e também pode ser sondado por infactibilidade (I). Temos que nenhum nó pode ser ramificado, logo, a melhor solução inteira encontrada é dada pelo problema G e é a solução ótima do problema. Na resolução do Eemplo através do método B&B podemos observar que muitas soluções não precisaram ser avaliadas eplicitamente. Isso fica mais claro quando se resolve problemas maiores.
23 Criando a árvore do B&B Qual eplorar primeiro? E depois? Note que a ordem pode influir (e muito!)
24 Regras de seleção Regras a priori determinam previamente a ordem de escolha dos nós; Regras adaptativas dependem das informações dos nós.
25 Regras a priori Busca em profundidade com backtracking last-in, first-out: o último nó a ser incluído na lista é o primeiro a ser eaminado backtracking: se o nó é podado, retorna-se ao longo do caminho em direção ao nó raiz, até encontrar um nó aberto. ordem: pode-se definir, por eemplo, que o filho à esquerda sempre é eaminado primeiro.
26 Regras a priori Busca em profundidade com backtracking
27 Regras a priori Busca em profundidade com backtracking vantagens: Nós factíveis são mais facilmente encontrados em níveis mais profundos da árvore (qual a vantagem de se encontrar nós factíveis logo?) Pode-se usar re-otimização em nós filhos. desvantagem: tende a gerar árvores maiores (com muitos nós).
28 Regras adaptativas Melhor limitante Selecionar a cada momento, o nó que tem melhor limitante (e que eventualmente, pode fornecer a melhor solução inteira).
29 Regras adaptativas Melhor limitante vantagem: menos nós eplorados no final. desvantagem: grande número de nós ativos a cada momento (limites de memória? )
30 Eemplo (Livro Página 49)
31 Solução busca em profundidade melhor limitante
32 Outras estratégias Busca em largura todos os nós em um dado nível são considerados, antes de passar-se para o nível seguinte.
33 Eemplo de heurística (Escolhe apenas os nós mais promissores para continuar a busca)...
34 Eercício. Encontre a solução ótima para o problema de programação inteira abaio. Especifique qual o motivo de cada poda dos nós. A primeira relaação linear deve ser resolvida utilizando o algoritmo simple O primeiro filho que será acrescentado com i<= deverá ser resolvido pelo simple tabelas. Z = Ma Sujeito a: , 0 e inteiras.
35 Programação Inteira Referências: Notas de aulas do Prof. Silvio Aleandre de Araujo Material da Professora Gladys Castillo do Departamento de Matemática da Universidade de Aveiro ( Notas de aula do Prof. Alysson Machado Costa
Lista de Exercícios Programação Inteira. x 2 0 e inteiros.
Lista de Exercícios Programação Inteira ) Resolva os problemas a seguir usando o método B&B a) Max z = 5 x + 2 y s.a x + y 2 x + y 5 x, y 0, x e y inteiros b) Max z = 2 x + y s.a x + 2y 0 x + y 25 x, y
Lista de Exercícios Programação Inteira. x 2 0 e inteiros.
Lista de Exercícios Programação Inteira ) Resolva os problemas a seguir usando o método B&B a) Max z = 5 x + y s.a x + y x + y 5 b) Max z = x + y s.a x + y 0 x + y 5 c) Max z = x + y s.a x + 9y 6 8 x +
Otimização Linear. Profª : Adriana Departamento de Matemática. wwwp.fc.unesp.br/~adriana
Otimização Linear Profª : Adriana Departamento de Matemática [email protected] wwwp.fc.unesp.br/~adriana Teoria da Otimização Linear Transformação de problemas na forma padrão a a b i1 1 in n i a a b
Planejamento da Operação de Sistemas Hidrotérmicos. Parte III
Universidade Federal de Paraná Setor de Tecnologia Departamento de Engenharia Elétrica Planejamento da Operação de Sistemas Hidrotérmicos Parte III Prof. Dr. Clodomiro Unsihua-Vila SISTEMA TERMELÉTRICO
NOTAS DE AULA 1 METAHEURÍSTICA 13/10/2016
NOTAS DE AULA 1 METAHEURÍSTICA 13/10/2016 Metaheurística: São técnicas de soluções que gerenciam uma interação entre técnicas de busca local e as estratégias de nível superior para criar um processo de
Técnicas de Projeto de Algoritmos
UNIVERSIDADE NOVE DE JULHO - UNINOVE Pesquisa e Ordenação Técnicas de Projeto de Algoritmos Material disponível para download em: www.profvaniacristina.com Profa. Vânia Cristina de Souza Pereira 03 _ Material
O método Simplex Aplicado ao Problema de Transporte (PT).
Prof. Geraldo Nunes Silva (Revisado por Socorro Rangel) Estas notas de aula são Baseadas no livro: Hillier, F. S. e G. J. Lieberman. Introdução à Pesquisa Operacional, Campus, a ed., 9 Agradeço a Professora
Introdução Paradigmas
Introdução Paradigmas Recursividade Algoritmos tentativa e erro Divisão e conquista Programação dinâmica Algoritmos gulosos Algoritmos aproximados 1 Introdução O projeto de algoritmos requer abordagens
Inferência Estatística. Medidas de Tendência Central Medidas de Variação Medidas de Posição
Inferência Estatística Medidas de Tendência Central Medidas de Variação Medidas de Posição Notações Estatísticas Característica amostra população Somatório de um conjunto de valores Valores individuais
Paradigmas de Projetos de Algoritmos
Paradigmas de Projetos de Algoritmos Luciana Assis 9 de junho de 2016 Luciana Assis (UFVJM) 9 de junho de 2016 1 / 36 1 Introdução 2 Força Bruta 3 Abordagem Incremental ou Construtiva 4 Recursão 5 Divisão
Recursividade Exaustiva e Backtracking
Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Recursividade Exaustiva e Tópicos Especiais em Programação Site: http://jeiks.net E-mail: [email protected]
Algoritmos de Ordenação. Profº Carlos Alberto T. Batista
Algoritmos de Ordenação Profº Carlos Alberto T. Batista E-mail: [email protected] [email protected] Por que ordenar os dados? Encontrar elementos em uma lista torna-se algo simples e
Algoritmos e Programação de Computadores
Algoritmos e Programação de Computadores Instituto de Computação UNICAMP Primeiro Semestre de 2013 Roteiro 1 Força Bruta 2 Backtracking 3 Branch and Bound Instituto de Computação (UNICAMP) MC102 Primeiro
Algoritimos e Estruturas de Dados III CIC210
Algoritimos e Estruturas de Dados III CIC210 Divisão e Conquista Haroldo Gambini Santos Concurso Universidade Federal de Ouro Preto - UFOP 3 de setembro de 2009 Haroldo Gambini Santos Divisão e Conquista
BCC204 - Teoria dos Grafos
BCC204 - Teoria dos Grafos Marco Antonio M. Carvalho (baseado nas notas de aula do prof. Haroldo Gambini Santos) Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal
4- Dualidade em Programação Linear
4- Dualidade em Programação Linear 4.1- Introdução Considere o problema clássico da dieta: (problema primal): Quer-se consumir quantidades de determinados alimentos de tal forma a satisfazer as necessidades
Método Simplex dual. Marina Andretta ICMC-USP. 24 de outubro de 2016
Método Simplex dual Marina Andretta ICMC-USP 24 de outubro de 2016 Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis. Marina Andretta (ICMC-USP) sme0211 - Otimização
Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 RELAÇÕES
FUNÇÃO DEFINIDA POR MAIS DE UMA SENTENÇA... MÓDULO... 6 PROPRIEDADES DO MÓDULO... 6 FUNÇÃO MODULAR... 9 GRÁFICO DA FUNÇÃO MODULAR... 9 EQUAÇÕES MODULARES... 7 INEQUAÇÕES MODULARES... 3 RESPOSTAS... 37
6. Programação Inteira
Pesquisa Operacional II 6. Programação Inteira Faculdade de Engenharia Eng. Celso Daniel Engenharia de Produção Programação Inteira São problemas de programação matemática em que a função objetivo, bem
PROCURA E PLANEAMENTO
PROCURA E PLANEAMENTO Primeiro Exame 10 de Janeiro de 2012 9:00-11:30 Este exame é composto por 16 páginas contendo 6 grupos de perguntas. Identifique já todas as folhas do exame com o seu nome e número.
Lista de Exercícios I - Gabarito
UNIVERSIDADE FEDERAL DO AMAZONAS INSTITUTO DE COMPUTAÇÃO Lista de Exercícios I - Gabarito ICC500 - Introdução à Otimização Combinatória PGINF566 - Otimização Combinatória Profa. Rosiane de Freitas Questão
Inteligência Artificial
Contextualizando Inteligência Artificial Buscas Onde podemos usar a IA Problemas que não possuem soluções algortimicas Problemas que possuem soluções algoritimicas, mas são impraticáveis (Complexidade,
5 Análise de Sensibilidade
MAC-35 - Programação Linear Primeiro semestre de 00 Prof. Marcelo Queiroz http://www.ime.usp.br/~mqz Notas de Aula 5 Análise de Sensibilidade Neste capítulo consideramos o problema de programação linear
Relatório de Inteligência Artificial
Relatório de Inteligência Artificial Hidato Grupo 4 Diogo Simões - 63558 Inês Almeida - 63556 Miguel Diogo - 63567 Introdução O objectivo deste projecto é resolver automaticamente um tabuleiro de Hidato
Alocação de Unidades via Relaxação Lagrangeana
Alocação de Unidades via Relaxação Lagrangeana Prof. Antonio Simões Costa Grupo de Sistemas de Potência EEL - UFSC Relaxação Lagrangeana: Conceitos Iniciais 2 1 Alocação de Unidades via Relaxação Lagrangeana
Aula prática 5. Funções Recursivas
Programação Funcional UFOP DECOM 2014.1 Aula prática 5 Funções Recursivas Resumo Definições recursivas são comuns na programação funcional. Nesta aula vamos aprender a definir funções recursivas. Sumário
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/27 4 - INTROD. À ANÁLISE COMBINATÓRIA 4.1) Arranjos
Projeto e Análise de Algoritmos
Projeto e Análise de Algoritmos Aula 02 Técnicas de Projeto de Algoritmos (Força Bruta) Edirlei Soares de Lima Tipos Importantes de Problemas Problemas de Ordenação: Reorganizar
Técnicas para Implementação de Jogos
Técnicas para Implementação de Jogos Solange O. Rezende Thiago A. S. Pardo Considerações gerais Aplicações atrativas para métodos de IA Formulação simples do problema (ações bem definidas) Ambiente acessível
Algoritmos de Busca. Profº Carlos Alberto T. Batista
Algoritmos de Busca Profº Carlos Alberto T. Batista E-mail: [email protected] [email protected] Por que estudar busca de dados? Sistemas trabalham, frequentemente, com a busca de números,
Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido
Módulo 2 Geometria Analítica Números Reais Conjuntos Numéricos Números naturais O conjunto 1,2,3,... é denominado conjunto dos números naturais. Números inteiros O conjunto...,3,2,1,0,1, 2,3,... é denominado
CAPÍTULO IV PROGRAMAÇÃO LINEAR INTEIRA (PLI)
CAPÍTULO IV PROGRAMAÇÃO LINEAR INTEIRA (PLI) Prof. Gilson Fernandes da Silva Departamento de Ciências Florestais e da Madeira (DCFM) Programa de Pós-graduação em Ciências Florestais (PPGCF) Universidade
4 Métodos Existentes. 4.1 Algoritmo Genético
61 4 Métodos Existentes A hibridização de diferentes métodos é em geral utilizada para resolver problemas de escalonamento, por fornecer empiricamente maior eficiência na busca de soluções. Ela pode ser
Resolução de problemas com apenas restrições lineares de igualdade
Resolução de problemas com apenas restrições lineares de igualdade Marina Andretta ICMC-USP 14 de outubro de 2014 Marina Andretta (ICMC-USP) sme0212 - Otimização não-linear 14 de outubro de 2014 1 / 22
ATIVIDADES EM SALA DE AULA Cálculo I -A- Humberto José Bortolossi
ATIVIDADES EM SALA DE AULA Cálculo I -A- Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 06 Limites, Assíntotas Horizontais e Assíntotas Verticais [0] (2006.2) Considere a função f() =
Maristela Santos. Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo
Programação Matemática Maristela Santos Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo Forma Padrão - Definição Características da forma padrão: Problema de minimização Todas
Estruturas de Dados 2
Estruturas de Dados 2 Técnicas de Projeto de Algoritmos Dividir e Conquistar IF64C Estruturas de Dados 2 Engenharia da Computação Prof. João Alberto Fabro - Slide 1/83 Projeto de Algoritmos por Divisão
III Números reais - módulo e raízes Módulo ou valor absoluto Definição e exemplos... 17
UFF/GMA - Matemática Básica I - Parte III Notas de aula - Marlene - 010-16 Sumário III Números reais - módulo e raízes 17 3.1 Módulo valor absoluto...................................... 17 3.1.1 Definição
1. FUNÇÕES REAIS DE VARIÁVEL REAL
1 1 FUNÇÕES REAIS DE VARIÁVEL REAL 11 Funções trigonométricas inversas 111 As funções arco-seno e arco-cosseno Como as funções seno e cosseno não são injectivas em IR, só poderemos definir as suas funções
Backtracking. Túlio Toffolo Marco Antônio Carvalho BCC402 Aula 10 Algoritmos e Programação Avançada
Backtracking Túlio Toffolo www.toffolo.com.br Marco Antônio Carvalho [email protected] BCC402 Aula 10 Algoritmos e Programação Avançada Backtracking Backtracking é um refinamento do algoritmo de busca
Método de restrições ativas para minimização em caixas
Método de restrições ativas para minimização em caixas Marina Andretta ICMC-USP 20 de outubro de 2014 Marina Andretta (ICMC-USP) sme5720 - Otimização não-linear 20 de outubro de 2014 1 / 25 Problema com
A Segunda Derivada: Análise da Variação de Uma Função
A Segunda Derivada: Análise da Variação de Uma Função Suponhamos que a função y = f() possua derivada em um segmento [a, b] do eio-. Os valores da derivada f () também dependem de, ou seja, a derivada
Equações do Primeiro Grau a uma Variável. 7 ano/e.f.
Módulo Equações e Inequações do Primeiro Grau Equações do Primeiro Grau a uma Variável. 7 ano/e.f. Equações e Inequações do Primeiro Grau. Equações do Primeiro Grau a uma Variável. 1 Eercícios Introdutórios
Projeto e Análise de Algoritmos
Projeto e Análise de Algoritmos Aula 03 Técnicas de Projeto de Algoritmos (Divisão e Conquista) Edirlei Soares de Lima Estratégias de Projeto de Algoritmos Força Bruta (Brute Force)
Resolução de Problemas. Universidade Católica de Pelotas Engenharia da Computação Disciplina: Inteligência Artificial
Resolução de Problemas Universidade Católica de Pelotas Engenharia da Computação Disciplina: Inteligência Artificial 2 Resolução de Problemas Introdução Componentes Solução Busca de soluções 3 Resolução
BCC202 - Estrutura de Dados I
BCC202 - Estrutura de Dados I Aula 13: Ordenação: MergeSort Reinaldo Fortes Universidade Federal de Ouro Preto, UFOP Departamento de Computação, DECOM Website: www.decom.ufop.br/reifortes Email: [email protected]
Algoritmos Combinatórios: Introdução
[email protected] UFSC, Fevereiro, 2010 Estruturas e Problemas Combinatórios Introdução a Algoritmos Combinatórios O que são: Estruturas Combinatórias? Algoritmos Combinatórios? Problemas Combinatórios?
Otimização Aplicada à Engenharia de Processos
Otimização Aplicada à Engenharia de Processos Aula 4: Programação Linear Felipe Campelo http://www.cpdee.ufmg.br/~fcampelo Programa de Pós-Graduação em Engenharia Elétrica Belo Horizonte Março de 2013
Matemática Básica Função polinomial do primeiro grau
Matemática Básica Função polinomial do primeiro grau 05 1. Função polinomial do primeiro grau (a) Função constante Toda função f :R R definida como f ()=c, com c R é denominada função constante. Por eemplo:
Oficina Álgebra 2. Após os problemas 1 e 2, há dois desafios para que você possa explorar esse novo conhecimento sobre as equações do 2º grau.
Caro aluno, Oficina Álgebra 2 Nesta atividade, você será convidado a trabalhar com problemas que podem ser representados por meio de equações do 2º grau. Nos problemas 1 e 2, é proposto que, primeiramente,
Lista de Exercícios 1 - Otimização Linear Prof. Silvio Alexandre de Araujo. Construção de Modelos e Solução Gráfica
Lista de Exercícios 1 - Otimização Linear Prof. Silvio Alexandre de Araujo Construção de Modelos e Solução Gráfica 1) - Estudar Capítulo 1 do livro texto; - Estudar Capítulo 2 do livro texto (seções 2.1,
Análise e Complexidade de Algoritmos
Análise e Complexidade de Algoritmos Principais paradigmas do projeto de algoritmos - Recursividade - Tentativa e erro - Divisão e Conquista - Programação dinâmica - Algoritmos Gulosos e de Aproximação
Algoritmos 3/17/ Algoritmos como área de estudo e investigação
Algoritmos e Complexidade Ana Teresa Freitas INESC-ID/IST ID/IST 3/17/2005 1 O que é um algoritmo? Algoritmos: Sequência de instruções necessárias para a resolução de um problema bem formulado [passíveis
MATEMÁTICA APLICADA AO PLANEJAMENTO DA PRODUÇÃO E LOGÍSTICA. Silvio A. de Araujo Socorro Rangel
MATEMÁTICA APLICADA AO PLANEJAMENTO DA PRODUÇÃO E LOGÍSTICA Silvio A. de Araujo Socorro Rangel [email protected], [email protected] Apoio Financeiro: PROGRAMA Introdução. Modelagem matemática:
Inequações Exponenciais e Logarítmicas. Inequações Exponenciais e Logarítmicas. Exemplos:
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Inequações Eponenciais e
PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR MÉTODO SIMPLEX. Prof. Angelo Augusto Frozza, M.Sc.
PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR MÉTODO SIMPLEX Prof. Angelo Augusto Frozza, M.Sc. ROTEIRO Esta aula tem por base o Capítulo 3 do livro de Taha (2008): Motivação Conceitos Matemáticos Iniciais
BUSCA EM ARRAYS. Prof. André Backes. Ato de procurar por um elemento em um conjunto de dados
BUSCA EM ARRAYS Prof. André Backes Definição 2 Ato de procurar por um elemento em um conjunto de dados Recuperação de dados armazenados em um repositório ou base de dados A operação de busca visa responder
Busca Binária. Aula 05. Busca em um vetor ordenado. Análise do Busca Binária. Equações com Recorrência
Busca Binária Aula 05 Equações com Recorrência Prof. Marco Aurélio Stefanes marco em dct.ufms.br www.dct.ufms.br/ marco Idéia: Divisão e Conquista Busca_Binária(A[l...r],k) 1:if r < lthen 2: index = 1
Matemática E Extensivo V. 7
Matemática E Etensivo V. 7 Eercícios ) B ) A P() = ³ + a² + b é divisivel por. Pelo teorema do resto, = é raiz de P(). P() = ³ + a. ² + b a + b = Da mesma maneira, P() é divisível por. Pelo teorema do
Algoritmos e Estrutura de Dados. Algoritmos Prof. Tiago A. E. Ferreira
Algoritmos e Estrutura de Dados Aula 3 Conceitos Básicos de Algoritmos Prof. Tiago A. E. Ferreira Definição de Algoritmo Informalmente... Um Algoritmo é qualquer procedimento computacional bem definido
Pesquisa Operacional / Programação Matemática
Pesquisa Operacional / Programação Matemática Otimização discreta Modelagem com variáveis binárias: problemas clássicos Breve Comentários (aula anterior) Em geral, não faz sentido resolver a relaxação
MÉTODO SIMPLEX. Prof. MSc. Marcos dos Santos
MÉTODO SIMPLEX OBJETIVO DA AULA Determinar a Solução Ótima de um PPL por meio do Método Simple, especialmente adequado para problemas com mais de duas V.D. SUMÁRIO Overview sobre PO; Métodos Algébricos;
7 ALOCAÇÃO PELO MÉTODO DO NUCLEOLUS
ALOCAÇÃO PELO MÉTODO NUCLEOLUS 76 7 ALOCAÇÃO PELO MÉTODO DO NUCLEOLUS O quarto método abordado nesta monografia é o método do nucleolus [44]. Este método, diferentemente da alocação por Última Adição,
PCS Gabarito da 1a. lista
PCS -2428 Gabarito da 1a. lista 1. Estado: situação (configuração) do ambiente no qual deve ser resolvido o problema. Espaço de estados: conjunto dos possíveis estados. Árvore de busca: estrutura de dados
Otimização de grande porte
Otimização de grande porte Silvana Bocanegra Ciclo de Seminários BSI 204.2 Esboço Otimização: definição, aplicações e motivação; Classe de problemas de otimização e métodos de solução; Principais métodos
Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se
Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se efetuar a divisão. Essas regras são chamadas de critérios
y x f x y y x y x a x b
50 SOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS ORDINÁRIAS Uma equação diferencial é uma equação que envolve uma função desconecida e algumas de suas derivadas. Se a função é de uma só variável, então a equação
Programação Linear - Parte 3
Matemática Industrial - RC/UFG Programação Linear - Parte 3 Prof. Thiago Alves de Queiroz 1/2016 Thiago Queiroz (IMTec) Parte 3 1/2016 1 / 26 O Método Simplex Encontre o vértice ótimo pesquisando um subconjunto
Aula 3: Algoritmos: Formalização e Construção
Aula 3: Algoritmos: Formalização e Construção Fernanda Passos Universidade Federal Fluminense Programação de Computadores IV Fernanda Passos (UFF) Algoritmos: Formalização e Pseudo-Código Programação de
IMPLEMENTAÇÃO E RESOLUÇÃO DE MODELOS MATEMÁTICOS UTILIZANDO A PLANILHA EXCEL
IMPLEMENTAÇÃO E RESOLUÇÃO DE MODELOS MATEMÁTICOS UTILIZANDO A PLANILHA EXCEL 1. INTRODUÇÃO Este tutorial apresenta, passo-a-passo, o processo de implementação e resolução de modelos matemáticos na planilha
LTDA APES PROF. RANILDO LOPES SITE:
Matemática Aplicada - https://ranildolopes.wordpress.com/ - Prof. Ranildo Lopes - FACET 1 Faculdade de Ciências e Tecnologia de Teresina Associação Piauiense de Ensino Superior LTDA APES PROF. RANILDO
A função y = ax + b. Na Aula 9, tivemos um primeiro contato
A UA UL LA A função = a + b Introdução Na Aula, tivemos um primeiro contato com a equação = a + b e aprendemos que seu gráfico é uma reta. Vamos então recordar algumas coisas. l Se a = 0, a nossa equação
Resolução de problemas por meio de busca. Capítulo 3 Inteligência Artificial Sistemas de Informação
Resolução de problemas por meio de busca Capítulo 3 Inteligência Artificial Sistemas de Informação Conteúdo Um exemplo Resolução de problemas por meio de busca Exemplos de problemas Em busca de soluções
MÉTODOS DE OTIMIZAÇÃO ENE081
UNIVERSIDADE FEDERAL DE JUIZ DE FORA Graduação em Engenharia Elétrica MÉTODOS DE OTIMIZAÇÃO ENE8 PROF. IVO CHAVES DA SILVA JUNIOR E-mail: [email protected] Aula Número: 9 Disciplina Métodos de Otimização
Celso Carneiro Ribeiro Introdução aos Modelos e Métodos de Otimização em Pesquisa Operacional
Celso Carneiro Ribeiro Introdução aos Modelos e Métodos de Otimização em Pesquisa Operacional Parte II Programação Inteira 004 Parte II Programação inteira Origens Motivação: PL vs. PI Solução gráfica
(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos
LIMITE DE FUNÇÕES REAIS JOSÉ ANTÔNIO G. MIRANDA versão preinar). Revisão: Limite e Funções Continuas Definição Limite de Seqüências). Dizemos que uma seqüência de números reais n convergente para um número
Resolver equações: como e para quê? (reflexões e reminiscências)
Resolver equações: como e para quê? (reflexões e reminiscências) Instituto Nacional de Matemática Pura e Aplicada Resolver equações para quê? No mundo real: Para resolver problemas concretos. Para descobrir
Chama-se inequação toda sentença matemática que é aberta por uma desigualdade.
Módulo 14 Inequações Polinomiais! 14.1. Definição Chama-se inequação toda sentença matemática que é aberta por uma desigualdade. Eemplos: 1) - > 0; ) + 5 0; 3 3)- < + 1; 4) + < 0; A resolução das inequações
Método da substituição
Prof. Neto Sistemas de equações do 1 grau a duas variáveis ESTUDE A PARTE TEÓRICA E RESOLVA OS EXERCÍCIOS DO FINAL DA FOLHA NO CADERNO. Introdução Alguns problemas de matemática são resolvidos a partir
Mergesort. Aula 04. Algoritmo Mergesort. Divisão e Conquista. Divisão e Conquista- MergeSort
Mergesort Aula 0 Divisão e Conquista- MergeSort Prof. Marco Aurélio Stefanes marco em dct.ufms.br www.dct.ufms.br/ marco Mergesort é um algoritmo de ordenação recursivo Ele recursivamente ordena as duas
ABORDAGENS PARA RESOLVER O PROBLEMA DA MOCHILA 0/1
ABORDAGENS PARA RESOLVER O PROBLEMA DA MOCHILA 0/1 Éfren Lopes de Souza 1 e Erik Alexander Landim Rafael 2 1 Universidade Federal do Amazonas (UFAM) ([email protected]) 2 Instituto Federal de Educação,
Combinando inequações lineares
Combinando inequações lineares A multiplicação por um número > 0 não altera uma inequação 2x x 5 4x 2x 10 1 2 1 2 A soma de duas inequações (com o mesmo sentido) produz uma inequação válida x 3x x 3 1
Projeto e Análise de Algoritmos Aula 4: Dividir para Conquistar ou Divisão e Conquista ( )
Projeto e Análise de Algoritmos Aula 4: Dividir para Conquistar ou Divisão e Conquista (2.1-2.2) DECOM/UFOP 2013/1 5º. Período Anderson Almeida Ferreira Adaptado do material desenvolvido por Andréa Iabrudi
